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The protein design problem is to identify an amino acid sequence
that folds to a desired structure. Given Anfinsen’s thermodynamic
hypothesis of folding, this can be recast as finding an amino acid
sequence for which the desired structure is the lowest energy
state. As this calculation involves not only all possible amino acid
sequences but also, all possible structures, most current ap-
proaches focus instead on the more tractable problem of finding
the lowest-energy amino acid sequence for the desired structure,
often checking by protein structure prediction in a second step
that the desired structure is indeed the lowest-energy conforma-
tion for the designed sequence, and typically discarding a large
fraction of designed sequences for which this is not the case. Here,
we show that by backpropagating gradients through the
transform-restrained Rosetta (trRosetta) structure prediction net-
work from the desired structure to the input amino acid sequence,
we can directly optimize over all possible amino acid sequences
and all possible structures in a single calculation. We find that
trRosetta calculations, which consider the full conformational
landscape, can be more effective than Rosetta single-point energy
estimations in predicting folding and stability of de novo designed
proteins. We compare sequence design by conformational land-
scape optimization with the standard energy-based sequence de-
sign methodology in Rosetta and show that the former can result
in energy landscapes with fewer alternative energy minima. We
show further that more funneled energy landscapes can be
designed by combining the strengths of the two approaches: the
low-resolution trRosetta model serves to disfavor alternative
states, and the high-resolution Rosetta model serves to create a
deep energy minimum at the design target structure.

protein design | machine learning | energy landscape | sequence
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Computational design of sequences that fold into a specific
protein structure is typically carried out by searching for the

lowest-energy sequence for the desired structure. In Rosetta and
related approaches, side-chain rotamer conformations are built
for all amino acids at all positions in the structure, the interac-
tion energies of all pairs of rotamers at all pairs of positions are
computed, and combinatorial optimization (in Rosetta, Monte
Carlo simulated annealing) of amino acid identity and confor-
mation at all positions is carried out to identify low-energy so-
lutions. Over the past 25 years, a number of algorithms (1–3)
have been developed to solve this problem, including recent
deep learning-based solutions (4–6). A limitation of all of these
approaches, however, is that while they generate a sequence that
is the lowest-energy sequence for the desired structure, they can
result in rough energy landscapes that hamper folding (7, 8) and
do not guarantee that the desired structure is the lowest-energy
structure for the sequence. Thus, an additional step is usually
needed to assess the energy landscape and determine if the
lowest-energy conformation for a designed sequence is the de-
sired structure; the designed sequences are subjected to large-

scale stochastic folding calculations, searching over possible
structures with the sequence held fixed (9). This two-step pro-
cedure has the disadvantage that the structure prediction cal-
culations are very slow, requiring many central processing unit
(CPU) days for adequate sampling of protein conformational
space. Moreover, there is no immediate recipe for updating the
designed sequence based on the prediction results—instead,
sequences that do not have the designed structure as their
lowest-energy state are typically discarded. Multistate design
(10–12) can be carried out to maximize the energy gap between
the desired conformation and other specified conformations, but
the latter must be known in advance and be relatively few in
number for such calculations to be tractable.
We recently described a convolutional neural network called

trRosetta that predicts the probability of residue–residue dis-
tances and orientations from input sets of aligned sequences.
Combining these predictions with Rosetta energy minimization
yielded excellent predictions of structures in benchmark cases, as
well as recent blind Continous Automated Model EvalutiOn
(CAMEO) structure modeling evaluations (13). While native
structures usually require coevolution constraints derived from
multiple sequence alignments to be predicted, the structures of
de novo designed proteins, perhaps owing to their idealized
sequence–structure encoding (9, 14), could be predicted from
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just the single sequences (13). Because distance and orientation
predictions are probabilistic Because probability distributions
over possible distances and orientations are predicted, we rea-
soned that they might inherently contain information about al-
ternative conformations and thus, provide more information
about design success than classical energy calculations. More-
over, because these predictions can be obtained rapidly for an
input sequence on a single graphical processing unit (GPU), we
reasoned that it should be possible to use the network to directly
design sequences that fold into a desired structure by maximizing
the probability of the observed residue–residue distances and
orientations vs. all others. Unlike the standard energy-based
sequence design approaches described in the previous para-
graph, such an approach would have the advantage of explicitly
maximizing the probability of the target structure relative to all
others (Fig. 1A).

Results and Discussions
Sequence Design by Gradient Backpropagation.We set out to adapt
trRosetta for the classic “fixed backbone” sequence design
problem by developing a suitable loss function assessing the
probability of the desired structure for a given sequence and an
efficient optimization method for finding sequences that maxi-
mize this probability. For the loss function, we simply sum the
logarithms of the probabilities of the observed interresidue dis-
tances and orientations—a proxy for the log likelihood of the
sequence given the structure. For optimization, we experimented
with a simple iterative procedure in which a sequence is 1)
randomly generated and input to the network. 2) The gradient of
the loss is backpropagated to the input sequence (treated as an
N × 20 position-specific scoring matrix [PSSM]). 3) New amino
acid sequence distributions are obtained at each position
through a step down the gradient. 4) A single new amino acid
sequence is obtained by selecting the highest-probability amino
acid at each position, and 5) this sequence is fed back into the
network for the next iteration/update (Fig. 1B). We found that
this procedure converged for a variety of ∼100-residue protein
structures after ∼25 iterations, requiring only a few minutes of
GPU time. We benchmarked this optimization method by
redesigning 2,000 proteins previously generated using Markov

chain Monte Carlo optimization with trRosetta (15). For all
cases, the gradient descent approach can find a similar or better-
scoring solution within 100 iterations (SI Appendix, Figs. S2 and
S3 and Table S1).
In many design applications, it is desirable to generate not just

one sequence that folds to a given structure but an ensemble of
them. In Rosetta, this is typically done through many indepen-
dent Monte Carlo sequence optimization calculations, which are
CPU time intensive. We reasoned that our trRosetta sequence
design approach could be extended to generate not just one
sequence but ensembles of thousands of sequences in one pass
by taking as the variables being optimized the identities of the
amino acid sequences of 10,000 or more aligned sequences, with
minimal impact to run time. This is straightforward since the
trRosetta network already takes aligned sequences as inputs (SI
Appendix, Fig. S1C). As shown in SI Appendix, Fig. S1E, such
“sequence alignment” design generates alignments with
residue–residue covariation and other hallmarks of native pro-
tein sequences (SI Appendix, Fig. S12). This approach could be
useful for guiding the construction of smart sequence libraries
for directed evolution of enzyme activities and other properties
where the number of sequences in the naturally occurring family
is too small to adequately estimate these features. We focus the
present analysis on the design of single sequences.

trRosetta Captures General Properties of the Folding Energy
Landscape. Because trRosetta generates probability distributions
over all possible structures, we reasoned that it might be able to
detect overall properties of folding energy landscapes better than
conventional methods such as Rosetta, which only “see” the
target structure (Fig. 1A). To test this, we collected a set of 4,204
monomeric proteins designed by Foldit Players, who compete to
optimize the Rosetta energy of designed structures without the
aid of energy landscape calculations (16). We used ab initio
folding calculations to generate tens of thousands of conforma-
tional samples (decoys) for each designed sequence, and exam-
ined the resulting energy landscapes, in particular the
relationship between the energy of each decoy (as computed by
Rosetta) and its structural deviation from the designed state.
Some energy landscapes are characterized by sharply funneled

A B

Fig. 1. Protein sequence design. (A) The goal of fixed backbone protein design is to find a sequence that best specifies the desired structure (P). Traditional
energy-based methods have approached the problem heuristically, focusing solely on minimizing the energy of the target conformation in the hope that any
stable alternative conformation is unlikely to arise by chance. However, this narrow focus on a single desired structure can produce solutions with low-energy
alternative states, as suggested in the energy landscape of sequence α. An ideal method would instead find the sequence that maximizes the probability of
the desired structure over all other states. Such a method would select sequence β. (B) Overview of trRosetta fixed backbone sequence design method.
Starting with a random matrix of sequence length by number of amino acids (logits), the maximum value at each position is taken to generate a sequence,
which is fed into the trRosetta model. The output is the predicted distribution of distances, angles, and dihedrals for every pair of residues (here, we only
show distances). The loss is defined as the difference between the target and prediction, and the gradient is computed to minimize the loss. After nor-
malization, the gradient is applied to the logits, and the process is repeated until convergence.
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profiles leading into the designed target structure, while others
are relatively flat, with little or no energy gap between the
designed structure and very different structures. These differ-
ences were quantified using an estimate of the Boltzmann
probability of the target structure (Pnear) (Eq. 6). Next, for each
sequence, we used trRosetta to predict marginal distributions of
residue–residue distances and orientations and from these dis-
tributions, estimated the log likelihood of the sequence given the
structure (represented as a tensor of six-dimensional [6D]
transformations between every pair of residues within 10-Å
Cβ–Cβ distance). Energy landscapes obtained from ab initio
folding calculations are approximate as the sampling procedure
is biased, nonexhaustive, and employs an imperfect energy
function (17), but these biases should not qualitatively change
our conclusions about overall landscape shape.
We found that trRosetta was a better predictor of designs with

high Pnear scores than the Rosetta energy function (Fig. 2A). For
energy landscapes with low Pnear values, the likelihood of the
designed structure given the sequence was lower on average than
for designs with high Pnear values. Hence, as hypothesized above,
the trRosetta probability distributions assign higher probability
to the reference (target) structure when the energy landscape is
more funneled. Being able to assess energy landscape properties
from a calculation on a single structure is quite remarkable and
should have considerable practical utility; large-scale protein
folding energy landscape characterization using molecular dy-
namics methods even for small proteins is a resource-intensive
computational task (18, 19), and even Rosetta ab initio folding
simulations are extremely computationally intensive, requiring
thousands of CPU hours to generate enough structures to map
out the landscape, while the trRosetta calculations take seconds
on standard GPUs. As energy landscape evaluation is the final
step in de novo protein design before experimental
characterization—to determine the extent to which the sequence
encodes the structure—this much more rapid approach to eval-
uate landscapes should considerably streamline the de novo
design process.

Next, we investigated how trRosetta distributes probability
density across the energy landscape when alternative low-energy
states are present. To assess this, we computed the probability of
each of the tens of thousands of decoy structures spread
throughout the energy landscape with trRosetta. When no al-
ternative energy minima were present, probability density was
concentrated near the designed target structure and decreased
monotonically with increasing distance from the target structure
in both the structural and energy dimensions (Fig. 2 B, first
column). In contrast, for designs with alternative minima, the
total probability density of the designed target structure was
lower, with substantial probability “leaking” into the alternative
minima (Fig. 2 B, columns 2 to 4, and SI Appendix, Fig. S4).
Thus, the trRosetta calculation of structure probability density
from sequence recapitulates not only the Boltzmann probability
of the design target structure but also—in cases with alternative
minima—the dilution of this probability density into specific
alternative states.
We investigated how the trRosetta predicted probability dis-

tributions encode the existence of multiple structures for one
sequence. Examination of the probability distributions for spe-
cific residue–residue distances for energy landscapes with mul-
tiple minima revealed that for some residue pairs, the
distributions were bimodal (Fig. 2D and SI Appendix, Figs. S4
and S5), with one peak corresponding to the design target state
and the second corresponding to the alternative minimum. This
suggests that trRosetta may be recognizing the presence of al-
ternative states explicitly. In other cases, the maximum predicted
distance probability was in between the two low-energy states;
distance features may get averaged and broadened in cases
where the model is less certain about the structure (SI Ap-
pendix, Figs. S4 and S5). These observations have implica-
tions for multistate design; probabilistic models such as
trRosetta may enable the simultaneous optimization of two
or more structures—a challenging task for energy-based design
methodologies.

A B

C

D

Fig. 2. trRosetta predicts properties of the folding energy landscape. (A) trRosetta better predicts which designs will have high Boltzmann probabilities than
Rosetta-based energy calculations, which only see the target conformation (classifications for Pnear > 0.8, AUCtrRosetta = 0.81 vs. AUCRosetta = 0.65, n = 4,204
designs). (B) trRosetta correctly predicts dilution of probability for designs with multiple low-energy conformations (columns 2 to 4) compared with designs
with a single global energy minimum (column 1). Structural decoys were binned, and the mean trRosetta score corrected for background
(−logPc(struct. |seq. )) is represented by the color gradient from dark blue (high probability) to red (low probability). (C) Structures of the lowest-energy
representatives (indicated by circles on the energy landscape). The designed structures and alternative states are shown on the left and right, respectively, of
each column. (D) Selected examples of probability distributions (Cβ–Cβ distance prediction) for specific i,j pairs (numbering indicated on the top) demon-
strating bimodality. The actual distances observed in the designed and alternative structures are indicated by vertical lines (blue and red, respectively) and
shown as spheres on the corresponding structures. More examples are shown in SI Appendix, Fig. S4, and an analysis of the prediction of bimodality from
distributions of individual i,j pairs can be found in SI Appendix, Fig. S5.
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trRosetta Identifies More Stable De Novo Designs. As a first step
toward using trRosetta for de novo protein design, we took ad-
vantage of a high-throughput protease resistance-based protein
stability assay that enables experimental quantification of the
stability of tens of thousands of designed proteins in parallel. In
addition to 16,174 already characterized miniproteins within the
topologies HHH, HEEH, EEHEE, and EHEE (where H and E
denote helices and sheets respectively) (20), we designed a set of
13,985 sequences that fold into four different β-sheet topologies
using Rosetta. Genes encoding these designs were encoded in
large oligonucleotide arrays and transformed into yeast cells, and
the encoded designs were displayed on the surface of the cells.
Treatment with trypsin and chymotrypsin at different concen-
trations followed by fluorescence-activated cell sorting and deep
sequencing was used to quantify the stability of each design. We
then determined the probability of each designed structure given
the designed sequence according to trRosetta and investigated
the extent to which this distinguished stable designs from un-
stable designs. As shown in Fig. 3A, the trRosetta probability
calculations indeed distinguished stable from unstable designs,
with designs having high-probability structures being more stable
on average than designs with low probability. Compared with the
Rosetta energy function, trRosetta was better at predicting sta-
bility across topologies (Fig. 3A), while Rosetta was often better
at predicting stabilities within topologies (SI Appendix, Fig. S6), a
property that we attribute to an apparent limited structural
resolution of trRosetta (see below).
In laboratory experiments, designed proteins can fail for a

variety of reasons, even after passing stringent computational
selection criteria. Typical problems include lack of soluble ex-
pression, aggregation, and folding into unintended structures.
Reasoning that many of these problems could be associated with
poor energy landscapes, we evaluated the ability of trRosetta to
predict the experimental success of 145 Foldit Players proteins
that had been selected for experimental testing based on ab initio
folding (16). Compared with Rosetta energy, trRosetta better
predicts whether a protein can be expressed, purified, and is
folded (Fig. 3B). trRosetta also had considerable predictive
power for expression alone, aggregation, and monomericity (SI
Appendix, Fig. S7). While more extensive characterization on a
wider variety of designed proteins will be important to establish
generality, given that experimental characterization is a bottle-
neck in protein design, trRosetta could become a useful tool for
prefiltering designs.

Sequence Design Using trRosetta Disfavors Off-Target States. The
landscape awareness encoded in trRosetta’s probabilistic de-
scription of sequence–structure relationships suggests that it
could be used to design sequences that maximize the probability
of the desired state explicitly, by avoiding the presence of al-
ternative states. To investigate this possibility, we redesigned a
diverse set of backbones with the backpropagation method de-
scribed above; we grouped the 4,204 Foldit designs into 200
structural clusters spanning a large range of topologies (SI Ap-
pendix, Fig. S8) and picked one structure from each cluster. The
same backbones were also redesigned with Rosetta (SI Appendix,
Methods), providing a direct comparison of the consequences of
minimizing energy vs. maximizing probability. Following design,
large-scale ab initio folding calculations were performed to map
out the energy landscape of each sequence, and the probability
of the target structure was computed as described above.
The energy landscapes of sequences designed with trRosetta

had on average higher Pnear values than those of sequences
designed with Rosetta (Fig. 3D and SI Appendix, Fig. S9), con-
sistent with its more complete view of the energy landscape.
However, in some cases, the predicted energy landscapes had
less pronounced funnels leading into the target structure, and the
energy gap between the target structure and the lowest-lying

alternative states was smaller. This likely reflects the relatively
low-resolution representation of the structure used by trRosetta:
accurate energy calculations require sub-ångström resolution,
which the angle/distance bin sizes of trRosetta do not capture.
trRosetta’s limited recapitulation of the thermodynamic conse-
quences of single-point mutations (SI Appendix, Fig. S10) and
low sequence recovery for native structures (14.8%) (SI Appen-
dix, Methods) are also consistent with this resolution limitation.
Thus, while trRosetta is better at capturing the global features of
energy landscapes, the Rosetta full-atom description is more
capable at creating deep energy minima at the target structure.
These results suggest that trRosetta is more adept at disfavoring
alternative minima while Rosetta is better at creating a deep
minimum at the target structure. From the perspective of the
energy landscape, trRosetta appears to coarsely shape the energy
folding funnel (increases the energy as the structure deviates
from the target state), while Rosetta with its high-resolution
representation can create a deep energy minimum at the target
structure.
As the two approaches have different strengths, we hypothe-

sized that a combined method might prove more effective than
either alone. We evaluated the performance of a hybrid
trRosetta–Rosetta design protocol by redesigning the same set of
backbones, followed by ab initio folding calculations. For each
target structure, trRosetta was used to generate a PSSM, which
was then used to constrain and bias the choice of amino acids at
each position in Rosetta sequence design calculations (SI Ap-
pendix, Methods). This approach proved superior to either
method on its own, leading to more funneled energy landscapes
(Fig. 3D, red line), attesting to the strength of combining design
methodologies working at different levels of resolution. This
hybrid method also outperformed two state-of-the-art design
protocols that attempt to compensate for the lack of energy
landscape awareness of Rosetta design calculations (SI Appendix,
Fig. S11): LayerDesign, which disallows amino acids based on
their surface exposure (21), and fragment-based PSSMs, which
favor local sequence–structure relationships (22). To make the
hybrid design method computationally more tractable for high-
throughput sequence design, we created a hyperparameterized
version specifically for fast PSSM generation (hybrid-f), which
runs faster (∼100 fold) with only a slight decrease in energy
landscape quality (SI Appendix, Methods and Fig. S11). We an-
ticipate that the hybrid methods presented here will be broadly
useful, as they combine a moderate resolution representation of
the overall energy landscape with a detailed atomistic repre-
sentation of the target structure.
What properties of folding free energy landscapes are cap-

tured by trRosetta? Physical interpretation of representations
within neural networks with millions of parameters is not
straightforward, but we can identify at least three distinct con-
tributions. First, the trRosetta network likely identifies alterna-
tive global and supersecondary structure packing arrangements
(Fig. 2B), which are reflected in the bimodal distance distribu-
tions (Fig. 2D and SI Appendix, Figs. S4 and S5). Second, com-
pared with Rosetta-based designs and native proteins, designs
made with trRosetta have more ideal local sequence–structure
relationships [an important determinant of design success (20,
23)] (Fig. 3E). Third, trRosetta designs fewer hydrophobic resi-
dues on the surface of proteins than Rosetta (when not explicitly
restricted) (Fig. 3F); surface hydrophobic residues do not ap-
preciably change the energy of the designed minimum but can
favor alternative structures in which these residues are buried.

Conclusions
Our results demonstrate that sequence design using trRosetta
has the remarkable ability to capture properties of the energy
landscape and consider alternative states that can reduce the
occupancy of the desired target structure. Such implicit
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considerations of the full landscape are almost impossible to
achieve with atomistic models without employing extremely
CPU-intensive calculations, like the large-scale Rosetta ab initio
structure predictions employed here, or molecular dynamics
simulations on very long timescales. On the other hand, because
of the lower resolution of the trRosetta method, it is less accu-
rate in the immediate vicinity of the folded structure. Our inte-
gration of trRosetta design into Rosetta all-atom calculations
appears to combine the strong features of both approaches, and
we expect that it should be broadly useful. More generally, this
work demonstrates how deep learning methods can complement
detailed physically based models by capturing higher-level

properties normally only accessible through large-scale simula-
tions.

Methods
Approach. The fixed backbone protein design problem is to find an amino acid
sequence compatible with a target structure. Probabilistically, one seeks a
sequence that maximizes the conditional probability P(sequence|structure).
Using Bayes theorem, the sought-after probability can be equivalently
expressed as

P(sequence|structure) = P(structure|sequence) × P(sequence)=P(structure).
[1]

In trRosetta, the structure is represented as a tensor of 6D transformations

A B

C D

E F

Fig. 3. (A and B) trRosetta predicts scaffold designability and experimental success. (A) Across different topologies, trRosetta predictions are better cor-
related with experimental protease stability—a measure of folding success—than Rosetta energy (R2

trRosetta = 0.79 vs. R2
Rosetta = 0.00, P value < 0.0001) (SI

Appendix, Methods). Data points are the topology-specific mean values, and error bars represent SDs (eight topologies, Ntot = 30,159 designs). Without
topological averaging, the correlation decreases (R2

trRosetta = 0.20 vs. R2
Rosetta = 0.03, P value < 0.0001) because intratopological differences are not well

captured by trRosetta (SI Appendix, Fig. S6 has details). (B) trRosetta is significantly better at discriminating experimental success (expression, nonaggregation,
and having correct secondary structure content) than Rosetta energy (AUCtrRosetta = 0.81 vs. AUCRosetta = 0.64). Data from 145 Foldit-generated designs (16). (C
and D) Designing with a hybrid trRosetta–Rosetta protocol disfavors off-target states. (C) Examples of energy landscapes for two Foldit-generated backbones,
each designed with trRosetta, Rosetta, and the trRosetta–Rosetta hybrid protocol. (D) The hybrid protocol improves the quality of the resulting energy
landscapes, as determined by the Pnear quantity. trRosetta on its own also improves funnels but only superficially (better performance than Rosetta in the
lower Pnear regime). It does not, however, generate a deep minimum in the vicinity of the designed state (poorer performance than Rosetta in the high Pnear
regime). (E) The local sequence–structure relationship is idealized in trRosetta designs compared with both native proteins and Rosetta designs. The native
structures that were used for redesign were at most 30% sequence identical to any protein in the trRosetta training dataset. Local sequence–structure
agreements were measured as the average RMSD between the designed structure and nine-residue fragments from the PDB that were selected based on the
sequence of the design. (F) For the same set of native backbones, trRosetta redesigns have a more native-like distribution of hydrophobic residues (F, I, L, V,
M, W, Y) on the protein surface than Rosetta redesigns. The degree of burial was assessed with the software DEPTH (33), which computes the distance in
ångströms between each residue and bulk solvent. A breakdown by amino acid is in SI Appendix, Fig. S13.
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between every pair of residues within 20 Å (Cβ–Cβ distance). Since the
protein structure is given and does not change in the course of design
[P(structure) = const], the design problem is equivalent to maximizing the
P(structure|sequence) × P(sequence) product on the right-hand side of Eq. 1.
To approximate the P(structure|sequence) term, we use a pretrained trRo-
setta structure prediction network (13), which predicts residue–residue dis-
tances and orientations from an input sequence or a multiple sequence
alignment. In the reverse problem of fixed backbone protein design, the
structure is given, while the sequence is variable, so the quantity to be op-
timized (−logP(structure|sequence)) can be viewed as the log likelihood of a
sample sequence given the protein backbone.

For every residue pair (i,j), trRosetta generates probability distributions
over Cβ–Cβ distances p(dij) and orientations described by three dihedrals
[p(⍵ij), p(θij), and p(θji)] and two planar angles [p(φij) and p(φji)]. The network
was trained on structures from the Protein Data Bank (PDB; database re-
trieved on 1 May 2018) for the purpose of structure prediction, as described
in ref. 13. Only structures with sequences having at least 100 homologs were
included in the dataset, thus excluding sparsely populated alignments and
de novo designed proteins. The likelihood is then computed from the net-
work predictions as the average over all residue pairs and all coordinates

y ∈ {d,ω, θ,φ} at coordinate values y0 derived from the input structure:

−logP(structure|sequence) = − 1
4L2

∑
y∈{d,ω, θ,φ}

⎛⎜⎜⎜⎜⎜⎝∑L
i=1

∑L
j=1

logp(y0ij )
⎞⎟⎟⎟⎟⎟⎠. [2a]

We found it often helpful to limit the log-likelihood calculations to residue
pairs in close contact (Cβ–Cβ < 10 Å) in the target structure, yielding

−logP(contacts|sequence) = −  ( ∑
y∈{θ,φ}

(∑L
i=1

∑L
j≠ i

mij logp(y0ij ))
+ ∑

y∈{d,ω}
(∑L

i=1
∑L
j>i

mij logp(y0ij )))/(3∑L
i=1

∑L
i≠ j

mij)
mij = { 1, ||Cβi − Cβj || ≤ 10

0, else
[2b]

Under certain circumstances, it can be useful to “normalize” predictions to
allow side by side comparison to be made. In this case, the probability (p(y0ij ))
in Eq. 2a can be replaced by

p(y0,corrij ) = p(y0ij )/p(ybkgrij ),
where p(ybkgrij ) is the background probability, which is obtained by passing
sequence-agnostic input features represented by random Gaussian noise to
a separate network with similar architecture to trRosetta. These background
interresidue probabilities can be interpreted as “average distributions”
across the entire PDB. This correction was applied to the energy landscape
plots shown in Fig. 2B and SI Appendix, Fig. S4.

For P(sequence), we use the amino acid composition biasing term de-
scribed in ref. 15, and so, the total loss takes the form

Loss = −logP(contacts|sequence) + DKL(f20 ⃒⃒⃒⃒fPDB20 ), [3]

where DKL is the Kullback–Leibler (KL) divergence, f20is the average fre-

quency of amino acids from Ŷ in Eq. 4a, and fPDB20 is the average frequency of

amino acids seen in proteins across the PDB (as defined in ref. 15). For de-
sign, Eq. 3 is subject to minimization with respect to the input amino
acid sequence.

Optimizing the Loss with Gradient Descent. The architecture of the trRosetta
network allows for computing gradients of the network outputs with respect
to its inputs by backpropagation (13). This means that Eq. 3 can be optimized
by simple gradient descent. Since the input to the network is a discrete
variable (an amino acid sequence), one also needs a proper way of modi-
fying the sequence in response to the calculated gradient. To this end, we
introduce a continuous random variable YLx20, initialized using a normal
distribution (mean at 0 and SD of 0.01). The softmax function is used to
ensure that the probability for all amino acids at each position sums to one.
The argmax function is used to select the amino acid with the highest
probability at each position:

Ŷ = softmax(Y) [4a]

X = onehot(argmax(Ŷ)). [4b]

Modifying the inputs to the network according to Eqs. 4a and 4b makes it
possible to directly optimize the loss in Eq. 3 with respect to the auxiliary
variable Y (24):

Yi+1 = Yi − λi
∂Li
∂Y/

⃒⃒⃒⃒⃒⃒
∂Li
∂Y

⃒⃒⃒⃒⃒⃒
, [5]

where in order to havemore control over theminimization, we normalize the
gradients (25) and gradually decrease the step size λi according to the

nonlinear schedule λi = (1 − i=N)2, where N is the number of minimization
steps. In addition to decay, we also experimented with a constant learning
rate, passing probabilities directly as sequence features and sampling se-
quences instead of taking the argmax (SI Appendix, Figs. S2 and S3).

A similar approach using backpropagation through the trRosetta network
was recently described (26); the two key differences include the normali-
zation scheme and objective function. Instead of normalizing and sampling
from the logits, we normalize the gradients and take the argmax of the
logits. Instead of minimizing the KL divergence between the output and
previously predicted distribution, we minimize the categorical crossentropy
between the output and constraints extracted from the protein structure.

Ab Initio Folding Calculations. Energy landscapes of designs were mapped out
using Rosetta de novo structure prediction (ab initio folding) (27). In brief,
short structural fragments from the PDB are collected using a bioinformatic
pipeline taking the designed sequence as input. Next, starting from an ex-
tended conformation, the designed sequence is “folded” by insertion of
these fragments (substitution of the backbone torsion angles by that of the
fragment) using a Monte Carlo simulated annealing protocol minimizing the
energy. Thousands of such trajectories are run on Rosetta@home, generat-
ing different decoy conformations for the queried sequence. The energy
landscape is represented by plotting the structural deviation between the
decoys and the designed structure against their energies.

The quality of the energy landscape was quantified with Pnear (28), which
approximates the Boltzmann-weighted probability of the structure adapting
the target conformation (fuzzy cutoff):

Pnear =
∑N

i=1exp(−RMSD2
i

λ2
)exp(−EiRT )∑N

j=1exp(−EjRT ) , [6]

where N is the number of decoys, E is the energy of the decoy, and RMSD
represents its structural deviation from the target state. The stringency for
nativeness is controlled by λ (set to 3 Å), and the temperature factor (RT =
0.62 kcal/mol) controls the sensitivity of the score to low-energy alternative
states. The Pnear value ranges from zero (energy landscape incompatible
with the designed state) to one (energy landscape favoring the design).

Prediction of Protease Stability. We used trRosetta to predict stability on a
dataset composed of the designs from Rocklin et al. (20) (n = 16,174, four
different topologies: HHH, HEEH, EHEE, EEHEE) and 13,985 small β-barrels
designs (four different topologies: oligonucleotide/oligosaccharide-binding,
SRC homology 3, Barrel_5, Barrel_6). Backbones were constructed using
blueprints (29) with distance and angle constraints to guide the formation of
β-sheet backbone hydrogen bonds (30), followed by sequence design with
Rosetta [FastDesign (28, 31) in conjunction with LayerDesign (21) and using
the Rosetta all-atom energy function (32) with beta_nov16 weights]. We
performed the analysis across the entire dataset, as well as within each to-
pological group, and compared the prediction with Rosetta energy. All de-
signs were rescored with beta16_nostab weights to enable comparisons.

Prediction of Experimental Success. The experimental characterization of 145
Foldit Players-designed proteins was reported previously (16). This dataset
was used to assess trRosetta’s ability to predict experimental outcomes. Ex-
pression and solubility were assessed by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis, oligomeric state was assessed by size
exclusion chromatography, and secondary structure content was assessed by
circular dichroism.

Data Availability. The source code and data for this study are available at
GitHub (https://github.com/gjoni/trDesign).
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