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Abstract

Research on the associations between genetic variations and imaging phenotypes is developing 

with the advance in high-throughput genotype and brain image techniques. Regression analysis of 

single nucleotide polymorphisms (SNPs) and imaging measures as quantitative traits (QTs) has 

been proposed to identify the quantitative trait loci (QTL) via multi-task learning models. Recent 

studies consider the interlinked structures within SNPs and imaging QTs through group lasso, e.g. 

ℓ2,1-norm, leading to better predictive results and insights of SNPs. However, group sparsity is not 

enough for representing the correlation between multiple tasks and ℓ2,1-norm regularization is not 

robust either. In this paper, we propose a new multi-task learning model to analyze the associations 

between SNPs and QTs. We suppose that low-rank structure is also beneficial to uncover the 

correlation between genetic variations and imaging phenotypes. Finally, we conduct regression 

analysis of SNPs and QTs. Experimental results show that our model is more accurate in 

prediction than compared methods and presents new insights of SNPs.
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1. Introduction

Research on the associations between genetic variations and imaging phenotypes is 

developing with the advance in high-throughput genotype and brain image techniques.1–4 

Alzheimers Disease Neuroimaging Initiative (ADNI) provides a suitable dataset for 
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genotype-phenotype study, however it is still challenging to find out whether serial magnetic 

resonance imaging (MRI), positron emission tomography (PET), genetic factors such as 

single nucleotide polymorphisms (SNPs) can be combined to measure the progression of 

mild cognitive impairment (MCI) and early Alzheimer’s Disease (AD). Given these data, 

researchers did the association study between genetic variation and imaging measures as 

quantitative traits (QTs), which was shown to have increased statistical power and decreased 

sample size requirements.5 Through the analysis of strong associations between SNPs and 

imaging phenotypes, we can also identify candidate genes or loci which are relevant to the 

biological etiology of the disease.2

Traditional association studies use univariate or multivariate methods to discover the 

associations between single nucleotide polymorphisms (SNPs) and imaging measures as 

quantitative traits (QTs).6,7 However, these methods treat each regression of imaging 

phenotype as an independent task, thus the correlations between SNPs and QTs are lost in 

this model. To solve this problem, regression analysis of SNPs and QTs has been proposed 

to identify the quantitative trait loci (QTL) via multi-task learning models.4,8 In multi-task 

learning model, multiple tasks are handled jointly and dependently. For example, by 

imposing the interlinked structures within SNPs and imaging QTs through group lasso, e.g. 

ℓ2,1-norm,9,10 it leads to better predictive results and more insights of the SNPs.4 This 

assumption is suitable for the fact that only a small fraction of SNPs are responsible for the 

imaging manifestations of complex diseases. However, there are two limitations. Firstly, 

group sparsity is not enough for representing the intrinsic correlation between SNPs and 

imaging QTs. Apart from group sparsity, we can also benefit from the low-rank structure of 

the coefficient. Secondly, although ℓ2,1-norm regularization is common for the group 

sparsity, it is sensible to outliers.11 For example, the value of ℓ2,1-norm of matrix [[100], [0], 

[0]] is larger than [[1], [1], [1]], however, the first matrix is more sparse rather than the 

second one.

In this paper, we propose a new multi-task learning model to analyze the associations 

between SNPs and QTs. We suppose that low-rank structure is also beneficial to uncover the 

correlation between genetic variations and imaging phenotypes. This assumption is 

reasonable because different SNPs may have similar effect on the imaging phenotypes. For 

example, both APOE SNPs rs429358 and rs7412 are the strongest known genetic risk 

factors for Alzheimer’s Disease. In order to make the feature selection robust to outliers, we 

propose to use capped ℓ2,1-norm regularization in place of ℓ2,1-norm. We conduct regression 

analysis of SNPs and QTs from ADNI, and the experimental results show that our model is 

more accurate in prediction than compared methods and it presents new insights of SNPs as 

well.

2. Data Description

We use the dataset from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). One goal of ADNI is to test whether serial magnetic resonance imaging 

(MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of mild 
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cognitive impairment (MCI) and early AD. These data are obtained from 818 participants. 

Further information about ADNI can be found at see www.adni-info.org.

We use the genotype data12 of all non-Hispanic Caucasian participants from the ADNI 

Phase 1 cohort. They were genotyped using the Human 610-Quad BeadChip. Only SNPs 

which belong to the top 40 AD candidate genes listed on the AlzGene database 

(www.alzgene.org) as of 4/18/201113 were selected after the standard quality control (QC) 

and imputation steps. The QC criteria for the SNP data include (1) call rate check per subject 

and per SNP marker, (2) gender check, (3) sibling pair identification, (4) the Hardy-

Weinberg equilibrium test, (5) marker removal by the minor allele frequency and (6) 

population stratification. After that, the quality-controlled SNPs were imputed using the 

MaCH software14 to estimate the missing genotypes in the second pre-processing step. In 

this paper, we use 3123 SNPs in total. While most of them might be irrelevant to AD, only a 

small fraction of them are risk factors for the disease and associated with imaging 

phenotypes. For example, gene APOE and TOMM40 are known to be the contributors to 

AD.

Two widely employed automated MRI analysis techniques were used to process and extract 

imaging phenotypes from scans of ADNI participants as previously described.3 First, Voxel-

Based Morphometry (VBM)15 is performed to define global gray matter (GM) density maps 

and extract local GM density values for target regions. Second, automated parcellation via 

FreeSurfer V416 is conducted to define volumetric and cortical thickness values for regions 

of interest (ROIs) and to extract total intracranial volume (ICV). All these measures were 

adjusted for the baseline ICV using the regression weights derived from the healthy control 

(HC) participants. Further details are available in.3 In this paper, we use 36 ROIs from VBM 

and 24 ROIs from FreeSurfer which are known to be related to AD. VBM measures and 

FreeSurfer measures are treated as QTs for identifying QTLs independently.

3. Proposed Method

In this section, we propose a new multi-task learning model to study the intrinsic 

associations between SNPs and imaging phenotypes. Throughout our paper, we use X ∈ 
ℝd×n to denote the SNP data of all the ADNI participants, and Y ∈ ℝc×n to denote the 

selected imaging phenotypes, where n is the number of participants, d is the number of SNPs 

and c denotes the number of selected imaging phenotypes or QTs. It is a standard regression 

problem to predict continuous quantities Y using SNPs data X as follows:

min
W ∈ ℝd × c

‖WTX − Y‖F
2

(1)

The learned weight matrix W shows the importance of each SNP to predict imaging 

phenotypes, e.g. W i
j denotes the importance of i-th SNP to predict j-th imaging phenotype. 

There are mainly three drawbacks of using model (1) as the objective function to learn the 

coefficient matrix W. Firstly, it is easy to overfit if there is no regularization, and the learned 

W is hard to generalize to new data. Secondly, the learned coefficient matrix W is not sparse. 
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It is intuitive that only a small fraction of SNPs should be relevant to imaging quantitative 

traits (QTs), thus sparsity of W is a nontrivial property. The last but not the least, the 

associations within SNPs or imaging phenotypes are overlooked. Coefficient matrix W 
should come from a specific domain, we can impose a structured regularization on W to 

represent the intrinsic associations within SNPs or imaging phenotypes. We usually use l2-

norm regularization to avoid overfitting, however, the last two problems are still not solved 

yet. To handle these issues, we can treat the regression of each column of Y (each 

quantitative trait (QT)) as a task, then we can use multi-task learning model to learn multiple 

tasks jointly. The original problem (1) can be represented as a multi-task problem as follows:

min
W = [W1, …, WT] ∈ ℝd × c ∑

t = 1

T
∑
i = 1

nt
‖(W t)Txi, t − yi, t‖2

2
+ Reg(W) (2)

where T = c (the number of tasks), nt = n, ∀t ∈ {1, …, T} (the number of samples in task t). 

In task t, xi,t = Xi, which is the column i of X; yi, t = Y t
i, which is the element of Y at the 

position of row t and column i; Wt denotes the column t of matrix W. Reg(W) is the 

regularization we impose on the multi-task learning problem, and it represents our 

assumption of the correlation between multiple tasks, e.g. low-rank or group sparsity.17,18 In 

the following context, we propose to impose two new regularization terms in the multi-task 

problem to learn the associations between SNPs and imaging phenotypes, one for genetic 

association and the other one for quantitative trait loci (QTLs) identification.

3.1. Capped Trace Norm Regularization for Genetic Association

In multi-task learning, we assume that the regression tasks between SNPs and imaging 

phenotypes are correlated. Then we can benefit from learning multiple tasks jointly. Their 

correlation can be represented by imposing a structure on the coefficient matrix W. In this 

paper, we assume that matrix W has a low-rank subspace, which is widely used in many 

applications, such as recommendation system19,20 and multi-task learning.21,22 This 

assumption is also fit for the genome-phenotype associations, because multiple SNPs may 

have similar effects on the imaging phenotype. For example, both APOE SNPs rs429358 

and rs7412 are the strongest known genetic risk factors for Alzheimer’s Disease. The non-

convex rank minimization regularization Reg(W) = rank(W) is hard to optimize, for 

simplicity, trace norm is proposed as the best convex relaxation for the rank minimization 

regularization as follows23:

Reg(W) = ‖W‖∗ = ∑
i = 1

min {d, c}
σi (W) (3)

where σi is the singular value of matrix W. However, there is a big gap between rank 

minimization regularization and trace norm regularization. When some non-zero singular 

values of W changes, the value of trace norm also changes. In contrast, the rank of matrix W 
keeps constant. Besides, trace norm is also sensitive to outliers.
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In this paper, we propose to use a tighter approximation of rank minimization than trace 

norm. Capped trace norm is more general than trace norm and it is represented as follows:

Reg(W) = ∑
i = 1

min {d, c}
min {σi (W), ε1} (4)

where ε1 works as a threshold. If ε1 is large enough, for any i, we have σi(W) < ε1, then it is 

equal to trace norm regularization. When we reduce the value of ε1, where ε1 ∈ 
(min{σi(W)}, max{σi(W)}), it’s obvious that those singular values larger than ε1 will be 

ignored in the optimization. So, instead of minimizing the sum of all singular values in the 

trace norm regularization, we focus on minimizing these singular values less than ε1 and 

ignore large singular values. Therefore, capped trace norm regularization is more robust to 

outliers.

3.2. Capped ℓ2,1-Norm Regularization for QTLs Identification

There are 3123 SNPs in our dataset, and only a fraction of them is relevant to specific 

imaging quantitative traits (QTs). Therefore, W should be structured sparse, where each row 

of W is treated as a unit. If SNP i is not important, Wi = 0 ∈ ℝ1×c. ℓ2,0-norm regularization, 

Reg(W) = ||w||0, minimizes the number of non-zero elements, where w ∈ ℝd×1 and wi = ||

Wi||2. However, it is a non-convex problem and hard to optimize. Alternatively, we usually 

use ℓ2,1-norm regularization enforce the structured sparsity on the learned coefficient matrix 

W:4,9

Reg(W) = ‖W‖2, 1 = ∑
i = 1

d
‖W i‖2 = ‖w‖1 (5)

where Wi denotes the i-th row of matrix W. Each row of W is treated as a unit, and if SNP i 
is negligible, Wi = 0 ∈ ℝ1×c. Although ℓ2,1-norm regularization works fine, there is gap 

between ℓ2,0-norm regularization and ℓ2,1-norm regularization. Increasing the value of non-

zero elements in w does not affect the number of its non-zero elements ||w||0; on the 

contrary, ||w||1 will increase. In this paper, we propose to use capped ℓ2,1-norm regularization 

as an alternative to ℓ2,0-norm as follows:

Reg(W) = ∑
i = 1

d
min {‖W i‖2, ε2} (6)

Capped ℓ2,1-norm regularization is a better approximation of ℓ2,0-norm than ℓ2,1-norm. It 

treats ||Wi||2 equally if it is larger than ε2, hence capped ℓ2,1-norm regularization is more 

robust to outliers. When ε2 is large enough, we have min{||Wi||2, ε2} = ||Wi||2, ∀i, thus 

capped ℓ2,1-norm is equal to ℓ2,1-norm.
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To sum up, combining capped trace norm regularization and capped ℓ2,1-norm together 

makes our proposed objective function for multi-task learning (7) as follows:

min
W ∈ ℝd × c ∑

t = 1

T
∑
i = 1

nt
min ‖(W t)Txi, t − yi, t‖2

2
+ γ1 ∑

i = 1

min {d, c}
min {σi (W), ε1}

+ γ2 ∑
i = 1

d
min {‖W i‖2, ε2}

(7)

where the notations are similar to problem (2). γ1 and γ2 are to balance the importance of 

two regularizations. In following sections, we will propose an efficient optimization 

algorithm for problem (7) and prove that it is sequence convergent.

4. Optimization Algorithm

In this section, we propose an efficient optimization algorithm to solve problem (7). 

Optimizing the non-smooth and non-convex problem (7) directly is very hard. Through re-

weighted algorithm,24 in each step, we can transform our objective function to a smooth and 

convex relaxed problem, so that we are able to compute the optimal solution to the new 

relaxed problem until convergence.

Firstly, we do Singular Value Decomposition (SVD) on the coefficient matrix W and we 

have W = UΣVT, where singular values σi(W) of matrix W are in ascending order. 

Assuming there are k singular values smaller than ε1, we define D = 1
2 ∑

i = 1

k
σi

−1Ui(Ui)T where 

Ui is the ith column of matrix U. Therefore, the second term in (7) can be represented as 

γ1Tr(WTDW). Secondly, we compute Zii for each row of matrix W:

Zii =
1

2‖Wi‖2
if ‖W i‖2 < ε2

0 otherwise
(8)

All the non-diagonal elements of matrix Z are 0. Therefore, the third term in (7) can be 

represented by γ2Tr(WTZW). When we fix the values of D and Z, the objective function (7) 

can be written as a smooth and convex problem as follows:

min
W = [W1, …, WT]

‖WTX − Y‖F
2 + γ1Tr(WTDW) + γ2Tr(WTZW) (9)

where the loss term is from ∑
t = 1

T
∑

i = 1

nt
‖(W t)Txi, t − yi, t‖2

2
= ‖WTX − Y‖F

2
 as per the definition of 

our variables. Finally, taking the derivative of (9) in terms of W and setting it to zero, we can 

get the optimal solution to the problem (9) as follows:
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W = (XXT + γ1D + γ2Z)−1XYT (10)

To sum up, our proposed optimization algorithm is presented in Algorithm 1.

Algorithm 1

Algorithm to solve problem (7)

Input: Training data for multiple tasks X ∈ ℝd×n, Y ∈ ℝc×n

Output: W ∈ ℛd×c.

Initialize W.

while not converge do

 Compute D and Z via (4) and (8).

 Fix D and Z, and compute matrix W via (10).

end while

5. Convergence Analysis

By optimizing our model with Algorithm 1, we can solve the non-smooth and non-convex 

objective function (7). In this section, we presents the convergence analysis of our proposed 

algorithm.

Theorem 1—Through Algorithm 1, the values of objective function (7) are non-increasing 
monotonically, and it will converge to a local solution.

In order to prove Theorem 1, we need the following Lemmas.

Lemma 1—According to,25 any two hermitian matrices A, B ∈ Rn×n satisfy the following 
inequality:

∑
i = 1

n
σi (A) σn − i + 1 (B) ≤ Tr ATB ≤ ∑

i = 1

n
σi (A) σi (B) (11)

where σi (A), σi (B) are singular values sorted in the same order.

Lemma 2—Let W = UΣVT, Σ is a diagonal matrix and σi are singular values of W in 
ascending order. There are k singular values less than ε1. Ŵ is coefficient matrix in next 
iteration by using Algorithm 1, and Ŵ = ÛΣ̂V̂T, where σ̂i are singular values of Ŵ in 
ascending order and Ui is the i-th column of U. There are k ̂ singular values less than ε1. So it 
is true that:
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∑
i = 1

min {d, c}
min {σi, ε1} − 1

2 Tr ∑
i = 1

k
σi

−1Ui(Ui)TWWT
(12)

≤ ∑
i = 1

min {d, c}
min {σi, ε1} − 1

2 Tr ∑
i = 1

k
σi

−1Ui(Ui)TWWT (13)

Proof: It’s obvious that σi − 2σi + σi
−1σi

2 = 1
σi

σi
2 − 2σiσi + σi

2 ≥ 0. Thus we have:

∑
i = 1

k
σi − 1

2σi
−1σi

2 ≤ 1
2 ∑

i = 1

k
σi (14)

Because there are k̂ singular values of Ŵ less than ε1 and they are sorted in ascending order, 

so first k̂ singular values σ̂
i are less than ε1. Therefore, no matter k̂ ≥ k or k̂ < k, it holds that:

∑
i = 1

k
σi − kε1 ≤ ∑

i = 1

k
σi − kε1 (15)

Combining (14) and (15), we get the following inequality:

∑
i = 1

k
σi − 1

2 ∑
i = 1

k
σi

−1σi
2 − kε1 ≤ 1

2 ∑
i = 1

k
σi − kε1 (16)

Suppose there are n = min{d, c} singular values in total, adding nε2 on both sides, we are 

able to get the following inequality:

∑
i = 1

k
σi + n − k ε1 − 1

2 ∑
i = 1

k
σi

−1σi
2 ≤ ∑

i = 1

k
σi + (n − k) ε1 − 1

2 ∑
i = 1

k
σi (17)

According to the definition of matrix D in (4), the following equality holds that:

1
2 Tr(WTDW) = 1

2 Tr ∑
i = 1

k
σi

−1Ui(Ui)TWWT = 1
2 Tr UΛUTU∑2UT = 1

2 ∑
i = 1

k
σi (18)
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where Λ is the diagonal matrix where its first k elements are σi
−1, i ∈ {1, …, k} and other 

elements are 0. Via Lemma 1, we have:

1
2 Tr ∑

i = 1

k
σi

−1Ui(Ui)TWWT = 1
2 Tr UΛUTU∑2

UT ≥ 1
2 ∑

i = 1

k
σi

−1σi
2 (19)

Substituting (18) and (19) in the inequality (17), it is satisfied that:

∑
i = 1

k
σi + n − k ε1 − 1

2 Tr ∑
i = 1

k
σi

−1Ui(Ui)TWWT

≤ ∑
i = 1

k
σi + n − k ε1 − 1

2 Tr ∑
i = 1

k
σi

−1Ui(Ui)TWWT

(20)

Finally, the following inequality holds that:

∑
i = 1

min {d, c}
min {σi, ε1} − 1

2 Tr ∑
i = 1

k
σi

−1Ui(Ui)TWWT

≤ ∑
i = 1

min {d, c}
min {σi, ε1} − 1

2 Tr ∑
i = 1

k
σi

−1Ui(Ui)TWWT

(21)

Lemma 3—We define z =
1

2 ∣ e ∣ i f ∣ e ∣ < ε2
0 otherwise

, then the inequality holds that min{|ê|, ε2} − 

zê2 ≤ min{|e|, ε2} − ze2.

Proof: If |e| < ε2, we have z = 1
2 ∣ e ∣ . Via Lemma 2, let W and Ŵ be scalars |e| and |ê| 

respectively, thus σ(|e|) = |e| and σ(|ê|) = |ê|. We substitute W, Ŵ and z in the inequality (21), 

it holds that:

min { ∣ e ∣ , ε2} − ze2 ≤ min { ∣ e ∣ , ε2} − ze2 (22)

On the other hand, if |e| ≥ ε2, we have z = 0. The following inequality always holds:

min { ∣ e ∣ , ε2} ≤ min { ∣ e ∣ , ε2} (23)

Right now, we are able to prove Theorem 1 by using Lemma 2 and Lemma 3 above.
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Proof: According to the step 2 in Algorithm 1, matrix W denotes the current values of our 

model, after we obtain the analysis solution Ŵ of function (9) through (10). Therefore, it is 

guaranteed that:

‖WTX − Y‖F
2

+ γ1Tr(WTDW) + γ2Tr(WTZW)

≤ ‖WTX − Y‖F
2 + γ1Tr(WTDW) + γ2Tr(WTZW)

(24)

We define, |e| = ||Wi||2, |ê| = ||Ŵi||2 and zi = Zii. after substituting the value of |e| in Lemma 3, 

we have:

min {‖W i‖2, ε2} − Zii‖W i‖2
2 ≤ min {‖W i‖, ε2} − Zii‖W i‖2

2 (25)

By summing up from i = 1 to d, and multiplying both sides with γ2, then the following 

inequality holds that:

γ2 ∑
i = 1

d
min {‖W i‖2, ε2} − γ2Tr(WTZW) ≤ γ2 ∑

i = 1

d
min {‖W i‖2, ε2} − γ2Tr(WTZW) (26)

where ∑
i = 1

d
Zii‖W i‖2

2 = Tr(WTZW).

Via Lemma 2, we can easily know that:

γ1 ∑
i = 1

min {d, c}
min {σi, ε1} −

γ1
2 Tr ∑

i = 1

k
σi

−1Ui(Ui)TWWT

≤ γ1 ∑
i = 1

min {d, c}
min {σi, ε1} −

γ1
2 Tr ∑

i = 1

k
σi

−1Ui(Ui)TWWT

(27)

Finally, we combine inequalities (18), (24), (26) and (27), then we know that the objective 

value sequence is monotonically non-increasing:

∑
t = 1

T
∑
i = 1

nt
‖(W t)

T
xi, t − yi, t‖2

2
+ γ1 ∑

i = 1

min {d, c}
min {σi (W), ε1} + γ2 ∑

i = 1

d
min {‖W i‖2, ε2}

≤ ∑
t = 1

T
∑
i = 1

nt
‖(W t)Txi, t − yi, t‖2

2
+ γ1 ∑

i = 1

min {d, c}
min {σi (W), ε1} + γ2 ∑

i = 1

d
min {‖W i‖2, ε2}

(28)

After several iterations, Ŵ ≈ W, the derivative of the objective function (9) is close to zero. 

So far, it is clear that the values of our proposed objective function will not increase by using 
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our optimization algorithm, so we prove Theorem 1 that our optimization algorithm is non-

increasing monotonically. We also know that the objective function (7) is lower bounded. 

We can conclude that our optimization algorithm is sequence convergent.

6. Experimental Results and Discussions

In this section, we evaluated our proposed model with other multi-task learning methods. 

The experimental dataset is from the ADNI cohort. Our goal is to select a subset of SNPs to 

predict the imaging phenotypes accurately. We conduct our experiments on two imaging 

phenotypes, FreeSurfer and VBM separately. There are two compared methods, multi-task 

learning with joint feature selection (MTFL)9 and multi-task learning with trace norm 

regularization (MTTN),26 both of them use least square loss to do regression. It is easy to 

observe that MTFL and MTTN can be represented by our proposed model. If γ2 = 0 and ε1 

= ∞, it is MTFL; if γ1 = 0 and ε2 = ∞, it is MTTN.

We conduct 5-fold cross-validation, where 4 folds are training data and 1-fold is testing data. 

Then we perform internal 5-fold cross-validation on the training data, and tune parameters 

γ1 and γ2 in the range of {10−4, 10−3, …, 103, 104}. Through the learned coefficient matrix 

W, we compute the weight of ith SNP over all tasks by using ∑ j = 1
c ∣ W i

j ∣. Then, we pick up 

the top {10, 20, …, 90, 100} SNPs to predict the regression responses of the testing data. 

For our method, although there are two other parameters ε1 and ε2 in the objective function 

(7), their values are set automatically during the optimization. In the first 5 iterations, ε1 is 

set to be the 5th largest singular value in σi(W) and ε2 is set to bet the 5th largest value of 

SNP weight ||Wi||2. After that, we fix the values of ε1 and ε2 until convergence. In our 

experiments, we always stop our algorithm 1 after 20 iterations. The performance of 

compared method is evaluated by Root Mean Square Error (RMSE), which is a widely used 

measurement for regression analysis.

6.1. Improved Phenotype Prediction

The experimental results are presented in Figure 1. It shows the mean and standard deviation 

of the RMSEs obtained from 5 trails. In Figure 1, we observe that our proposed method 

consistently outperforms other two compared methods in both VBM phenotypes and 

FreeSurfer phenotypes. When we change the number of selected SNPs in our experiments, 

we can find out that models with joint feature selection regularization, ℓ2,1-norm or capped 

ℓ2,1-norm, are more stable. On the contrary, MTTN is very sensitive to the number of 

selected SNPs, and its performance is far worse when the number of SNPs is small. We can 

also observe that when the number of selected SNPs is larger than 50, the improvement of 

prediction is small. Thus, we can draw a conclusion that our assumption of sparsity of 

coefficient matrix is correct. Although there are 3123 SNPs in our experiment, only a 

fraction of them is responsible for the imaging phenotypes.

We also conduct ablation study of our method by setting γ1 = 0 or γ2 = 0 respectively. Table 

1 presents the performance of compared methods when we select 20, 40 and 60 SNPs to 

predict imaging phenotypes. Firstly, we set γ2 = 0, and our model becomes least square loss 

with capped trace norm regularization. We compare this model with MTTN, and 
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experimental results demonstrate the effectiveness of capped trace norm. We also set γ1 = 0, 

and our model is least square loss with capped ℓ2,1-norm regularization. We compare this 

model with MTFL, and it is clear that our method is more accurate in the prediction of 

imaging phenotypes. When we combine both of these two terms, γ1 ≠ 0 and γ2 ≠ 0, our 

model obtain the best results. We can draw a conclusion that although the performance of 

our method when γ2 = 0 is much worse than the performance when γ1 = 0, imposing low-

rank structure on coefficient matrix is still beneficial to the regression analysis. Therefore, it 

is consistent with the fact that multiple SNPs may have similar effects on the imaging 

phenotypes.

6.2. Gene Selection

Figure 2 visualizes the coefficient of top selected 10 SNPs. APOE is known to have 

relationship with the Alzheimer’s disease (AD). Similar to previous research,3,8 we find that 

APOE rs429358 shows the strongest associations with all imaging quantitative traits (QTs), 

especially in Figure 2(b). Clearly, our propose model is able to identify important 

quantitative trait loci (QTL) via joint regression analysis. Besides, we also observe that 

RFTN1 rs11128791 also takes important role in the imaging phenotypes, which is not 

identified in previous methods. These newly identified SNPs are highly correlated with the 

imaging phenotypes which are related to AD. They all have potential to serve as a useful 

generic risk factor for AD.

7. Conclusion

In this paper, we propose a new multi-task learning model with capped trace norm and 

capped ℓ2,1-norm regularizations. Capped trace norm helps to discover intrinsic structures 

within SNPs and imaging phenotypes; capped ℓ2,1-norm is more robust to select important 

SNPs. We propose efficient algorithm to solve our model and provide convergence analysis. 

Finally, we conduct experiments on genotype-phenotype dataset from ADNI. Experimental 

results show that (1) our model works better in imaging phenotype prediction and (2) it 

helps to identify important quantitative trait loci (QTLs), which would be useful for the 

investigation of the generic risk factor for AD.
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Fig. 1. 
Experimental results of three compared methods on two phenotypes. Average values are 

taken from five cross-validation and each error bar denotes ± standard deviation. Figure 1(a) 

shows the results of VBM phenotypes, Figure 1(b) shows the results of Freesurer 

phenotypes.
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Fig. 2. 
Heat maps of regression coefficients learned genetic variations and quantitative traits (QTs). 

Top 10 selected SNPs of each matrix are visualized. Figure 2(a) shows the results from the 

regression of VBM measures, Figure 2(b) shows the results from the regression of 

FreeSurfer measures.
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Table 1

Ablation study of our method measured by RMSE. Value: RMSE, (comparison with corresponding method), 

e.g RMSE of capped ℓ2,1-norm (RMSE of capped ℓ2,1-norm – RMSE of MTFL)

Phenotype Method 20 40 60

VBM capped trace norm (γ2 = 0) 0.4566 (−0.0075) 0.3754 (−0.0105) 0.3398(−0.0120)

capped ℓ2,1 (γ1 = 0) 0.3381 (−0.0255) 0.3124 (−0.0067) 0.3066(−0.0242)

Our Method 0.3049 0.3027 0.2875

FreeSurfer capped trace norm (γ2 = 0) 2.8623 (−0.0756) 2.2043(−0.0511) 1.9677 (−0.1047)

capped ℓ2,1 (γ1 = 0) 2.2030 (−0.2646) 1.8747 (−0.3883) 1.6389 (−0.4215)

Our Method 1.9653 1.7869 1.5934
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