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Background: Pseudouridine (Ψ) is a common ribonucleotide modification that plays a
significant role in many biological processes. The identification of Ψmodification sites is of
great significance for disease mechanism and biological processes research in which
machine learning algorithms are desirable as the lab exploratory techniques are expensive
and time-consuming.

Results: In this work, we propose a deep learning framework, called PseUdeep, to identify
Ψ sites of three species: H. sapiens, S. cerevisiae, andM. musculus. In this method, three
encoding methods are used to extract the features of RNA sequences, that is, one-hot
encoding, K-tuple nucleotide frequency pattern, and position-specific nucleotide
composition. The three feature matrices are convoluted twice and fed into the capsule
neural network and bidirectional gated recurrent unit network with a self-attention
mechanism for classification.

Conclusion: Compared with other state-of-the-art methods, our model gets the highest
accuracy of the prediction on the independent testing data set S-200; the accuracy
improves 12.38%, and on the independent testing data set H-200, the accuracy improves
0.68%. Moreover, the dimensions of the features we derive from the RNA sequences are
only 109,109, and 119 in H. sapiens, M. musculus, and S. cerevisiae, which is much
smaller than those used in the traditional algorithms. On evaluation via tenfold cross-
validation and two independent testing data sets, PseUdeep outperforms the best
traditional machine learning model available. PseUdeep source code and data sets are
available at https://github.com/dan111262/PseUdeep.
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INTRODUCTION

Pseudouridine (Ψ) is one of the most prevalent RNA modifications that occurs at the uridinebase
through an isomerization reaction catalyzed by pseudouridine synthases (see Figure 1) (Bousquet-
Antonelli et al., 1997; Chan and Huang, 2009; Ge and Yu, 2013; Kiss et al., 2010; Wolin, 2016; Yu and
Meier, 2014). It is confirmed that Ψ modification occurs in several kinds of RNAs, such as small
nuclear RNA, rRNA, tRNA, mRNA, and small nucleolar RNA (Ge and Yu, 2013). Ψ plays a
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significant role in many biological processes, including regulating
the stability of RNA structure in tRNA and rRNA (Kierzek et al.,
2014). Deficiency of Ψ might cause various diseases; the
dysregulation of Ψ in mitochondrial tRNA is one of the
etiologies of erythrocytic anemia and mitochondrial myopathy
(Bykhovskaya et al., 2004). Moreover, the mutations of Ψ are also
associated with several types of cancers, such as gastric and lung
cancer (Mei et al., 2012; Carlile et al., 2014; Carlile et al., 2015;
Shaheen et al., 2016; Penzo et al., 2017; Zhang et al., 2021), and Ψ
is also applied in biochemical research and pharmaceuticals (C.
Liu et al., 2020; Penzo et al., 2017; J. Yang et al., 2020).
Undoubtedly, the identification of Ψ modification sites would
be of great benefit for disease mechanism and biological processes
research.

Although accurate Ψ sites can be identified by some lab
exploratory techniques, they are expensive and time-
consuming (Carlile et al., 2014). As an increasing number
of genomic and proteomic samples are produced (J. Yang
et al., 2020), it is necessary to develop some effective and
robust computational models to detect Ψ sites in RNA
sequences.

Many machine learning algorithms have been introduced as
fast, low-cost, and efficient alternative methods to identifyΨ sites.
In 2015, Li et al. established the first computational model named
PPUS to identify PUS-specificΨ sites in Saccharomyces cerevisiae
and Homo sapiens. The method used the nucleotides aroundΨ as
features for training a support vector machine (SVM) (Y. H. Li
et al., 2015). Similarly, in 2016, Chen et al. developed an SVM
classifier named iRNA-PseU using the occurrence frequencies
and the chemical properties of the nucleotides as well as pseudo
k-tuple nucleotide composition (PseKNC) as features in Mus
musculus, S. cerevisiae, and H. sapiens (Chen et al., 2016). He
et al., in 2018, proposed PseUI, in which five types of features,
nucleotide composition (NC), dinucleotide composition (DC),
pseudo dinucleotide composition (PseDNC), position-specific
nucleotide composition (PSNP), and position-specific
dinucleotide propensity (PSDP), were combined and a
sequential forward selection method was applied to select the
optimal feature subset for training SVM to predict Ψ sites in M.
musculus, S. cerevisiae, andH. sapiens (J. He et al., 2018). In 2019,
Liu et al. proposed an ensemble model, XG-PseU, based on
eXtreme gradient boosting (XGBoost) using six types of

features, including NC, dinucleotide composition (DNC),
trinucleotide composition (TNC), nucleotide chemical
property (NCP), nucleotide density (ND), and one-hot
encoding (Liu et al., 2020). In 2020, Bi et al. proposed an
integrated model based on a majority voting strategy, called
EnsemPseU, which contained five machine learning methods
SVM, XGBoost, Naive Bays (NB), k-nearest neighbor (KNN),
and random forest (RF) (Bi et al., 2020). In short, the above
machine learning methods in H. sapiens, S. cerevisiae, and M.
musculus have the highest accuracy rates of 65.44%, 68.15%, and
72.03%, respectively. Although the performance of the above
machine learning methods is reasonable, there is still a lot of
room for improvement. With the emergence of deep learning
methods, many prediction methods based on deep learning have
been applied to the field of RNA and protein modification
predictions (Huang et al., 2018; Long et al., 2018; Mostavi
et al., 2018; Zhang and Hamada, 2018). The above predictors
do not consider deep learning methods, which can extract
deeper features to improve prediction performance (B. He
et al., 2020; Liang et al., 2020).

In this work, we propose a deep learning framework,
PseUdeep, to identify Ψ sites of the three species H. sapiens, S.
cerevisiae, and M. musculus. Compared with previous
machine learning methods, our model applies three encoding
methods, one-hot encoding, K-tuple nucleotide frequency
pattern (KNFP) (Y. Yang et al., 2021), and PSNP (Dou et al.,
2020) to extract RNA sequence features. Our model consists
of a convolutional neural network (CNN), a capsule neural
network, and a bidirectional gated recurrent unit (BiGRU)
network with a self-attention mechanism (see Figure 2).
Finally, we conduct a tenfold cross-validation test on the
benchmark data set and an independent verification test on
two independent data sets and compare the prediction results
of our model with the results of the previous machine learning
model; the accuracy of our model for H. sapiens increased
by 1.55%, for S. cerevisiae by 4.58%, and for M. musculus
by 0.42%.

METHODS

Benchmark Data Sets
Chen et al. (2016) established data sets for computationally
identifying Ψ sites in H. sapiens, M. musculus, and S.
cerevisiae based on RMBase (Sun et al., 2016). With the
update of RMBase, we use three training new data sets base
on RMBase2.0 (Chen et al., 2015), which include NH_990 (H.
sapiens), NM_944 (M. musculus), and NS_627 (S. cerevisiae), and
the data sets built by Liu K. et al. (2020). In H. sapiens and S.
cerevisiae, we also use the independent data sets H_200 and
S_200, which are built by Chen et al. (2016) to evaluate the
performance of the method.

In the NH_990 and NM_944 data sets, the length of the
sequence is 21 nt. However, in the NS_627 data set, the length
is31 nt. In the H_200 and S_200 data sets, the RNA sequence
length is 21 and 31 nt, respectively. Table 1 shows the details of all
data sets.

FIGURE 1 | Illustration of Ψ modification. The Ψ synthase catalyzes the
uridine isomer Ψ by removing the uridine residue base from its sugar and then
removing the uridine isomer, rotating it 180° along the N3–C6 axis, and finally
turning the base the 5-carbon and 1′-carbons of the sugar.
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Feature Extraction
Feature extraction is the basis of the algorithm. In our work, we
consider three kinds of features: one-hot encoding, KNFP (Y.
Yang et al., 2021), and PSNP (Dou et al., 2020).

One-Hot Encoding
Given an RNA sequence R,

Rϕ � N1N2/Nl, (1)

where Nj ∈ {A,C, G, U}(j � 1, 2,/, l) represents the nucleotide
at the jth position of the RNA segmentR. We represent each
nucleotide with a four-dimensional vector, that is, nucleotide G is
represented as (1, 0, 0, 0), C is (0, 1, 0, 0), Uis (0, 0, 1, 0), and A is
(0, 0, 0, 1).

KNFP
TheKNFP (Y. Yang et al., 2021) pattern represents the local contextual
features at different levels. KNFP integrates various short-distance
sequence order information and retains a large number of original
sequence modes (Chen et al., 2015). We apply KNFP to extract local
context features from RNA sequences. KNFP includes
mononucleotide, dinucleotide, and trinucleotide composition. For
an RNA sequence Rϕ, the K-tuple nt composition can represent
any RNA sequence as a 4K dimensional vector:

P � [φ1,φ2,φ3,φ4, . . . ,φ4K]T, (2)

where ϕu(u � 1, 2,/, 4K) is the frequency of the uth K -tuple
pattern in the RNA sequence, namely, the substring of the
sequence contains K neighboring nt, and the symbol T
represents the transpose operator, so it has l − K + 1
overlapping segments for every RNA sequence R with length
l , and each segment is encoded as a one-hot vector with
dimension 4K. The frequency pattern matrix mK εR(l−K+1)*4K is
generated for each type of K-tuple nt composition. To facilitate
subsequent processing, we fill the shorter part with zeros. By
combining different K-tuples M � {m1,m2,m3} with K � 1, 2, 3,
the feature of each position in the sequence is connected in one
dimension of size d � 64.Compared with the traditional one-hot
encoding, KNFP effectively compensates for the shortcomings of
information insufficiency.

PSNP
PSNP (Dou et al., 2020) is an effective nucleotide encoding
method, which has been successfully applied to the
identification of many functional sites in biological sequences
(W. He et al., 2018; W. He et al., 2018; G. Q. Li et al., 2016; Zhu
et al., 2019). In this method, location-specific information can be
represented by calculating the differences in nucleotide frequency

FIGURE 2 | The flowchart of PseUdeep: We use the collected RNA sequences as the input of the model and the first use three encoding methods, one-hot
encoding, KNFP, and PSNP, to extract RNA sequence features. Then, the three feature matrices are convoluted twice, and the results are stitched together. Finally, it is
input into the capsule neural network and the BiGRU network with a self-attention mechanism and two fully connected layers for classification.

TABLE 1 | The information on training data sets and independent testing data sets.

Species The name of the
datasets

The length of
the RNA sequences

(bp)

The number of
positive samples

The number of
negative samples

H. sapiens NH-990 (training) 21 495 495
H-200 (testing) 21 100 100

S. cerevisiae NS-627 (training) 31 314 313
S-200 (testing) 31 100 100

M. musculus NM-944 (training) 21 472 472
- - - -
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at a specific location between positive and negative RNA samples.
Considering an RNA sequence Rϕ � N1N2/Nl, the PSNP
matrix can be written as a 4 × l -dimensional vector.

First, we calculate the frequency of occurrence for four nucleotides,
respectively, from bath positive and negative samples at the jth
position. In this way, we obtain two 4 × l position-specific
occurrence frequency matrixes, namely, Z+andZ−, of which Z+is
obtained from all positive samples and Z−from all negative samples.
We define the location-specific nucleotide propensity matrix,
represented byZPSNP, as shown below:

ZPSNP � [Z1, Z2,/Zl] � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Z1,1 Z1,2 / Z1,l

Z2,1 Z2,2 / Z2,l

Z3,1 Z3,2 / Z3,l

Z4,1 Z4,2 / Z4,l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

where Zi,j � Z+
i,j − Z−

i,j gives the difference of frequencies of the
ith nucleotide at the jth position between positive and negative
samples.

Deep Learning Architecture of PseUdeep
For each input sequence, we use three feature extraction (one-hot
encoding, KNFP, and PSNP) methods to form three feature
matrices. For each feature matrix, a pair of 1-D CNNs are
used. The first layer of each feature matrix has a filter size of 11
and a kernel size of 7. Similarly, the second 1[D CNN layer for each
feature matrix has a filter size of 11 and a kernel size of 3. Two
convolution layers are used to capture features from three feature
matrices; all layers had a “Relu” activation function. The three
convolution results are spliced together and fed into the capsule
network with 14 capsules for vector convolution, and the output of
the capsule network is put into the BiGRU neural network with an
attention mechanism; the final feature is concatenated and fed into
two dense layers to obtain the prediction results. Bayesian
optimization is used to select the best performance of the
hyperparameters. The adjusted parameters are the number of
filters, the filter size, and epoch. To prevent the model from
overfitting, the dropout algorithm with a probability of 0.5 is also
used. A binary cross-entropy is used as a loss function with an early
stop patience of 20. The batch size is 32, and the number of epochs is
set to 200. For the stochastic gradient descent method, the Adam
optimization algorithm is selected here. The total number of
trainable parameters in the network is 165,365. The entire
program is done in Python 3.6.

CNNs
CNNs are widely used in the fields of artificial intelligence, such as
machine learning, speech recognition, document analysis,
language detection, and image recognition.

Capsule Neural Networks
Capsule neural networks, first proposed by Hinton et al., provide
a unique and powerful deep learning component to better
simulate the various relationships represented inside the neural
network. Because capsule neural networks can collect location
information, they can learn a small amount of data to get good
predicted results. In the data sets we collected, the amount of
RNA data is small, and the length of RNA sequences is small, so to

study the hierarchical relationship of local features, capsule neural
networks are used in this paper.

BiGRU Networks and Attention Mechanism
BiGRU networks are used to extract the deep features of the
sequences because BiGRU networks can be regarded as two
unidirectional GRUs. An attention mechanism in a deep
neural network is also an important part. The attention
mechanism is remarkable in serialized data, such as speech
recognition, machine translation, and part of speech taming,
which has also been widely used in much bioinformatics
research and achieved excellent performance.

Cross-Validation and Independent Testing
Because the K-fold (K � 5 or 10) cross-validation (Dezman
et al., 2017; G. Q.; Li et al., 2016; Vučković et al., 2016) is widely
used to evaluate models, we apply a tenfold cross-validation test
to measure model performance in NH_990, NM_944, and
NS_627, in which a data set can be divided into 10 mutually
exclusive folds, one fold is reserved for testing, whereas the
remaining nine folds are used for training purposes. To verify
the stability of the models more objectively, the proposed
models are tested on two independent data sets H_200 and
S_200.

Performance Evaluations
To measure the performance of our model, we use four statistical
parameters, sensitivity (Sn), specificity (Sp), accuracy (Acc), and
Matthew’s correlation coefficient (MCC), which are used in a
series of studies to evaluate the effectiveness of predictors. These
parameters are defined as follows:

Sn � 1 − N+
−

N+, (4)

Sp � 1 − N−
+

N−, (5)

Acc � 1 − N+
− +N−

+
N+ +N−, (6)

MCC � 1 − N+−+N−+
N++N−


















(1 + N−+−N+−

N+ )(1 + N+−−N−+
N− )√ , (7)

where N+, N− indicate the number of positive and negative
sequences, respectively; N+−represents the number of positive
RNA samples that are incorrectly predicted as negative RNA
samples; and N−

+ represents the number of negative RNA
samples that are incorrectly predicted as positive RNA
samples. In addition, the graph of the ROC (Fawcett, 2006)
is also widely used to intuitively display the performance. Then,
the AUC can be obtained to objectively evaluate performances
of the proposed model.

RESULTS

Model Selection
To select a more effective model, in each data set, we first
compare four models’ performances based on two feature
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extraction methods, one-hot encoding and KNFP (results are
shown in Supplementary Tables S1, S2). These models are
constructed by gradually adding different types of layers
based on two 1-D convolution layers, a BIGRU network,
and a two fully connected layers network. The four models
are shown below:

1) CNN: The network consists of two layers of 1-D convolution,
a BIGRU network, and a two fully connected layers network as
described above. The input matrices are the one-hot encoding
and KNFP features extracted from the RNA sequences.

2) CNN + Capsule: The model adds a capsule layer after the
BiGRU layer on the basis of the CNN model.

3) CNN + Attention: The model adds a self-attention
mechanism layer before the BiGRU layer based on the
CNN model.

4) CNN+Capsule +Attention: Themodel adds a capsule layer based
on the CNN + Attention model; on the basis of the above four
models, we add PSNP features and compare the performance of
the four newmodels (see Tables 2, 3). In summary, our PseUdeep
model (CNN + Capsule + Attention model on three feature
extraction methods) is superior to the others.

Performance of a Single Type of Feature
We also evaluate our model (CNN + Capsule + Attention) with
only one kind of feature. Table 4 shows the comparison of
performance in the tenfold cross-validation on benchmark
data sets. It follows that the ACC values and AUC values of
PSNP in three species, H. sapiens, M. muscles, and S. cerevisiae,
are much higher than those of the other two characteristics. The
ACC value of PSNP is increased by 11.11%, 15.6%, and 16.68%,
respectively, compared with other characteristics, the AUC value
increased by 0.074, 0.199, and 0.115, respectively. PSNP provides
a great possibility to improve the model performance in
identifying Ψ sites.

Comparison with State-of-the-Art Methods
We compare our model PseUdeep with other state-of-the-art
machine learning predictors published recently to evaluate
the identification ability of Ψ sites. In benchmark data sets
with tenfold cross-validation and independent testing, the
results obtained by PseUdeep and other predictors are listed
in Tables 5, 6 and Figures 3, 4; the ROC curves of PseUdeep
are shown in Figure 5. The accuracy of the PseUdeep model
in NH_990, NS_627, and NM_944 is increased by 1.55%,

TABLE 2 | Tenfold cross-validation performance comparison of four models based on three feature extraction methods on three benchmark data sets.

Data sets Models Accuracy (%) Sensitivity (%) Specificity (%) MCC AUC

NH_990 CNN 67.96 68.09 67.86 0.36 0.737
CNN + Capsule 66.02 63.83 67.86 0.32 0.742
CNN + Attention 66.02 46.81 82.14 0.31 0.745
PseUdeep (CNN+ 66.99 74.47 60.71 0.35 0.746
+Capsule + Attention)

NS_627 CNN 69.71 70.59 68.75 0.39 0.728
CNN + Capsule 68.18 61.76 75.00 0.37 0.735
CNN + Attention 69.71 76.47 68.75 0.40 0.734
PseUdeep (CNN 72.73 61.75 78.13 0.45 0.737
+Capsule + Attention)

NM_944 CNN 70.41 57.78 86.79 0.41 0.741
CNN + Capsule 69.39 73.34 66.04 0.39 0.750
CNN + Attention 70.41 57.78 81.13 0.41 0.751
PseUdeep (CNN 72.45 66.70 77.36 0.44 0.756
+Capsule + Attention)

The bold value is the value with the best effect in the corresponding evaluation index.

TABLE 3 | Performance comparison of four models based on three feature extraction methods on independent testing data sets.

Testing data
sets

Models Accuracy (%) Sensitivity (%) Specificity (%) MCC AUC

H_200 CNN 65.69 68.63 62.75 0.31 0.691
CNN + Capsule 62.25 63.73 60.78 0.25 0.696
CNN + Attention 65.19 52.94 77.45 0.31 0.692
PseUdeep (CNN 66.18 73.53 58.82 0.33 0.720
+Capsule + Attention)

S_200 CNN 82.35 86.27 78.43 0.65 0.899
CNN + Capsule 80.88 77.45 84.31 0.62 0.908
CNN + Attention 79.91 83.34 76.47 0.59 0.899
PseUdeep (CNN 80.88 77.45 84.31 0.65 0.909
+Capsule + Attention)

The bold value is the value with the best effect in the corresponding evaluation index.
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4.58%, and 0.32%. In addition, the performance of PseUdeep on
independent data sets compared with iRNA-Pse and PseUI is
shown in Table 6 and Figure 4. It can be observed that the
accuracy of the PseUdeep model in H_200 and S_200 is increased
by 0.68% and 12.38%, respectively.

We summarize and compare our model with other state-of-
the-art models in terms of feature extraction, number of features,
and classifiers as shown in Table 7. Among them, our model
PseUdeep does not further feature selection, and the feature
dimension is only 109, 109, and 119 in H. sapiens, M.
musculus, and S. cerevisiae, respectively, and our model gets
the highest accuracy of the prediction.

CONCLUSION

In this study, we propose a model, PseUdeep, which can
effectively identify Ψ sites in RNA sequences. To get better
prediction performance, we also train a combination of three
features in a simple model and then gradually add different types
of layers to obtain better performance. In addition, we compare
our model with other models through tenfold cross-validation
and independent testing, and the results show that PseUdeep is
more accurate and stable. Finally, we evaluate and compare the
performance of the three features used in this study and find that
PSNP shows the best effect.

TABLE 4 | The model performance with a single type of feature.

Benchmark data
sets

Models Accuracy (%) Sensitivity (%) Specificity (%) MCC AUC

NH_990 one-hot 55.56 40 68.51 0.08 0.592
PSNP 66.67 62.22 70.37 0.32 0.666
KNFP 63.63 80 50 0.31 0.658

NS-627 one-hot 53.03 26.47 81.25 0.09 0.634
PSNP 69.71 61.75 78.13 0.40 0.734
KNFP 66.67 64.71 68.75 0.33 0.619

NM-944 one-hot 58.16 35.55 77.35 0.14 0.547
PSNP 71.42 57.77 83.01 0.42 0.746
KNFP 56.12 62.22 50.94 0.13 0.580

The bold value is the value with the best effect in the corresponding evaluation index.

TABLE 5 | A comparison of PseUdeep with other models on three benchmark data sets.

Training data
set

Models Accuracy (%) Sensitivity (%) Specificity (%) MCC AUC

NH_990 iRNA-PseU 59.80 61.01 59.80 0.21 0.61
re-Irna-PseU 61.92 65.05 58.79 0.24 0.65
PseUI 64.24 64.85 63.64 0.28 0.68
XG-PseU 65.44 63.64 67.24 0.31 0.70
PseUdeep 66.99 74.47 60.71 0.35 0.74

NS-627 iRNA-PseU 64.49 64.65 64.33 0.29 0.81
re-Irna-PseU 65.61 66.88 64.33 0.31 0.69
PseUI 65.13 62.72 67.52 0.30 0.69
XG-PseU 68.15 66.84 69.45 0.37 0.74
PseUdeep 72.73 61.75 78.13 0.45 0.74

NM-944 iRNA-PseU 69.07 73.31 64.83 0.38 0.75
re-Irna-PseU 70.34 79.87 60.81 0.41 0.75
PseUI 70.44 74.58 66.31 0.41 0.77
XG-PseU 72.03 76.48 67.57 0.45 0.77
PseUdeep 72.45 66.7 77.36 0.44 0.77

The bold value is the value with the best effect in the corresponding evaluation index.

TABLE 6 | A comparison of PseUdeep with other models on independent data sets.

Testing dataset Models Accuracy (%) Sensitivity (%) Specificity (%) MCC AUC

H_200 iRNA-PseU 61.5 58 65 0.23 /
PseUI 65.5 63 68 0.31 /
PseUdeep 66.18 73.53 58.82 0.33 0.720

S_200 iRNA-PseU 60 63 57 0.2 /
PseUI 68.5 65 72 0.37 /
PseUdeep 80.88 77.45 84.31 0.62 0.909

The bold value is the value with the best effect in the corresponding evaluation index.
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FIGURE 3 | The success rates of the PseUdeep and baseline methods on three training data sets.

FIGURE 4 | The success rates of the PseUdeep and baseline methods
on independent data sets.

FIGURE 5 | The ROC curves of PseUdeep for H. sapiens, S. cerevisiae,
and M. musculus, respectively.
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