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Abstract

Information diffusion has been widely discussed in various disciplines including sociology,

economics, physics or computer science. In this paper, we generalize the linear threshold

model in signed networks consisting of both positive and negative links. We analyze the

dynamics of the spread of information based on balance theory, and find that a signed net-

work can generate path dependence while structural balance can help remove the path

dependence when seeded with balanced initialized active nodes. Simulation shows that the

diffusion of information based on positive links contradicts that based on negative links.

More positive links in signed networks are more likely to activate nodes and remove path

dependence, but they can reduce predictability that is based on active states. We also find

that a balanced structure can facilitate both the magnitude and speed of information diffu-

sion, remove the path dependence, and cause polarization.

Introduction

The analysis of information diffusion plays an important role in understanding and predicting

information flows, and has been widely discussed in various disciplines including sociology,

economics, physics and computer science [1–5]. One of the applications is the analysis of col-

lective action, in which a small group of individuals have been initially deprived of a right and

ask for the return of this right. Their behaviors may then influence their friends or colleagues,

triggering a cascade in the social network.

A series of models have been proposed to analyze information diffusion in social networks,

most of which are based on two fundamental models: the independent cascade (IC) model, in

which diffusion is treated as a cascade of infection over the network [6], and the linear thresh-

old (LT) model, in which the diffusion is based on thresholds of influence due to the neighbor-

hood [7]. Along with IC and LT models, many other diffusion models have been constructed

to satisfy different requirements. Kempe et al. [8] generalized Granovetter’s LT model and

studied the influence maximization problem in IC and LT models. Chen et al. [9] generalized

the IC model in considering the diffusion of negative opinions. Borodin et al. [10] proposed an

extended LT model in which two opposing opinions compete to maximize the rate of diffu-

sion. Lee et al. [11] proposed a continuously activated and time-restricted IC model where a

node can activate its neighbor repeatedly. Wang et al. [12] proposed a weighted cascade

PLOS ONE | https://doi.org/10.1371/journal.pone.0224177 October 29, 2019 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: He X, Du H, Feldman MW, Li G (2019)

Information diffusion in signed networks. PLoS

ONE 14(10): e0224177. https://doi.org/10.1371/

journal.pone.0224177

Editor: Irene Sendiña-Nadal, Universidad Rey Juan

Carlos, SPAIN

Received: May 28, 2019

Accepted: October 6, 2019

Published: October 29, 2019

Copyright: © 2019 He et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

described in the paper. Specifically, the authors

first generate the random networks by a fixed

method, and then they generate designed networks

which are the extension of Newman’s proposed

benchmark networks, then they operate the

simulation on the generated networks to analyze

the simulated results.

Funding: This research was supported by the

Major Project of the National Social Science

Foundation of China (Grant No: 15ZDA048), http://

www.npopss-cn.gov.cn/ (XH, HD, GL); The

Humanities and Social Science Talent Plan,

http://orcid.org/0000-0002-5987-9246
http://orcid.org/0000-0002-0664-3803
https://doi.org/10.1371/journal.pone.0224177
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224177&domain=pdf&date_stamp=2019-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224177&domain=pdf&date_stamp=2019-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224177&domain=pdf&date_stamp=2019-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224177&domain=pdf&date_stamp=2019-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224177&domain=pdf&date_stamp=2019-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0224177&domain=pdf&date_stamp=2019-10-29
https://doi.org/10.1371/journal.pone.0224177
https://doi.org/10.1371/journal.pone.0224177
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.npopss-cn.gov.cn/
http://www.npopss-cn.gov.cn/


model, which treats node attributes that are independent of the network structure. Based on

the IC and LT, epidemic models such as SIR (susceptible-infected-removed) or SIS (suscepti-

ble-infected-susceptible) models and their generalizations have also been proposed [13–16]. A

number of studies have focused on the diffusion over dynamic networks [17]. Snijders et al.

[18] proposed a stochastic model where network edge and node attributes evolve simulta-

neously over time, based on which they explained the diffusion of alcohol consumption

among adolescent friends. A subsequent study by Steglich et al. [19] built a statistical model to

separate the effects of node changes from edge changes. Aral et al. [20] developed a method to

distinguish the two kinds of effects in dynamic networks and applied this method to a real

messaging network. Greenan then proposed an extension of this model to explore the diffu-

sion of innovations with an example concerning the initiation of cannabis smoking among

adolescents [21]. Apolloni et al. [22] discussed the spread of information via conversations in a

dynamic simulated socio-technical network where the list of demographic characteristics and

the amount of contact were both included to model change in nodes and edges. By allowing

nodes and edges to join and leave the network, Gayraud et al. [23] extended the IC and LT to

account for network evolution, and found that delaying the initiators’ activation can help

increase diffusion. Compared with the random walk strategy, Guimarães et al. [24] found that

using centrality can accelerate the diffusion process over dynamic networks. In addition, sev-

eral diffusion models related to evolutionary game theory in dynamic networks have been also

studied [25–27].

Most of the above models are constructed on non-negative networks, where the effect of

non-negative relations is stressed, while the impact of negative relations has been ignored. In

reality, information diffusion among individuals is not only spread by trusting or cooperating

relationships, but may also be subject to relations that involve controversy or conflict [28]. For

example, if you heard from some of your friends that they joined a club, then you might join

too. But if someone you dislike or some of your opponents joined this club, then you might be

less likely to join. Instead, you might join another club or not join any club. Several studies

have pointed out that negative interactions also play important roles in collective dynamics

[29–32].

Networks consisting of positive and negative relations are called signed networks, where

the sign “+” denotes a positive relation and “–” denotes a negative relation [33]. These signed

relations can simply signal positive or negative impact on information diffusion, and thus pro-

vide information that individuals may use to activate their states during the evolution of collec-

tive behaviors.

The theory of structural balance plays an important role in the evolution of signed networks

[34]. IC or LT models consider how individual behaviors evolve to a collective behavior, while

structural balance focuses on how an individual’s behavior can affect others’ behaviors as a

result of social interaction. Combining structural balance with diffusion models may produce

a more natural set of choices. In this paper, we focus mainly on diffusion over static networks,

generalize the diffusion model in signed networks, and examine the impact of structural bal-

ance on the propagation. The rest of this paper is organized as follows. A linear threshold

model for signed networks is proposed in section 2; section 3 explains the relationship between

the threshold model and structural balance; simulations and experiments are shown in section

4, and our conclusions are presented in section 5.

Linear threshold model in signed networks

According to Kempe’s LT, each individual can be in one of two states: active sv = 1 or inactive

sv = 0. An individual v will be influenced by each of its neighbors w based on a weight bv,w such
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that
PNeighbors of v

w
bv;w ¼ 1. Then

PNeighbors of v

w
bv;w � sw can be regarded as the proportion of active

neighbors. If the network does not have weights (bv,w is 1/ number of v’s neighbors), then

PNeighbors of v

w
bv;w � sw becomes the number of active neighbors of v divided by its total number of

neighbors. Each node v will be assigned a threshold 0� Tv� 1 uniformly at random, which

represents the fraction of v’s neighbors that must become active in order to activate v. The

dynamics of the process then proceed as follows. At each time t, every node v is selected once.

1. If v’s state is active, it will remain active;

2. If v’s state is inactive, but
PNeighbors of v

w
bv;w � sw � Tv, then it will become active.

Compared with the classic LT model, negative relations in signed networks may generate a

completely different mechanism, because a negative relation can not only impede the regular

diffusion, but also result in diffusion of opposing information. A common phenomenon is

that people tend to do the same things as friends, while keeping a distance from people who

belong to other groups [31]. Actually, homophily and xenophobia play an important role in

neighbors’ attributes in signed networks [35–38]. Fig 1 gives an example of how an individual

is affected by its neighbors according to homophily and xenophobia. In Fig 1(A), if one node is

located with all its friends, then it will follow these friends and behave like them, e.g., voting

for a political leader. But if the node is located with all its enemies, as in Fig 1(B), then it will

not follow its neighbors, and may vote for the opposing political leader instead. This is also

consistent with social identity theory, according to which group identification may predict the

likelihood of individuals’ behaviors in social change decisions [39–41].

In order to extend Kempe’s model to signed networks, we propose a new form of LT. In the

real world, homophily and xenophobia can be observed in many types of interactions, includ-

ing friendships, politics, international relations, etc. [42]. Since two nodes with a reciprocated

tie are more likely to form a positive diffusion line, while those in conflict tend to construct a

negative diffusion line, we design the linear threshold model as follows:

Each individual v can be in one of three states: sv = 0, which represents the inactive state,

sv = +1, which represents the active state of an action, sv = −1, which represents the active state

of the opposite action. Individual v will be affected by each of its positive-link neighbors w
based on a weight bv,w, while it may be influenced by each of its negative-link neighbors u
based on a weight λ � bv,u, where λ represents the weight of the impact of negative relative to

positive edges. The weight bv,w will satisfy
PNpv

w
bv;w þ

PNnv

u
l � bv;u ¼ 1 (Npv is the number of v’s

positive-link neighbors, while Nnv is the number of v’s negative-link neighbors). Each node v
will be assigned a threshold 0� Tv� 1, which represents the fraction of v’s neighbors that

must become active in order to activate v. The dynamics of the process proceed as follows.

1. If v’s state is active, it will remain active in the same state, i.e., if it is +1 active, it will remain

+1 active and if it is –1 active, it will remain –1 active;

2. If v’s state is inactive, it will activate to +1 if
PNpv

w
bv;w � sw �

PNnv

u
l � bv;u � su � Tv and will acti-

vate to –1 if � ð
PNpv

w
bv;w � sw �

PNnv

u
l � bv;u � suÞ � Tv.
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In this paper, we investigate normal diffusion on signed networks; the impacts of threshold

distribution and link weight distribution on the dynamics will be studied in future work. Here

we ignore these two effects and assign to each node the same threshold T, which determines

the fraction of neighbors required to activate it, and we set the same link influence weight b for

each node v from all its neighbors i, which can be computed as bvi = 1/(Npv + λ � Nnv).

Fig 1. Activating nodes according to homophily and xenophobia. The red node represents an active +1 node, the blue node represents an

active –1 node, while the white one represents an inactive node. With homophily, an inactive node can be activated to the same attribute as its

friends as shown in (A), while it can be activated to the opposite attribute from its enemies according to xenophobia as shown in (B).

https://doi.org/10.1371/journal.pone.0224177.g001
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A single active node cannot initiate an information diffusion, i.e., a single active node can-

not activate a second or third node because of the threshold, and thus the information cannot

diffuse from the first step. So we randomly select a focal node to be activated with all its posi-

tive-link neighbors being activated to the same state, and all its negative-link neighbors being

activated to the opposite state. Since activating a node to +1 and –1 have the same meaning in

this paper, we activate the focal node to +1 in order to fix the initial state. The specific proce-

dure for updating node status is shown in Algorithm1.

Algorithm 1. The algorithm for updating node status.
1. Input: The signed network matrix A. The effect of negative links λ.
The threshold T. The maximum iterations Imax.
2. The initial state of every node is inactive (s = 0), then randomly
select one node and activate it to +1, while activating all of its pos-
itive-link neighbors to +1 and all its negative-link neighbors to –1
at the same time.
3. For i = 1; i � Imax; i + +
4. Randomly choose an inactive node v;
5. Compute the link influence weight for node v bv = 1/(Npv + λ � Nnv)
where Npv is the number of v’s positive-link neighbors and Nnv is the
number of v’s negative-link neighbors;

6. Compute v’s active energy Ev ¼
PNpv

w
bv � sw �

PNnv

u
l � bv � su based on its neigh-

bors’ activated states;
7. If Ev � T
8. Activate v to +1, i.e. sv = +1;
9. Else if Ev � −T
10. Activate v to –1, i.e. sv = –1;
11. Else
12. v remains inactive, i.e. sv = 0;
13. End if
14.End for
15.Output: the activated state for each node.

For the classic LT, once the contagion spreads from the initial active nodes through the net-

work, the system eventually reaches a stationary configuration if the threshold, the network

structure, the diffusion parameters, and the focal nodes are fixed. In other words, the classic

LT is path-independent if nodes can be repeatedly chosen, e.g., a node that is not activated at

this time may be activated at one time in the future. In this model, a path-dependent process

entails that the diffusion result may vary for different paths of diffusion, while a path-indepen-

dent process is one for which the diffusion result is always consistent no matter the path of dif-

fusion. Fig 2 gives an illustration of path independence in the classic LT: if the threshold T is

assigned to be 0.5, then it does not matter whether we first activate node 4 or node 5; the final

result is the same with active nodes 4 and 5, and inactive nodes 6, 7, 8. However, it should be

noted that LT may be path-dependent if inactive nodes can be only chosen once or a limited

number of times.

However, when we generalize LT to signed networks, things can be different. Even if we fix

all the necessary parameters, the diffusion results cannot be predicted because diffusion by

negative links will contradict that by positive links, which increases uncertainty in the dynamic

process. As shown in Fig 3, if the threshold T is assigned as 0.5, and node 5 is first activated to

–1, then node 4 cannot be activated, because node 1 and node 2 want to activate node 4 to +1,

which is contradicted by node 5, which wants to activate node 4 to –1. Then node 6 is activated

to –1 persuaded by node 5. However, if node 4 is the first to be activated, then node 5 cannot

be activated, and node 6 is activated to +1. Compared to the classic LT, the signed network

entails more unpredictability and the process is not path-independent.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0224177 October 29, 2019 5 / 21

https://doi.org/10.1371/journal.pone.0224177


Linear threshold model and structural balance

A series of studies have analyzed how network structure influences diffusion through the net-

work. Centola et al. [43] studied complex propagation on random, regular and small-world

networks, and pointed out that random links connected to distant nodes can prevent conta-

gions compared to a regular lattice. This contradicted the results for cascades with simple

propagation [44]. For a finite graph, the contagion has a critical threshold Tc, and the active

Fig 2. Diffusion processes of the classic LT. The red nodes are active and the white ones inactive. This figure shows that the diffusion in non-

negative networks is predictable.

https://doi.org/10.1371/journal.pone.0224177.g002

Fig 3. Diffusion processes of LT in signed networks. Red nodes represent active +1 nodes, blue nodes represent active –1 nodes, while white

ones represent inactive nodes. This figure shows that the diffusion result in signed networks is unpredictable.

https://doi.org/10.1371/journal.pone.0224177.g003
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nodes in the stationary configuration will make up most of the system when their threshold is

smaller than Tc, while the number of active nodes will be very small when their threshold is

bigger than Tc.

For a random network with the same degree hki the critical threshold will be approximately

Tr
c ¼ 1=hki [45]. According to Morris [46], the critical threshold for a regular one-dimensional

lattice will be 1/2, while that for a two-dimensional lattice with near and next nearest neighbors

will be 3/8. Further, Centola et al. pointed out that the critical threshold for a small-world net-

work will lie between the values for regular and random networks [43].

In studying the effect of network structure on contagions in signed networks, it is difficult

to define a specific number for the critical threshold because of the unpredictability discussed

in Section 2. Moreover, it is hard to determine how to assign edge signs (+1 and –1) on a ran-

dom or a regular network to form a completely random signed network or a regular signed

network. This is because edge signs and edge positions are not in the same dimension. For

example, given a non-negative random network, if we randomly assign signs on the network

based on a uniform Bernoulli distribution multiple times, the characteristics of the resulting

networks can be quite different. If more positive or negative signs are assigned to edges with

greater betweenness centrality, then the generated network is definitely not a random signed

network. However, some kinds of signed network structure may indeed influence the diffu-

sion. For example, for the diffusion on the network in Fig 4(A), the inactive nodes will be

Fig 4. Diffusion in special structures of signed networks. Red nodes represent active +1 nodes, blue nodes represent active –1 nodes, white

ones represent inactive nodes. The diffusion result in (A) is predictable, while the diffusion result in (B) is unpredictable.

https://doi.org/10.1371/journal.pone.0224177.g004
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activated as the figure shows, and this will be predictable. But for the diffusion on the network

in Fig 4(B), in which three edges have different signs from Fig 4(A), then only node 4 is certain

to be activated to +1, while the other nodes’ states cannot be predicted.

Actually, the network in Fig 4(a) is a balanced network. Heider first defined structural bal-

ance to detect the origin of conflicts in networks. According to his theory, a complete signed

network is balanced if and only if every triangle has an even number of negative edges [47]. Fig

5 shows all possible kinds of triangles; those in Fig 5(A) and 5(B) are balanced, and conform to

“the friend of my friend is also my friend” and “the enemy of my enemy is my friend”, while

the triangles in Fig 5(C) and 5(D) are imbalanced and do not conform to this logic of friend-

ship. Using graph theory, Cartwright and Harary generalized Heider’s theory to arbitrary net-

works, according to which a balanced network can be divided into two clusters: all pairs of

nodes belonging to the same cluster are connected by positive edges and all pairs of nodes

belonging to different clusters are connected by negative edges as shown in Fig 6 [48–50].

The LT in signed networks reflects homophily where active nodes with +1 (–1) will have a

tendency to persuade their friends to take the action +1 (–1), while pushing their enemies to

the cluster of –1 (+1) [35]. When the network structure is balanced and the initialized active

nodes are assigned to a balanced state (nodes with the same state are connected by positive

edges, while those with different states are connected by negative edges), the path of

Fig 5. All triangles in signed networks. (A) and (B) are balanced networks, while (C) and (D) are imbalanced networks according to Heider’s

definition of structural balance.

https://doi.org/10.1371/journal.pone.0224177.g005

Fig 6. Global view of a balanced network structure according to Cartwright and Harary.

https://doi.org/10.1371/journal.pone.0224177.g006
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information diffusion can be predictable and this model tends to activate nodes in the direc-

tion of cluster assignation of structural balance, i.e. the active state of a node si will gradually

evolve to its cluster assignation in structural balance ci. Then all nodes will become active on a

balanced network if the threshold T � min 1

ðNpvþl�NnvÞ
, where Npv is the number of v’s positive-

link neighbors, and Nnv is the number of v’s negative-link neighbors. The final active +1 (–1)

nodes will connect positive edges with each other, while connecting negative edges with

active –1 (+1) nodes.

Here we give a simple demonstration of this claim. When the threshold T � min 1

ðNpvþl�NnvÞ
,

only one edge can make an active node activate a neighboring node. If there is an inactive

node in a balanced network, its positive-link neighbor will persuade it to take the same action,

while its negative-link neighbor will push it to take the opposite action. As a result, all nodes

can be activated if there are no isolated nodes. On the other hand, if there is a pair of active +1

(–1) nodes connected by a negative edge, they should belong to two opposing clusters accord-

ing to the definition of structural balance; then there must be another node to activate one of

these two nodes. If the node is a +1 (–1), this node will link positive paths to both +1 (–1)

nodes. Then there will be positive links between the two clusters, which is contradicted by the

structural balance. If the node is a –1 (+1) node, this node will link negative paths to both +1

(–1) nodes. Then there will be negative links within one of the clusters, which also contradicts

the structural balance. If there exists a positive edge connecting a +1 node and a –1 node, they

should belong to the same cluster according to the definition of structural balance, while

another +1 node will link a positive path with the +1 node and link a negative path with the –1

node, which means there are negative links within the cluster; or another –1 node in another

cluster will link a negative path with the +1 node and a positive path with the –1 node, which

means there are positive links between the two clusters. As a result, active nodes with the same

state must connect positive edges with each other, while inactive nodes with different states

must connect negative edges with each other.

Results/Discussion

Here, we explore the diffusion model in signed networks via a set of simulation experiments.

These simulations are carried out by MATLAB on a 2.40 GHz CPU and 4.00 GB Memory

computer, Windows 10. The experiment for each parameter set is carried out for 50,000 itera-

tions and all experiments converge within 50,000 iterations.

We first generate an Erdős-Rényi random graph consisting of 1,000 nodes with average net-

work connectivity hki = 8 [49]. Then the signs “+” or “–” are randomly assigned to the edges

according to the uniform Bernoulli distribution, making the positive-link degree hk+i = 4 and

negative-link degree hk−i = 4. The simulations are carried out on this random network for all

trials. We randomly select a focal node to be activated with all its positive-link neighbors being

activated to +1, and all its negative-link neighbors being activated to –1. The fraction of the ini-

tial active nodes makes up less than 1%. For each parameter, the initialization operation is car-

ried out ten times in order to cover the different situations for the initial active state, while the

experiment for each initialization is carried out for 50 trials with different diffusion paths (dif-

ferent order of activated nodes) to explore the dynamic process.

Fig 7 shows the effects of negative links λ on the diffusion. The colors represent the fraction

of activated nodes after 50,000 iterations; red represents a higher fraction, while blue repre-

sents a lower fraction. According to Watts [45], a positive-link network with degree hki = 4

will have its critical threshold at 1/hki = 0.25. However, when more negative edges are added

to the network, the cascade cannot be achieved easily with this threshold. The highest critical

threshold value in this network is 0.20 if λ> 0 as shown in Fig 7. This shows that negative
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links introduce more randomness and individuals have more choices on being activated,

which may give contradictory information to the neighboring nodes.

Moreover, Fig 7 shows that the threshold value undergoes an inverted U-type increase as

the weight of the impact of negative links λ increases. When the impact of negative links equals

that of positive links, i.e. λ = 1, the system is most unlikely to achieve information diffusion. To

some extent, the diffusion based on positive links contradicts that based on negative links.

Fig 8 presents the highest critical threshold for different average connectivity of generated

signed networks and different λ. Consistent with the result in Fig 7, the highest critical thresh-

old with λ = 1 is more likely to be lower than those with other λ. On the other hand, a network

with greater average connectivity has a lower critical threshold, which is consistent with the

result in [45].

We here give a more specific discussion on the difference between activated +1 and –1

nodes that represents inequality between the two states, and we use the absolute value of the

fraction of activated +1 nodes minus that of –1 nodes. Fig 9 shows the inequality between the

two states for different λ, and we see that reducing the effect of negative relationships can

increase the inequality between the two active states. Since positive links can activate positive-

link neighbors to the same state, it is more likely to form a +1!+1!+1 or a –1!–1!–1 cas-

cade. But a negative link can break this cascade and it is more likely to form the diffusion

+1!–1!+1 or –1!+1!–1, which can make the two active states more equal.

We here explore the predictability or unpredictability of the dynamic process. For

each state s and initialization setting r, the unpredictability can be formulated as

us;r ¼
PW

i¼1

PW

j¼iþ1

jFs;i;r � Fs;j;rj=
W
2

� �

where Fs,i,r represents the fraction of nodes in state s in trial

i with the initial condition r and W = 50 represents the number of trials [51]. The average

unpredictability for each state is computed as us ¼
PR

r
us;r=R where R = 10 is the number of

Fig 7. Fraction of activated nodes with different weights for the impact of negative links. 50 simulations are carried

out for 50,000 iterations with 10 different initialization states on a random network consisting of 1,000 nodes with

positive-link degree hk+i = 4 and negative-link degree hk−i = 4. The x-axis orders the threshold value from 0 to 0.25,

while the y-axis orders the effect of negative edges on the diffusion. Colors in the figure represent the fraction of

activated nodes, with red denoting a higher proportion and blue denoting a lower proportion.

https://doi.org/10.1371/journal.pone.0224177.g007
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different initialization settings. The overall unpredictability U ¼
PS

s
us=S is then the average

value of the unpredictability over all kinds of states including s = 0 (not being activated), s = +1

(being activated to +1), s = −1 (being activated to –1) and S = 3. Fig 10 shows the unpredict-

ability for different λ, and we see that the value of each critical threshold is unpredictable. Also,

a lower effect of negative relationships can decrease the predictability.

Fig 8. Critical thresholds with different weights for the impact of negative links and different average connectivity.

Simulations are carried out on networks with different average connectivity. These networks consist of 1,000 nodes with

equal positive-link and negative-link degrees. The connectivity for each network is set as<k> = 4, 8, 16, 32, and 64,

respectively. The color in the figure represents the value of the critical threshold. Red denotes a higher value and blue

denotes a lower value.

https://doi.org/10.1371/journal.pone.0224177.g008

Fig 9. Inequality between the two active states with different weights for the impact of negative links. The color in

the figure represents the difference between fractions of activated +1 and –1 nodes. Red denotes higher inequality and

blue denotes lower inequality.

https://doi.org/10.1371/journal.pone.0224177.g009
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The mechanism of path dependence must be tested with many experiments with different

paths, and if all of the trials with different diffusion paths result in a consistent result, then the

process is path-independent. We compute here the inconsistency between the different trials

in order to explore the problem of path-dependence. For each initialization setting r, the

inconsistency between different trials can be formulated as pr ¼
PW

i¼1

PW

j¼iþ1

Gr;ij=
W
2

� �

, where

Gr,ij represents the fraction of nodes with inconsistent states in trials i and j with the specific

initial condition r, and W = 50 represents the number of trials. The overall inconsistency

P ¼
PR

r
pr=R is the average value over different initial conditions. When P equals 0, the process

can be claimed to be independent. Fig 11 shows the inconsistency for different λ, and we see

that results tend to be more consistent as the threshold increases. Compared with Fig 7, we can

conclude that even though most nodes can be activated below the critical threshold, nodes

may be activated to different states from different diffusion paths, which means the signed net-

work cannot remove the path dependence no matter what the value of λ is.

We explore the impact of the proportions of negative and positive links in signed networks

on the diffusion process. Fig 12 shows the fraction of activated nodes for different proportions

of negative links γ; we see that positive links are more likely to activate nodes, but the critical

threshold value shows no differences between different values of γ.

Fig 13 shows the inequality between the two active states for different values of γ. We see

that more positive relationships can increase the inequality between the two active states, simi-

larly to Fig 9.

Fig 14 presents the unpredictability for different values of γ. Similarly to the result in Fig 10,

the critical threshold point is more unpredictable, while a greater proportion of negative links

helps to improve predictability. It should be noted that for the bottom line in Fig 14 there are

only positive edges in the network, so the unpredictability will always fall to 0. Since we set the

maximum number of iterations at 50,000, some of the points may not actually reach 0, but

may reach 0 theoretically if the maximum number of iterations were large enough.

Fig 10. Unpredictability for different weights assigned to the impact of negative links. The color in the figure

represents the unpredictability. Red denotes higher unpredictability and blue denotes higher predictability.

https://doi.org/10.1371/journal.pone.0224177.g010
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Fig 15 shows the inconsistency of different trials for different values of γ. The inconsistency

increases as the threshold increases until it reaches a critical threshold. A greater proportion of

negative edges decreases the consistency of different experimental trials, which means that

negative edges are more likely to generate path-dependence. From this, we can conclude that it

is the negative links that make the signed system path-dependent, while positive links can help

remove the path-dependence as in the classic LT model.

Fig 11. Inconsistency of results for different weights assigned to the impact of negative links. The color in the figure

represents the inconsistency. Red denotes higher inconsistency and blue denotes higher consistency.

https://doi.org/10.1371/journal.pone.0224177.g011

Fig 12. Fraction of activated nodes for different proportions of negative links. The simulation is carried out 50

times for 50,000 iterations with 10 different initialization states on random networks consisting of 1,000 nodes with

degree hki = 8 and λ = 1. The x-axis orders the threshold value from 0 to 0.25, while the y-axis orders the proportion of

negative edges. The colors in the figure represent the fraction of activated nodes. Red denotes a higher proportion and

blue denotes a lower proportion.

https://doi.org/10.1371/journal.pone.0224177.g012
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In order to explore the influence of structural balance on the diffusion dynamics, we ran

the simulations on our designed networks. The generated networks are the extension of New-

man’s proposed benchmark networks [52], and the new design consists of 1,000 nodes belong-

ing to two clusters (500 nodes per cluster) with average positive-link degree 4 and negative-

link degree 4. We introduce a parameter β which denotes the proportion of imbalanced edges

(negative links within the same cluster or positive links between different clusters). Similarly to

the previous initialization, we randomly select a focal node to be activated with all its positive-

link neighbors being activated to +1, and all its negative-link neighbors being activated to –1.

Fig 13. Inequality between the two active states for different proportions of negative links. The colors in the figure

represent the differences between fractions of activated +1 and –1 nodes. Red denotes higher inequality and blue

denotes lower inequality.

https://doi.org/10.1371/journal.pone.0224177.g013

Fig 14. Unpredictability for different proportions of negative links. The colors in the figure represent the

unpredictability. Red denotes higher unpredictability and blue denotes higher predictability.

https://doi.org/10.1371/journal.pone.0224177.g014
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For each parameter, the initialization operation is carried out 10 times in order to cover the

different situations for the initial active state. The experiment for each initialization is carried

out for 50 trials to explore the dynamic process.

Fig 16 shows the fraction of active nodes for different proportions of imbalanced edges β.

As β increases, it becomes harder for networks to diffuse information, as can be seen from a

lower fraction of active nodes with a higher β. When the network is balanced (β = 0), all nodes

can be activated when the threshold value is smaller than 0.15, and they can be polarized from

Fig 15. Inconsistency of results for different proportions of negative links. The color in the figure represents the

inconsistency. Red denotes higher inconsistency and blue denotes higher consistency.

https://doi.org/10.1371/journal.pone.0224177.g015

Fig 16. Fraction of activated nodes for different proportions of imbalanced edges. 50 simulations are carried out

for 50,000 iterations with 10 different initialization states and λ = 1 on networks with different proportions of

imbalanced edges. All these networks remain unchanged, and only some of the network signs are changed in order to

generate an environment with different probabilities of imbalanced edges. These networks consist of 1,000 nodes with

positive-link degree hk+i = 4 and negative-link degree hk−i = 4. The x-axis in this figure orders the threshold value

from 0 to 0.25, while the y-axis orders the proportion of imbalanced edges from 0 to 0.3. The color in the figure

represents the fraction of activated nodes. Red denotes a higher proportion and blue denotes a lower proportion.

https://doi.org/10.1371/journal.pone.0224177.g016
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two opposing groups taking the same action. Therefore, a balanced structure allows informa-

tion to spread more easily and cause polarization.

Fig 17 shows the inequality between the two active states for different β. We find that a

lower βmakes the two states more equal. Actually, this occurs because the network consists of

two clusters with the same number of nodes, and each cluster may have only one kind of active

state when the network is balanced. Thus if the two clusters have different numbers of nodes,

the balanced network can still retain high inequality. What we want to show here is not that

balance can increase the equality, but that balance may cause polarization, where nodes in the

same clusters are activated to the same state while nodes in different clusters can be activated

to different states.

Fig 18 shows the unpredictability for different β. Below the critical threshold point, the

dynamics with a more balanced structure can be more predictable, while above the critical

threshold point, some values in more balanced networks have higher unpredictability. This is

because some points in a balanced structure that can be activated have not yet been activated

in some experiments within 50,000 iterations. If there were no limit on the maximum number

of iterations, diffusion in a balanced structure should be exactly predictable. On the other

hand, we can conclude that it is harder for a more balanced structure to become completely

predictable above the critical threshold given a finite time, i.e. it would be harder for a more

balanced network than for a less balanced network to mix the dynamics among nodes when

the threshold is above the critical threshold. In other words, those nodes that can be activated

are sometimes difficult to activate because the combined effect of structural balance and

threshold surpasses the critical ones; e.g., one node can only be activated after some other spe-

cific nodes become activated, while if one of these other nodes has not been activated, the focal

node cannot be activated either.

Fig 19 shows the inconsistency of different trials for different values of β. A greater propor-

tion of imbalanced edges decreases the consistency, while a more balanced structure can help

remove the path-dependence. This is consistent with the theoretical analysis in Section 3.

Fig 17. Inequality between the two active states for different proportions of imbalanced edges. The colors in the figure

represent the difference between fractions of activated +1 and –1 nodes. Red denotes higher inequality and blue denotes

lower inequality.

https://doi.org/10.1371/journal.pone.0224177.g017
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We further track the evolution for each iteration with different proportions of imbalanced

edges. The fraction of cooperators for each iteration in the experiment with λ = 1 and T = 0.15

is shown in Fig 20, where we see that no matter what the proportion of imbalanced edges β,

the information diffusion will experience an S-type change in which the number of activated

nodes increases slowly during the first several iterations and sharply increases at some point,

after which its growth gradually slows down and eventually converges.

Comparing the curves with β = 0 and β = 0.3, the final number of activated nodes in the bal-

anced network is larger than that in the imbalanced network. The rate of increase with β = 0 is

Fig 18. Unpredictability for different proportions of imbalanced edges. The color in the figure represents the

unpredictability. Red denotes higher unpredictability and blue denotes higher predictability.

https://doi.org/10.1371/journal.pone.0224177.g018

Fig 19. Inconsistency of results for different proportions of imbalanced edges. The color in the figure represents the

inconsistency. Red denotes higher inconsistency and blue denotes higher consistency.

https://doi.org/10.1371/journal.pone.0224177.g019
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also much greater than with β = 0.3. In this case, we conclude that the balanced network struc-

ture will increase both the magnitude and speed of the information diffusion. Moreover, we

consider the changes in social ties, where the imbalanced edges are adjusted to balanced ones

after the 4,000th iteration (the start point of the sharp increase with β = 0.3) and the 8,000th iter-

ation (the end point of the sharp increase with β = 0.3). For the curve with β = 0.3 initially and

β = 0 after the 4,000th iteration, the number of activated nodes can reach the magnitude of the

curve with β = 0 initially, even though it may delay the diffusion of information. The experi-

ment with β = 0.3 initially and β = 0 after the 8,000th iteration activates more nodes compared

to the experiment with unchanged imbalanced edges. However, it does not reach the level of

β = 0 initially or β = 0 after the 4,000th iteration. This is because during the first 8,000 iterations

some nodes are activated to some attributes, which contradicts the diffusion in balanced

networks.

Conclusion

We have generalized the earlier linear threshold model in signed networks. We discuss the dif-

ference between the classic linear threshold model and the proposed model, and analyze the

impact of network structures on the diffusion of information in signed networks. A signed net-

work may generate more randomness, which has the opposite effect of positive links, and thus

generates path dependence. Structural balance may affect information diffusion in signed net-

works, and a balanced network seeded with a balanced initialized active state can remove the

path dependence. Simulation experiments show that when the effect of negative links is the

same as that of positive links, it is more difficult to achieve information diffusion. A greater

proportion of positive links in signed networks is more likely to activate nodes and remove

Fig 20. Comparison of the fraction of activated nodes for each iteration with different proportions of imbalanced edges. 50 simulations are

carried out for 50,000 iterations with 10 different initialization states and λ = 1, T = 0.15. Here we present only 30,000 iterations because all curves have

converged within 30,000 iterations.

https://doi.org/10.1371/journal.pone.0224177.g020
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path dependence, but positive edges reflect a +1!+1!+1 or a –1!–1!–1 diffusion mecha-

nism, which can make the active states less equal. Moreover, based on the predictability analy-

sis, the critical threshold point is more unpredictable, while negative links help to improve

predictability. We also explore the effect of structural balance on the dynamics and find that

information spreads more easily in a balanced structure, causing more activated nodes at a

higher speed. Structural balance can also help remove path dependence but may cause

polarization.

Diffusion in signed networks can further explain some collective action. The balanced

structure in Fig 6 is typical of social conflicts [53]. When two opposing groups are more differ-

ent, the antagonism between them is strengthened, which leads to more instability. According

to social identity theory, the stronger the group identity, the more willing group members are

to take collective action [54]. This group identity not only improves group unity, but also pro-

motes comparison between groups, and thus generates more conflict [55]. As a result, when an

accident occurs in a population with balanced structure, the information will quickly diffuse

and polarization will occur [56], which corresponds to our simulation results.

In the basic diffusion model discussed here, the effects of threshold distribution and link

weight distribution are not included. The initialized activation is also an ideal operation where

nodes connected by positive edges are activated to the same state and those nodes connected

by negative edges are activated to different states. If this condition is not met, structural bal-

ance may not remove the path-dependence. Moreover, there may exist a non-zero probability

of change in the active states in the real world. The transition between +1 and –1 and transition

from active to inactive states should be also considered in future work. For example, someone

participating in a collective action may quit for some reason or a consumer may change their

preference to another product. Including these possibilities will produce a more realistic

diffusion.
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8. Kempe D, Kleinberg J, Éva Tardos. Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. 2003;

137–146.

9. Chen W, Collins A, Cummings R, et al. Influence maximization in social networks when negative opin-

ions may emerge and propagate. Proc. SIAM Int. Conf. Data Min. 2011; 379–390.

10. Borodin A, Filmus Y, Oren J. Threshold Models for Competitive Influence in Social Networks. Int. Work-

shop Internet Network Econ. Springer, Berlin, Heidelberg 2010; 539–550.

11. Lee W, Kim J, Yu H. CT-IC: Continuously Activated and Time-Restricted Independent Cascade Model

for Viral Marketing. IEEE Int. Conf. Data Min. 2013; 57–68.

12. Wang Y, Wang H, Li J, et al. Efficient influence maximization in weighted independent cascade model.

Int. Conf. Database Syst. Adv. Appl. Springer, Cham 2016; 49–64.

13. Moreno Y, Pastor-Satorras R, Vespignani A. Epidemic outbreaks in complex heterogeneous networks.

Eur. Phys. J. B 2002; 26(4): 521–529.

14. May RM, Lloyd AL. Infection dynamics on scale-free networks. Phys. Rev. E 2001; 64(2): 066112.

15. Pastorsatorras R, Vespignani A. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 2000;

86(14): 3200–3203.

16. Zhou X, Cui J. Analysis of stability and bifurcation for a SEIR epidemic model with saturated recovery

rate. Commun Nonliner Sci. 2011; 16(11):4438–4450.

17. Alvarez-Hamelin JI, Fleury E, Vespignani A, Ziviani A. Complex dynamic networks: Tools and methods

(Guest Editorial). Comput. Networks. 2012; 56(3):967–969.

18. Snijders TAB, Steglich CEG, Schweinberger M. Modeling the co-evolution of networks and behavior. In

Longitudinal Models in the Behavioral and Related Sciences (eds van Montfort K, Oud H, Satorra A).

Mahwah: Erlbaum; 2007; 41–71.

19. Steglich CEG, Snijders TAB, Pearson M. Dynamic networks and behavior: separating selection from

influence. Sociol. Methodol. 2010; 40: 329–393.

20. Aral S, Muchnik L, Sundararajan A. Distinguishing influence-based contagion from homophily-driven

diffusion in dynamic networks. Proc. Natl. Acad. Sci. USA. 2009; 106(51): 21544–21549. https://doi.

org/10.1073/pnas.0908800106 PMID: 20007780

21. Greenan CC. Diffusion of innovations in dynamic networks. J. R. Stat. Soc., Ser. A: Stat. Soc. 2015;

178(1): 147–166.

22. Apolloni A, Channakeshava K, Durbeck L, et al. A study of information diffusion over a realistic social

network model. Int. Conf. Comput. Sci. Eng. IEEE 2009; 4: 675–682.

23. Gayraud N T H, Pitoura E, Tsaparas P. Diffusion maximization in evolving social networks. Proc. ACM

Conf. Online Soc. Networks 2015; 125–135.

24. Guimarães A, Vieira AB, Silva APC, Ziviani A. Fast centrality-driven diffusion in dynamic networks.

Proc. 22nd Int. Conf. World Wide Web. ACM 2013; 821–828.

25. Santos FC, Pacheco JM, Lenaerts T. Cooperation prevails when individuals adjust their social ties. Plos

Comput Biol. 2006; 2 (10): 1284–1291.

26. Pinheiro FL, Santos FC, Pacheco JM. Linking Individual and Collective Behavior in Adaptive Social Net-

works. Phys Rev Lett. 2016; 116 (12): 128702. https://doi.org/10.1103/PhysRevLett.116.128702

PMID: 27058108

27. He X, Du H, Cai M, Feldman MW. The evolution of cooperation in signed networks under the impact of

structural balance. Plos One. 2018; 13(10): e0205084. https://doi.org/10.1371/journal.pone.0205084

PMID: 30296278

28. Easley D, Kleinberg J. Networks, crowds, and markets. Cambridge: Cambridge university press; 2010.

29. Mark NP. Culture and Competition: Homophily and Distancing Explanations for Cultural Niches. Am.

Sociol. Rev. 2003; 68(3): 319–345.

30. Macy MW, Kitts J A, Flache A, et al. Polarization in Dynamic Networks: A Hopfield Model of Emergent

Structure. Dyn. Soc. Network Model. Anal. 2003; 162–173.

31. Jager W. Uniformity, Bipolarization and Pluriformity Captured as Generic Stylized Behavior with an

Agent-Based Simulation Model of Attitude Change. Comput. Math. Organ. Th. 2005; 10(4):295–303.

Information diffusion in signed networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0224177 October 29, 2019 20 / 21

https://doi.org/10.1073/pnas.0908800106
https://doi.org/10.1073/pnas.0908800106
http://www.ncbi.nlm.nih.gov/pubmed/20007780
https://doi.org/10.1103/PhysRevLett.116.128702
http://www.ncbi.nlm.nih.gov/pubmed/27058108
https://doi.org/10.1371/journal.pone.0205084
http://www.ncbi.nlm.nih.gov/pubmed/30296278
https://doi.org/10.1371/journal.pone.0224177


32. Kitts JA. Social influence and the emergence of norms amid ties of amity and enmity. Simul. Model.

Pract. Th. 2006; 14(4): 407–422.

33. Doreian P, Mrvar A. Partitioning signed social networks. Soc. Networks 2009; 31(1): 1–11.

34. Heider F. Social perception and phenomenal causality. Psychol. Rev. 1944; 51(6): 358–374.

35. McPherson M, Smith-Lovin L, Cook JM. Birds of a feather Homophily in social networks. Annu. Rev.

Sociol. 2001; 27(1): 415–444.

36. Rogers EM, Bhowmik DK. Homophily-heterophily: Relational concepts for communication research[J].

Public Opin. Quart. 1970; 34 (4): 523–538.

37. Kandel DB. Homophily, Selection, and Socialization in Adolescent Friendships. Am. J. Sociol. 1978;

84(2): 427–436.

38. Kossinets G, Watts DJ. Origins of Homophily in an Evolving Social Network. Am. J. Sociol. 2010, 115

(2): 405–450.

39. Tajfel H. Differentiation between social groups: Studies in the social psychology of intergroup relations

[J]. Am. J. Sociol. 1978, 86(5).

40. Tajfel H, Turner J. An integrative theory of intergroup conflict. Soc. Psychol. Intergroup Relat. 1979; 33:

94–109.

41. Mummendey A, Kessler T, Klink A, et al. Strategies to cope with negative social identity: Predictions by

social identity theory and relative deprivation theory. J. Pers. Soc. Psychol. 1999; 76(2): 229–245.

https://doi.org/10.1037//0022-3514.76.2.229 PMID: 10074707

42. Terry DJ, Hogg MA. Group Norms and the Attitude-Behavior Relationship: A Role for Group Identifica-

tion. Pers. Soc. Psychol. B. 1996; 22(8): 776–793.

43. Centola D, Eguı́luz VM, Macy MW. Cascade dynamics of complex propagation. Physica A 2007; 374

(1): 449–456.

44. Watts DJ, Strogatz SH. Collective dynamics of small-world networks. Nature 1998; 440–442. https://

doi.org/10.1038/30918 PMID: 9623998

45. Watts DJ. A Simple Model of Global Cascades on Random Networks. Proc. Natl. Acad. Sci. USA.

2002; 99(9):5766–71. https://doi.org/10.1073/pnas.082090499 PMID: 16578874

46. Morris S. Contagion. Rev. Econ. Stud. 2010; 67(1): 57–78.

47. Heider F. Attitudes and cognitive organization. J. Psychol. 1946; 21(1): 107.

48. Cartwright D, Harary F. Structural balance: a generalization of Heider’s theory. Psychol. Rev. 1956;

63(5): 277–292. https://doi.org/10.1037/h0046049 PMID: 13359597

49. Du H, He X, Feldman MW. Structural balance in fully signed networks. Complexity 2016; 21(S1): 497–

511.

50. Du H, He X, Wang S, et al. Optimizing transformations of structural balance in signed networks with

potential relationships. Physica A 2017; 465: 414–424.

51. Salganik MJ. Experimental Study of Inequality and Unpredictability in an Artificial Cultural Market. Sci-

ence 2006; 311(5762): 854–856. https://doi.org/10.1126/science.1121066 PMID: 16469928

52. Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. Natl. Acad. Sci.

USA. 2002; 99(12): 7821–7826. https://doi.org/10.1073/pnas.122653799 PMID: 12060727

53. Coser LA. The functions of social conflict. Am. Sociol. Rev. 1956; 22(1): 112.

54. Tajfel H, Billig MG, Bundy RP. Social categorization and intergroup behavior. Eur. J. Soc. Psychol.

1971; 1(2): 149–178.

55. Walker I, Smith HJ. Relative deprivation: Specification, development, and integration. Cambridge:

Cambridge University Press; 2002.

56. Du H, He X, Wang J, et al. Reversing structural balance in signed networks. Physica A 2018; 503: 780–

792.

Information diffusion in signed networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0224177 October 29, 2019 21 / 21

https://doi.org/10.1037//0022-3514.76.2.229
http://www.ncbi.nlm.nih.gov/pubmed/10074707
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
https://doi.org/10.1073/pnas.082090499
http://www.ncbi.nlm.nih.gov/pubmed/16578874
https://doi.org/10.1037/h0046049
http://www.ncbi.nlm.nih.gov/pubmed/13359597
https://doi.org/10.1126/science.1121066
http://www.ncbi.nlm.nih.gov/pubmed/16469928
https://doi.org/10.1073/pnas.122653799
http://www.ncbi.nlm.nih.gov/pubmed/12060727
https://doi.org/10.1371/journal.pone.0224177

