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Both Streptococcus agalactiae [group B streptococcus (GBS)] and Streptococcus 
pneumoniae (pneumococcus) remain significant pathogens as they cause life threatening 
infections mostly in children and the elderly. The control of diseases caused by these 
pathogens is dependent on antibiotics use and appropriate vaccination. The introduction 
of the pneumococcal conjugate vaccines (PCVs) against some serotypes has led to 
reduction in pneumococcal infections, however, the subsequent serotype switching, and 
replacement has been a serious challenge. On the other hand, no vaccine is yet licensed 
for use in the control of GBS diseases. In this review, we provide an overview of the history 
and global disease burden, disease pathophysiology and management, vaccines update, 
and the biology of both pathogens. Furthermore, we address recent findings regarding 
structural similarities that could be explored for vaccine targets across both mucosal 
pathogens. Finally, we conclude by proposing future genomic sequence comparison 
using the wealth of available sequences from both species and the possibility of identifying 
more related structural components that could be  exploited for pan-pathogen 
vaccine development.

Keywords: Streptococcus agalactiae, Streptococcus pneumoniae, genome sequence, target, vaccine

INTRODUCTION

Streptococcus agalactiae (Lancefield group B streptococcus; S. agalactiae, GBS) and Streptococcus 
pneumoniae (S. pneumoniae; pneumococcus) are two important mucosal pathogens responsible 
for the leading cause of invasive disease in newborns, pregnant women, and the elderly, with 
occasional incidence in healthy adults (Le Doare and Heath, 2013). Both pathogens are implicated 
in pneumonia, sepsis, and meningitis (Salloum et  al., 2011; Torné et  al., 2014). Asymptomatic 
carriage is a prerequisite of invasive infection caused by these organisms (Gray et  al., 1980). 
Pneumococcal conjugate vaccines (PCVs) and pneumococcal polysaccharide vaccines (PPVs) 
are available against some serotypes; PCVs are effective in reducing invasive disease caused 
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by vaccine serotypes (Berical et  al., 2016). No vaccine has 
been licensed yet for GBS as clinical trials are still ongoing 
(Lin et  al., 2018). Several other challenges such as serotype 
replacement in S. pneumoniae and ineffectiveness of GBS vaccines 
(in clinical trial) in late onset disease (LOD) remain significant 
(Hsu et  al., 2010; Thigpen et  al., 2011; Berical et  al., 2016).
In the past 20  years, few published studies suggested some 
possible useful similarities observed within the structural genes 
and protein sequences between GBS and S. pneumoniae 
(Guttormsen et al., 2002; Jarva et al., 2004; Löfling et al., 2011). 
This review highlights commonalities across both streptococcal 
species and explores the possibility of identifying common 
vaccine targets for both pathogens.

MATERIALS AND METHODS

The literature review focused on the history, disease burden, 
disease pathophysiology and management, vaccines update, 
and findings regarding structural similarities that could 
be explored for vaccine targets across both mucosal pathogens. 
Three main literature search strategies were used with the 
advanced search option of the PUBMED database. The first 
one was to obtain literature on both GBS and S. pneumoniae 
together using the search terms ((((((group b streptococcal[Title/
Abstract]) OR (group b streptococcus[Title/Abstract])) OR 
(Streptococcus agalactiae[Title/Abstract])) AND (Streptococcus 
pneumoniae[Title/Abstract])) OR (pneumococcus[Title/
Abstract])) OR (pneumococcal[Title/Abstract]) using the title/
abstract option in the query box. This search yielded  
18,207 papers. The second and third criteria were to obtain 
literature on GBS and S. pneumoniae separately using the 
search terms (((group b streptococcal[Title/Abstract]) OR  
(group b streptococcus[Title/Abstract])) OR (Streptococcus 
agalactiae[Title/Abstract])) AND (disease[Title/Abstract])  
and (((Streptococcus pneumoniae[Title/Abstract]) OR 
(pneumococcus[Title/Abstract])) OR (pneumococcal[Title/
Abstract])) AND (disease[Title/Abstract]), respectively, which 
yielded a total of 9,415. In all, 79 relevant studies including 
some reference listed in the identified articles were screened 
through their titles and abstracts and included in this study. 
The literature search was conducted in July 2019 and updated 
in March 2021.

HISTORICAL OVERVIEW AND 
EPIDEMIOLOGY OF GBS AND  
S. PNEUMONIAE INFECTIONS

Group B streptococcus was first isolated in bovine mastitis 
(Nocard and Mollereau, 1887) and subsequently from vaginal 
swabs (Lancefield and Hare, 1935). Fry described three fatal 
incidences of GBS infections in post-partum women, but before 
this finding, most severe streptococcal infections implicated 
group A streptococcus (GAS; Fry, 1938). In the 1960s, a number 
of GBS neonatal sepsis were recognized in many developed 
countries especially, the United States and the United Kingdom 

(Hood et  al., 1961; Eickhoff et  al., 1964; Kalliola et  al., 1999; 
Fluegge et  al., 2006; Neto, 2008).

The WHO identified Africa as the most affected region, 
with the highest GBS invasive infection in infants (0–89  days; 
Edmond et  al., 2012) and similarly in 2017, Madrid et  al. 
(2017) estimated more than double infant GBS disease in Africa 
compared to developed countries. In a global report, the lowest 
disease incidence was estimated in Southeast Asia, with the 
worst affected areas being low/middle income countries (LMIC) 
which face many challenges ranging from lack of baseline 
information on GBS infection to failure to collect samples in 
areas with high GBS neonatal mortality (Edmond et  al., 2012; 
Sinha et al., 2016; Kobayashi et al., 2019). High-income countries 
(HIC) such as the United  States and the United  Kingdom still 
report close to 2,000 incidences of infant invasive GBS infection 
(Kobayashi et  al., 2019), and GBS associated stillbirths every 
year (Turrentine and Ramirez, 2008; Seale et  al., 2017).

Streptococcus pneumoniae was first identified by Pasteur and 
Sternberg independently from saliva in 1881 (White, 1938). 
Friedlander and Talamon first associated lobular pneumonia to 
the pathogen in 1883. Subsequently (between 1915 and 1945), 
extensive studies were conducted to better understand the  
medical importance of the capsular polysaccharide of  
S. pneumoniae, its virulence and antigenicity (CDC, 2021).  
S. pneumoniae is the most common pathogen implicated in 
community-acquired pneumonia (CAP), accounting for about 
25–30% of cases (Welte et  al., 2012). A high mortality rate was 
reported in pneumococcal global disease burden (Berkelman 
et  al., 2006; Klugman et  al., 2008), with over 1  million deaths 
recorded annually – the worst affected age group being children 
under 5  years old (Obaro et al., 1996). Also, out of 8.8 million 
deaths recorded worldwide among children under 5 years in a 
Kim et al. (2016) report, pneumococcal infections were responsible 
for approximately half a million deaths (Kim et al., 2016). 
However, following the introduction of the PCVs, a decline in 
pneumococcal diseases has been noted (Megiddo et  al., 2018).

SEROTYPES OF GBS AND  
S. PNEUMONIAE

There are 10 serotypes (Ia, Ib, II, III, IV, V, VI, VII, VIII, 
and IX) of GBS defined based on the capsular polysaccharide 
(Lancefield, 1934). A global review of invasive isolates showed 
that serotype III (48.9%) was the most commonly identified 
across all regions; and this was followed by serotypes Ia (22.9%), 
V (9.1%), Ib (7.0%), and II (6.2%; Edmond et  al., 2012;  
Le Doare and Heath, 2013). In a more recent study, GBS 
serotypes I–V accounted for 98% in colonization with serotype 
III associated with 25% invasive disease in most parts except 
Asia and South America. In Asia serotype, VI–IX were more 
common (Russell et  al., 2017).

At least 100 different S. pneumoniae serotypes have been 
identified and all serotypes are suspected to cause serious 
human infections (Geno et  al., 2015; Ganaie et  al., 2020). For 
instance, in 1992, 77 out of 84 serotypes were identified in 
invasive disease (Nielsen and Henrichsen, 1992). Even though 
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the introduction of pneumococcal vaccines saw an increase 
in level of protection, especially in children, several studies 
now report non-vaccine types (NVTs) in invasive pneumococcal 
disease (IPD; Balsells et  al., 2018); this also confirm the ability 
of most capsular serotypes to cause disease. However, it is 
worth noting that differences in virulence were observed based 
on the type of capsular polysaccharide (Brueggemann and Peto, 
2004; Sandgren et  al., 2004, 2005).

DISEASE PATHOPHYSIOLOGY OF GBS 
AND S. PNEUMONIAE

Group B streptococcus is a commensal organism of the 
lower gastrointestinal and vaginal flora of about 25–40% of 
healthy adult women (Edwards et  al., 1985). Occasionally, 
GBS moves across the epithelial cells into the bloodstream 
to cause invasive disease (Edwards et  al., 2016). Disease 
caused by GBS is divided into two major distinctive clinical 
manifestations: early onset disease (EOD) or late onset disease 
(LOD; Schrag et  al., 2000). EOD is responsible for more 
than 65% of GBS infection and takes place within the 1st 
week of birth. EOD manifests itself with pneumonia or 
sepsis. Primary source of early onset (EO) infection occurs 
by acquisition from gastrointestinal and/or vaginal tracts, 
as well as from mother-to-child during childbirth (vertical 
transmission). LOD GBS infection on the other hand is 
contracted from community sources, perinatally and 
nosocomially; meningitis accounts for about 50% LOD 
(Bergeron et  al., 2000; Weisner et  al., 2004).

The pneumococcus is a commensal of the oropharynx (Neto 
et  al., 2003). S. pneumoniae disease can be  described as a 
pandemic disease, endemic across the world (Kalin, 1998). 
The major forms of disease clinical presentations are otitis 
media, pneumonia, bacteraemia, and meningitis (Henriques-
Normark and Tuomanen, 2013; CDC, 2021). Pneumonia is 
the highest recorded with 5–7% case fatality. Complications 
such as empyema and lung abscess formation may occur.  
S. pneumoniae is identified as one of the bacterial pathogens 
causing meningitis, especially in countries within the African 
meningitis belt. Outbreaks were reported recently: for instance, 
in the Brong-Ahafo region of Ghana in 2016 (Kwambana-
Adams et  al., 2016) and across Northern parts of Ghana in 
April 2020 (Mensah et  al., 2020).

DISEASE MANAGEMENT IN GBS AND 
S. PNEUMONIAE

In 2015, the WHO recommended the use of intra-partum 
antibiotic prophylaxis (IAP) for pregnant women who had been 
colonized with GBS in order to help prevent vertical transmission 
in the early developmental stages of neonates (WHO, 2015). 
IAP is also administered to pregnant women in preterm pre-labor 
in case of amniotic membranes rupture or disruption; however, 
it is not recommended for pregnant women who have intact 

amniotic membranes, or for those with pre-labor rupture of 
membranes at term or near term (36  weeks gestation and 
above; WHO, 2015).

For S. pneumoniae, antibiotic resistance has been reported 
from isolates across the globe. It is, therefore, recommended 
that treatment includes a broad-spectrum cephalosporin, and 
often vancomycin is used for pneumococcal infections until 
results from antibiotic sensitivity testing are available. It is 
interesting to note that some antibiotics like penicillin are 
regaining efficacy in treatment (CDC, 2021) Pneumococcal 
vaccines also played a significant role in the reduction of 
pneumococcal disease burden. Over the years, several vaccines 
were approved for the prevention of pneumococcal infections 
but instances of serotype replacement represent major global 
hurdles (Berical et  al., 2016).

OVERVIEW OF GBS AND  
S. PNEUMONIAE GENOME

Whole genome sequencing of GBS serogroup III strain NEM316 
isolated from a fatal case of septicaemia allowed the 
characterization of GBS genome as a circular chromosome of 
2,211,485 base pairs (bp) with a G+C content of 35.6% (EMBL 
accession number AL732656, Glaser et  al., 2002). This is lower 
than those of related species such as S. pyogenes (38.5%; Ferretti 
et  al., 2001) and S. pneumoniae (39.7%; Tettelin et  al., 2001), 
but similar to the G+C content of Lactococcus lactis (L. lactis; 
35.4%), which is a distantly related species (Bolotin et  al., 
2001). Virulence in GBS has been associated with the extracellular 
components such as the surface proteins, capsular polysaccharide, 
and secreted proteins (Glaser et  al., 2002).

The completely annotated genome of the S. pneumoniae 
serotype 4 (TIGR4) clinical isolate encoding 2,236 predicted 
proteins consists of a single circular chromosome of 2,160,837 
base pairs (2.16  Mbp) with a G+C content of 39.7%  
(Gen-Bank accession number AE005672; Tettelin et  al., 2001; 
Henriques-Normark and Tuomanen, 2013). Variation in the 
genome of S. pneumoniae is based on its natural competence, 
which allows the bacterium to acquire exogenous DNA; insertion 
sequences (ISs) and truncated genes account for about 5% of 
the genome (Tettelin et  al., 2001; Henriques-Normark and 
Tuomanen, 2013). Next generation sequencing technique has 
allowed to determine that the pneumococcus undergoes gradual 
recombination within the nasopharynx which may suggest in 
vivo DNA transfer (Hiller et  al., 2010).

THE STATE OF GBS AND  
S. PNEUMONIAE VACCINES

Various formulations of GBS vaccines are being tested in clinical 
trials, but none has been approved at the time of writing (Lin 
et  al., 2018; Table  1). These include the Novartis trivalent 
conjugate vaccine ((NCT01193920; Palmeiro et  al., 2011; Lin 
et  al., 2018); the pentavalent GBS PCV (Ia, Ib, II, III, and V; 
NCT03170609) by Pfizer (Lin et al., 2018); and the formulation 
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of GBS pilus (Margarit et  al., 2009; Nuccitelli et  al., 2015).  
A recent study reported four candidate biomarkers (thioredoxin, 
CsbD-like protein, RpL7/L12, and exoDNase) that may 
be  considered for further studies on GBS pathophysiology and 
for the development of novel vaccines (Lanotte et  al., 2013; 
Nagao, 2015). A previous study showed a systemic and mucosal 
immune response activity by the encapsulating C5a peptidase 
in mice (Santillan et  al., 2011). However, there are some 
challenges with progresses made in the GBS vaccine development: 
some have poor immunogenicity, some of the GBS conjugate 
vaccines also interfere with other conjugate vaccines like those 
against pneumococcal, meningococcal and the influenza type 
b (Chen et  al., 2013; Leroux-Roels et  al., 2016). The rising 
issues of serotype switching and replacement are another 
potential limitation (Teatero et  al., 2017; Lin et  al., 2018). 
Furthermore, the increase in non-encapsulated GBS strains 
causing diseases, calls for the evaluation of other targets as 
vaccine candidate (Flores et  al., 2015; Teatero et  al., 2017). 
Unlike the pneumococcal vaccines, where ELISA and multiplex-
opsonohagocytosis assay (MOPA) are acceptable standards for 
measuring CPS-specific antibody and functional antibody titers, 
the gold standard for measuring antibody titers for GBS, the 
radio-antigen binding assay (RABA) is limited in sensitivity 
and unable to quantify Ig isotypes (Lin et  al., 2018) making 
the evaluation of vaccines even more difficult.

Pneumococcal vaccines have been in existence for over a 
century; the first being the whole-cell vaccine in 1911 (Wright 
et al., 1914). The 23-valent pneumococcal polysaccharide vaccine 
(PPV23) was developed to replace the 14-valent vaccine (PPV14; 
Robbins et al., 1983). However, the use of PPV23 was associated 
with limitations such as: short memory development in immune 
cells, lack of carriage prevention in most populations, and poor 
ability to induce immunity in children aged less than 2  years 
(Centers for Disease Control and Prevention, 2010; Russell et al., 
2010). Earlier studies suggested that conjugated vaccines were 
more immunogenic compared to unconjugated vaccines (Avery 
and Goebel, 1931). Therefore, PCV-7 was developed and approved 
in 2000 for use based on pneumococcal serotypes commonly 
found in invasive disease in the United States (Hsu et  al., 2010; 

Berical et  al., 2016). Varying protective effects were noted in 
different populations (Elston et al., 2012). Subsequently, PCV-10 
vaccine was introduced and included serotypes 1, 5, and 7F 
which were of clinical relevance in other areas of the word 
such as Asia and Africa. With the increasing number of serotype-
replacement and antibiotic-resistant clones observed after the 
introduction of PCV-10, PCV-13 was developed to include 
serotypes 3, 6B, and 19A. Currently, PCV-15 and PCV-20 
vaccines efficacies are been evaluated in phase III trials (Pichichero, 
2017). Efforts are been made for pneumococcal protein vaccine 
development, which will help overcome some challenges associated 
with the use of PCVs. These include lack of coverage against 
all serotypes implicated in disease, cost involved in PCV 
production, and the complexity of the manufacturing process. 
Thus, additional protein vaccine candidates are under consideration. 
Notable among them are pneumococcal surface protein A 
(PspA), PhtD, StkP, and pneumolysin (Ginsburg et  al., 2012; 
Lagousi et  al., 2019; Table  2).

STRUCTURAL AND FUNCTIONAL 
SIMILARITIES BETWEEN GBS AND  
S. PNEUMONIAE AND OPPORTUNITY 
FOR COMMON VACCINE DEVELOPMENT

Guttormsen et  al., in 2000 provided the first data showing 
that antibody response elicited by either unconjugated type 
III GBS polysaccharide (IIIPS), or conjugated type III GBS 
polysaccharide covalently linked to tetanus toxoid vaccine 
(III-TT) are opsonic for both GBS III and S. pneumoniae type 
14 (Pn14). In this in vitro study, the immune response recruited 
by the GBS vaccine (IIIPS and III-TT) cross-reacted with Pn14 
and killed it. This suggests that the use of GBS III vaccine 
could confer protection against the two pathogens implicated 
in invasive disease (Guttormsen et  al., 2002). However, the 
reverse of this study did not produce similar results. Previously, 
another study found that despite the structural similarity between 
GBS IIIPS and Pn14, specific antibodies induced by unconjugated 

TABLE 1 | Summary of different group B streptococcus (GBS) vaccine 
candidates.

GBS vaccine candidates Type Status Reference

Trivalent conjugate vaccine 
(Ia, Ib, and III; 
NCT01193920)

Conjugate In clinical trial Palmeiro et al., 2011; 
Lin et al., 2018

Pentavalent GBS PCV (Ia, 
Ib, II, III, and V; 
NCT03170609)

Conjugate In clinical trial Lin et al., 2018

GBS pilus formulation
Protein Preclinical trial Gianfaldoni et al., 

2007; Margarit et al., 
2009

Candidate biomarkers 
(thioredoxin, CsbD-like 
protein, RpL7/L12 and 
exoDNase)

Protein Preclinical trial Lanotte et al., 2013; 
Nagao, 2015

C5a peptidase Protein Preclinical trial Santillan et al., 2011

TABLE 2 | Summary of different pneumococcal vaccine candidates.

Pneumococcal vaccine 
candidates

Type Status Reference

23-valent pneumococcal 
polysaccharide vaccine 
(PPV23)

Polysaccharide In use Robbins et al., 
1983

Pneumococcal conjugate 
vaccines (PCV-7, PCV-10, 
and PCV-13)

Conjugate In use Hsu et al., 2010; 
Berical et al., 2016

Pneumococcal conjugate 
vaccines (PCV-15 and 
PCV-20)

Conjugate In clinical trial Pichichero, 2017

Pneumococcal protein 
vaccines (PspA, PhtD, 
StkP, and pneumolysin)

Protein In clinical trial Ginsburg et al., 
2012; Lagousi 
et al., 2019

PspA, pneumococcal surface protein A; PhtD, pneumococcal histidine triad protein D; 
StkP, serine/threonine kinase protein.
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Pn14 vaccine was not opsonic for GBS III and could not kill 
it (Kasper et  al., 1979; Baker et  al., 1980). These findings 
suggest that it may be  possible for a vaccine target in one 
pathogen to serve a good vaccine candidate for another pathogen.

In 2004, Jarva et al. demonstrated that the structural homology 
observed between the amino acid sequences of GBS β protein 
and pneumococcal Hic protein, enable these pathogens to 
inhibit complement deposition in similar fashion (Figure  1). 
They employed Basic Local Alignment Search Tool (BLAST) 
analysis to identify similarities to the pneumococcal Hic protein 
and found closest similarities with the GBS β protein and 
several pneumococcal surface protein C (PspC). The amino 
acid sequences of three of the PspC proteins (GenBank accession 
no. AAF73789.1, AAD31043.1, and AAF73802.1) were aligned 
to Hic (AAG16729.1) and the β protein (P27951) of GBS, 
revealing that the GBS β protein is more closely related to 
pneumococcal PspC than to the M proteins of group A 
streptococci (GAS). Both β and Hic proteins were evaluated 
for their binding capacities for factor H (fH). This study 
identified multiple binding sites (SCR8–11 and SCR12–14) 
between β and Hic proteins by which they obtain high avidity 
binding to fH and obstruct opsonization (Jarva et  al., 2004). 
In vivo mouse model studies showed that PspC/CbpA posed 
high vaccine efficacy among other non-serotype dependent 
pneumococcal surface proteins (Briles et  al., 2000). Similarly, 
the beta protein of GBS was shown to elicit protective immunity 
in mouse models (Michel et  al., 1991; Persson et  al., 2008). 
Therefore, the similarity observed between the beta and PspC 
and their functional properties are of cardinal importance for 
pan-pathogen vaccine investigation.

Over the years, similarities have also been established in 
the cell wall adhesins of S. pneumoniae and other Streptococci 
including GBS (Giefing et  al., 2008; Moriel et  al., 2008). In a 
2011 review of cellular interaction by pneumococcal adhesins 
and their streptococcal homologues, Löfling et al. (2011) discussed 
pili and serine rich repeat (SRR) proteins in several streptococcus 
species (Figure  2). The implication of this is that there could 
be  similar path to pathogenesis and hence immune defense 

response mechanisms. Indeed, in vivo studies with mice have 
shown that S. pneumoniae and GBS pili could serve as protective 
antigens hence could be  used in multi-component vaccines 
(Gianfaldoni et  al., 2007; Löfling et  al., 2011). Observed 
similarities identified in the surface structural components could 
be beneficial in developing a more general Streptococci vaccine. 
Indeed an antigen with immunological potential conserved in 
different streptococcal species would serve as a good vaccine 
candidate for a pan-species vaccine. This approach will require 
studies that first identify novel conserved surface proteins in 
multiple species. Although, this review focuses on the two 
streptococcal species involved in meningitis worldwide, studying 
similarities can be  extended to other species and indeed even 
to other bacteria. However, it is important to keep in mind 
that the developement and implementation of such vaccines 
will need to be  accompanied by monitoring of its effect on 
the normal flora and in this particular example, the other 
viridian streptococci.

CONCLUSION

Group B streptococcus and S. pneumoniae remain important 
cause of neonatal diseases. The variabilities within the capsular 
polysaccharide of the numerous serotypes of S. pneumoniae 
pose challenges to the available PCVs-warranting more inclusion 
of other serotypes in new PCVs under development. No vaccine 
is licensed for prevention of GBS disease. Based on the observed 
similarities between GBS and S. pneumoniae and the increased 
number of sequenced GBS and S. pneumoniae isolates, it would 
be prudent to perform genomic comparison across the various 
serotypes of S. pneumoniae and GBS using the available genomic 
analysis tools in order to revisit those hypotheses that common 
structural components among both species could elicit a cross 
reactive immunity. This would allow a better understanding 
of the already defined immune cross interactions between both 
species and potentially identify new ones. One approach would 
be to define a common core genome between these two species 

FIGURE 1 | Part of the alignment of the amino acid sequences of β, three pneumococcal surface protein C (PspC) proteins, and Hic (Adapted from Jarva et al., 2004).
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of Streptococci and study structural genes with high level of 
similarity across their serotypes in order to identify immunogenic 
proteins that are homologous and that could be  used as novel 
vaccine candidates antigen capable of targeting both species 
at once. Identifying new common structural components will 
shed a light on the possibility of developing and implementing 
a pan-pathogen vaccine, conferring a protection against multiple 
mucosal pathogens.
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