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Abstract: Drought stress can occur at any growth stage and can affect crop productivity, which can
result in large yield losses all over the world. In this respect, understanding the genetic architecture
of agronomic traits under drought stress is essential for increasing crop yield potential and harvest.
Barley is considered the most abiotic stress-tolerant cereal, particularly with respect to drought.
In the present study, worldwide spring barley accessions were exposed to drought stress beginning
from the early reproductive stage with 35% field capacity under field conditions. Drought stress
had significantly reduced the agronomic and yield-related traits such as spike length, awn length,
spikelet per spike, grains per spike and thousand kernel weight. To unravel the genetic factors
underlying drought tolerance at the early reproductive stage, genome-wide association scan (GWAS)
was performed using 121 spring barley accessions and a 9K single nucleotide polymorphisms (SNPs)
chip. A total number of 101 significant SNPs, distributed over all seven barley chromosomes,
were found to be highly associated with the studied traits, of which five genomic regions were
associated with candidate genes at chromosomes 2 and 3. On chromosome 2H, the region between
6469300693-647258342 bp includes two candidate drought-specific genes (HORVU2Hr1G091030
and HORVU2Hr1G091170), which are highly associated with spikelet and final grain number per
spike under drought stress conditions. Interestingly, the gene expression profile shows that the
candidate genes were highly expressed in spikelet, grain, spike and leaf organs, demonstrating
their pivotal role in drought tolerance. To the best of our knowledge, we reported the first detailed
study that used GWAS with bioinformatic analyses to define the causative alleles and putative
candidate genes underlying grain yield-related traits under field drought conditions in diverse
barley germplasm. The identified alleles and candidate genes represent valuable resources for future
functional characterization towards the enhancement of barley cultivars for drought tolerance.
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1. Introduction

Barley (Hordeum vulgare L.) ranks as one of the most important cereal crops worldwide. Globally,
barley is the fourth most important cereal crop in terms of production after maize (Zea mays L.), rice
(Oryza sativa L.), and wheat (Triticum spp.) (Faostat 2017, http://www.fao.org/faostat/en/#home). One
limitation in achieving the production target is abiotic stress which limits the quality and nutritional
value of the grain in cereal crops worldwide [1]. Among all abiotic stresses, drought is the most
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important environmental stress which limits crop production and yield [2–4], and is becoming more
common particularly in the arid and semiarid regions [2].

Crops can be exposed to drought during their entire life cycle from vegetative to reproductive
stages [5]. Drought stress affects crop growth and yield during all developmental stages [6]. Water
shortage at early growth stages can cause severe problems for seedlings, restricting the emergence,
growth and development of seedlings, and thus affecting grain yield [7]. Furthermore, the developing
plants will have poor tillering capacity, leading to fewer tillers per unit area and thus lower yield
potential. Moreover, drought in the period of stem elongation causes a decrease in the number of
grains per unit area because it has a negative impact on floret formation and fertility [8].

At post-anthesis, water insufficiency reduces the grain filling rate and duration leading to shriveled
grains [2]. Moreover, the effect of drought on yield is highly complex and involves processes as diverse
as reproductive organs, gametogenesis, fertilization, embryogenesis and seed development [6,9].
Reproductive and seed development phases are especially sensitive to drought stress [2,10]. In barley,
a reduction in the number of grains per spike, grain filling duration and dry matter accumulation have
already been reported to decrease grain yield [2,10]. Several studies have reported that early growth
stage parameters (e.g., tiller number, biomass formation, etc.) are highly correlated with yield potential
and grain quality at harvest under both normal and drought stress conditions in various cereal crops,
including barley [11,12]. Accordingly, understanding the genetic basis for drought tolerance in crop
plants by identifying the genetic loci and the candidate genes associated with these traits is useful for
developing new varieties with more drought-tolerant characters.

The Genome-Wide Association Scan (GWAS) approach is widely employed to reveal
associations between genomic loci and advantageous traits in a given population based on linkage
disequilibrium [13]. These loci then become targets for improving new genotypes by the breeder. The
GWAS is very effective in identifying major candidate genes regulating mono- or oligogenic agricultural
traits. Recently, GWAS has been successfully used to identify genes for yield-related traits [14,15].
Barley has a high-level population structure such as two-rowed and six-rowed cultivars, spring and
winter barley [16]. This may lead to spurious marker–trait associations in GWAS [17]. Therefore, it
is important to use strong statistical methods and strategies to control the population structure [17].
A mixed-linear model (MLM) approach has been developed to control spurious associations through
account multiple levels of relatedness leading to better performance [18].

GWAS has successfully yielded genomic locations for quantitative trait loci (QTL) in crop
cereals [13]. Identification of genomic locations for QTL using linked segregating markers is considered
to be highly useful for marker-assisted breeding. Nevertheless, the ultimate goal of GWAS in crop
species is to detect new QTL through genetic dissection of complex traits.

The present study aimed at identifying the genetic basis of drought tolerance at different
developmental and growth phases in 121 spring barley accessions under field conditions using
GWAS. In total, 101 SNPs showed association with different traits that were distributed across the
seven chromosomes of barley. The identified QTL colocalized with several genes that are exclusively
distributed on chromosomes 2H and 3H. The annotation and expression of these genes demonstrated
their roles in drought tolerance.

2. Materials and Methods

2.1. Experimental Setup and Phenotyping

In total, 121 diverse spring barley accessions from different geographical origins were grown
under the field conditions in the 2017/2018 growing season at the Experimental Station of University
of Fayoum. The collection included 83 cultivars, 29 landraces, and 9 breeding lines. They originated
from Europe (EU, 62), West Asia and North Africa (WANA, 24), East Asia (EA, 22), and the Americas
(AM, 13). The row types were two-rowed (72) and six-rowed (49). The population structure and genetic
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diversity using the genotypic information of the accession in the collection are shown in Figure S1 that
demonstrated there is no clear structure on our collection.

Five seeds from each accession were sown in plastic pots (40 cm × 26 cm × 26 cm) filled with
field-soil on the 1st of December 2017 under field conditions. The soil texture was classified as clay-loam
with pH = 8.0, total N% = 9.4 and available P = 58.0 ppm. Manual irrigation was performed as required,
and 5 g (17:11:10/N:P:K) fertilizer was added to each pot. In field-grown plants, each accession was
replicated in three pots of each treatment (control and drought). At the beginning of early reproductive
(spikelet development phase) phase (~25 days after sowing), the plants were thinned into three plants
per pot, standing with a border to eliminate positional and environmental effects on growth and
development. Weeds were controlled manually.

Plants were irrigated until the onset of early reproductive, then the plants were then exposed
to two watering treatments: (1) well-watered treatment (soil maintained at ~75% of field capacity
(FC)); and (2) severe drought stress (at 35% FC). To maintain the targeted (~75% FC) and drought
(~35% FC), eight randomly selected accessions were used as a reference. Before irrigation, eight
reference pots were weighed and watered to adjust the corresponding field capacity, and the rest of the
experiment was watered accordingly. Irrigation and drought treatment continued until maturity after
that, irrigation withholds until harvest. Nine morphological, developmental and grain yield-related
traits were measured from at least three biological replicates for each accession under each treatment.
More information about the phenotypic trait measurements are explained in Table 1. Respective
drought tolerance indices were calculated from the recorded data as described in (Table 1).

Table 1. The name and abbreviation of measured traits and respective description of measurements.

Trait Abbreviation Description

Control Drought

Awn Tipping AT_C AT_D The number of days from planting up to awn tipping.
Spike Heading SH_C SH_D The number of days from planting up to spike heading

Anther Extrusion AE_C AE_D The number of days from planting up to anther extrusion.

Plant Height PH_C PH_D The distance between the ground level to the tip of the highest
spikelet (excluding awns) in cm.

Spike Length SL_C SL_D Distance from the base of the spike to the tip of the highest
spikelet (excluding awns) in cm.

Awn Length AL_C AL_D Distance from the tip of the spike to the end of the awn in cm.
No of Spikelets per Spike NSS_C NSS_D The actual count of the number of spikelets.
No of Grains per Spike NGS_C NGS_D The actual count of the number of the grains.

Thousand Grain Weight TGW_C TGW_D The weight of 1000 grains randomly taken from each plot in
gram (g).

Drought tolerance index
(Awn Tipping) DTI_AT DTI (AT) = AT under drought

AT under control × 100

Drought tolerance index
(Spike Heading) DTI_SH DTI (SH) =

SH under drought
SH under control × 100

Drought tolerance index
(Anther Extrusion) DTI_AE DTI (AE) = AE under drought

AE under control × 100

Drought tolerance index
(Plant Height) DTI_PH DTI (PH) =

PH under drought
PH under control × 100

Drought tolerance index
(Spike Length) DTI_SL DTI (SL) = SL under drought

SL under control × 100

Drought tolerance index
(Awn Length) DTI_AL DTI (AL) = AL under drought

AL under control × 100

Drought tolerance index
(No of Spikelet per Spike) DTI_NSS DTI (NSS) = NSS under drought

NSS under control × 100

Drought tolerance index
(No of Grain per Spike) DTI_NGS DTI (NGS) = NGS under drought

NGS under control × 100

Drought tolerance index
(Thousand Grain Weight) DTI_TGW DTI (TGW) =

TGW under drought
TGW under control × 100
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The average of temperature and humidity during the growing season of this experiment (2017–2018)
was 16.62 ◦C and 55.16%, respectively. The maximum temperature was recorded in November and
April (24.33 and 27.66 ◦C, respectively) with the minimum temperature from January to February
(8.29 and 9.12 ◦C, respectively). The minimum humidity was 30.37% and 30.41% in November and
February, respectively, whereas the maximum humidity was recorded in April (78.33%) (Figure S2).

2.2. Data Analysis

Analysis of variance [19] was conducted to compare the controlled and drought stress conditions
at p < 0.05 for all measured traits using GENSTAT 18 [20]. Data were analyzed as a randomized
complete block design (RCBD) with three replications. The treatments were considered as main plots
and the accessions were considered as sub-plots. Broad-sense heritability (H2) for the measured
traits under each condition separately was calculated using GENSTAT 18. The phenotypic data were
subjected to Residual Maximum Likelihood (REML) to analyze it in mixed linear model (MLM). Mean
estimation of each measured trait in each accession under each treatment was calculated as Best Linear
Unbiased Estimates (BLUEs) using GENSTAT 18. Correlation matrix analysis among the traits in each
treatment was separately calculated by GENSTAT 18. Comparison between treatments at p < 0.05 for
each trait including boxplots were calculated using R-studio [21].

2.3. Genome-Wide Marker–Trait Associations

The accessions were genotyped by a 9K IlluminaTM SNPs chip. In the analysis, we only used the
markers which passed the quality control as minor allele frequency (MAF) ≥ 0.05 with their physical
positions. A mixed linear model (MLM) was performed to determine marker–trait associations
between the estimated phenotypic traits (BLUEs) and genotypic data. Different statistical models,
e.g., general-linear model (GLM), mixed linear model (MLM), and compressed MLM (CMLM)) were
tested in GWAS using GAPIT R package [22]. Finally, we used MLM as a powerful model considering
the population structure, including kinship and PCA, to control the population structure influence.
False discovery rate (FDR) at 0.001 was calculated for each trait under each treatment separately and
association signals passed the threshold of FDR at 0.001 (−log10 p-values ≥ FDR) were used in further
analyses. To be sure that our associations were true, we followed the GWAS and post-GWAS protocol
published recently [13].

2.4. SNP-Gene-Based Association and Haplotype Analysis

At each chromosome, linkage disequilibrium (LD, r2) among the significant SNPs within highly
associated genomic region was calculated and presented as heatmap plot. This allowed us to define the
most important physical position that had been used for candidate gene identification. The physical
positions of SNPs exceeding FDR within the linkage disequilibrium interval were used in annotation
for high-confidence (HC) candidate gene with other respective information using the barley genome
explorer web-based with recent barley genome dataset (BARLEX; http://apex.ipk-gatersleben.de).

SNPs within the candidate gene physical position were used for further validation of
SNP-Gene-based haplotype analyses and expression analyses. T-test at p < 0.05 was used to calculate
the significant differences between alleles on the associated trait(s) [13]. RNA-seq datasets were derived
from 16 different tissues of barley cv. ‘Morex’ cultivar, each with three biological replicates. In total
48 samples were used for generation of RNA-seq data.

From seven vegetative, six inflorescence, two developing grain and one germinating grain
tissues, more details about RNA-seq experiments was published by Mascher et al. [23]. We used
BARLEX; an expression database for barley that presented as FPPM (fragments per kilobase per million
mapped reads).

http://apex.ipk-gatersleben.de
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3. Results

3.1. Phenotypic Characteristics and Natural Variation

In total, nine traits were recorded under control and drought treatments. Additionally, respective
drought tolerance indices were calculated and used as a derived trait for GWAS. A wide range of
phenotypic variation with normal distribution was detected for all traits (Figure 1 and Figure S3).
The means of most of the studied traits showed a significant reduction under drought treatment
compared to control conditions (Table 2 and Figure S3). There were no significant differences between
the treatments in phase transition i.e., AT, SH and AE developmental stages (Table 2 and Figure S3).
Drought treatment influenced significantly other developmental and yield traits such as plant height
and spikelet number per spike (Table 2 and Figure S3). Notably, the genotypes showed wide range of
variation in all drought tolerance indices (Table 2, Figure 2 and Figure S4).

Furthermore, heritability values were relatively high under drought, ranging from 0.64 for TGW to
0.84 for AT, whereas they ranged from 0.72 to 0.80 for AT and SH, respectively under control conditions.
Additionally, the heritability values varied for tolerance indices from 0.68 for AE_DTI and NGS_DTI to
0.78 for AT_DTI (Table 2).

Table 2. Analysis of variance and heritability for the measured traits under control and
drought treatments.

Trait Control
H2 Drought

H2

T G T × G T G T × G

Awn Tipping ns *** ** 0.72 ns ** *** 0.84
Spike Heading ns *** ** 0.80 ns ** *** 0.78

Anther Extrusion ns *** * 0.79 ns * *** 0.81
Plant Height *** *** *** 0.75 *** *** *** 0.71
Spike Length *** *** *** 0.74 *** *** *** 0.69
Awn Length *** *** *** 0.79 *** *** *** 0.76

No of Spikelet per Spike *** *** *** 0.76 *** *** *** 0.65
No of Grain per Spike *** *** *** 0.77 *** *** *** 0.68

Thousand Grain Weight *** *** *** 0.72 *** *** *** 0.64
Awn Tipping_DTI – *** – 0.78

Spike Heading_DTI – *** – 0.71
Anther Extrusion_DTI – *** – 0.68

Plant Height_DTI – *** – 0.73
Spike Length_DTI – *** – 0.74
Awn Length_DTI – *** – 0.71

No of Spikelet per Spike _DTI – *** – 0.74
No of Grain per Spike _DTI – *** – 0.68

Thousand Grain Weight_DTI – *** – 0.77

H2—Heritability; T—Treatment; G—Genotype; T × G—Treatment by Genotype interaction; DTI—Drought Tolerant
Index; The degree of significance is indicated as * p, 0.05; ** p, 0.01; *** p, 0.001; ns: not significant.
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Figure 1. Histogram of phenotypic values distribution analysis of the studied traits; (a) Awn Tipping,
(b) Spike Heading, (c) Anther Extrusion, (d) Plant Height, (e) Spike length, (f) Awn Length, (g) Spikelet
per Spike, (h) Grain per Spike and (i) Thousand Grain Weight (TGW) in 121 spring barley accessions
under control and drought stress.
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Figure 2. Histogram of phenotypic values distribution analysis of drought tolerance index variation of
the studied traits in 121 spring barley accessions under control and drought stress. (a) Awn Tipping,
(b) Spike Heading, (c) Anther Extrusion, (d) Plant Height, (e) Spike length, (f) Awn Length, (g) Spikelet
per Spike, (h) Grain per Spike and (i) Thousand Grain Weight (TGW).

3.2. Correlations Analysis

Significant positive correlations were observed among various traits within both treatments.
For example, AE showed a significantly high positive correlation with AT and SH (r = 0.98 ***
and r = 1.00 ***, respectively) under control conditions and (r = 0.93 *** and r = 1.00 ***, respectively)
under drought treatment (Figure 3A,B and Figure S5). On the contrary, some traits showed high
significant negative correlations under both conditions. Interestingly, TGW showed negative correlation
with NGS under control and drought conditions (r = −0.21 and −0.44 ***, respectively; Figure 3A,B).

For DTI, AT_DTI showed high significant positive correlation with SH_DTI and AE_DTI
(r = 0.92 *** and r = 0.91 ***, respectively). Additionally, SH_DTI exhibited high positive correlation
with AE_DTI (r = 0.99 ***). The SL_DTI with AL_DTI showed a significant negative correlation
(r = −0.27 ***; Figure S5).
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Figure 3. Correlations matrix among the studied traits in barley genotypes (A) under control,
and (B) under drought stress. The degree of significance is indicated as * p, 0.05; ** p, 0.01; *** p, 0.001;
ns: not significant.

3.3. Natural Genetic Variation and Candidate Genes Potentially Underlying Drought Tolerance

GWAS analysis of 121 selected accessions was performed to find out the natural genetic variation
of the studied traits. We detected a total number of 101 significant marker–trait associations
(with −log10 p-value ≥ 3) distributed over the seven barley chromosomes (Figure 4 and Table S1).
There was plenty of natural genetic variation of all studied traits in this collection. Through GWAS
analysis, we found twelve interesting genomic regions for genetic variation of all studied traits
distributed on only two chromosomes (2H and 3H).

Highly significant LD was found among significant SNPs within these genomic regions (Figure 4b),
indicating that these significant SNPs are potentially harboring important candidate genes in addition
to their useful for marker-assisted selection. On chromosome 2H, two adaptive genes were identified,
whereas on chromosome 3H, ten genes that represent a combination of both adaptive and constitutive
genes were identified. Adaptive genes might be control-specific, i.e., genes that regulate trait variation
under control only, or drought-specific (genes that regulate trait variation under drought only).
Constitutive genes regulate trait variation under both control and drought conditions (Table 3).

In total, eight SNPs were associated (−log10 p-value ≥ 3) with AT parameters. Out of these, five
SNPs were adaptive: three were control-specific and two were drought-specific; the remaining three
SNPs were constitutive. The constitutive SNPs were identified on chromosomes 1H, 3H and 4H. The
most significant one (with −log10 p-value = 8.7) was observed on chromosome 3H at 126.69 cM. Only
one constitutive gene was identified HORVU3Hr1G098200 (Chr. 3; 126.69 cM) (Table 3).

Sixteen SNPs were associated (−log10 p-value ≥ 3) with SH parameters. Out of these, seven
SNPs were adaptive: four SNPs were control-specific and three drought-specific; the remaining
nine SNPs were constitutive. The constitutive SNPs were identified on chromosomes 1H, 2H,
3H, 4H, 5H and 6H where the most significant one (with −log10 p-value = 4.7) was observed on
chromosome 6H at 53.54 cM. Only seven SNPs showed association with candidate genes. Four
genes were control-specific; HORVU3Hr1G088300, HORVU3Hr1G089160, HORVU3Hr1G089080
and HORVU3Hr1G098200. Three constitutive genes were identified: HORVU3Hr1G098200,
HORVU3Hr1G116790 and HORVU3Hr1G115810 (Table 3).
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In total, 18 SNPs showed association (with −log10 p-value ≥ 3) with AE parameters. Ten
SNPs were adaptive: six were control-specific and four were drought-specific; the remaining
SNPs were constitutive. These constitutive SNPs were mapped on chromosomes 2H, 3H, 4H,
5H and 6H. The most significant one (with −log10 p-value = 4.6) was detected on chromosomes
6H at 53.54 cM. Out of these, twelve SNPs showed association with candidate genes. Eight
genes were control-specific: HORVU3Hr1G018650, HORVU3Hr1G020430, HORVU3Hr1G020660,
HORVU3Hr1G019590, HORVU3Hr1G088300, HORVU3Hr1G089160, HORVU3Hr1G089080 and
HORVU3Hr1G098200 and four genes are constitutive: HORVU3Hr1G116790, HORVU3Hr1G098200
and HORVU3Hr1G115810 (Table 3).

For the trait PH, six SNPs were associated. Out of these, five SNPs were adaptive: four SNPs
were control-specific and one SNP was drought-specific. Only one constitutive SNP was found on
chromosome 7H at 131.59 cM. There were no SNPs associated with candidate genes for PH (Table 3).

GWAS analysis showed that six SNPs were associated with SL parameters. Only one SNP was
associated with a candidate gene that was control-specific, HORVU3Hr1G098200 (Table 3).

In total, eight SNPs showed association (p-value ≤ 0.001) with AL. Out of these, six SNPs
were adaptive: two were control-specific and four were drought-specific; the remaining two
SNPs were constitutive and mapped on chromosomes 2H and 3H. Six SNPs were associated with
candidate genes. Only one gene was control-specific, HORVU3Hr1G098200; and one was constitutive,
HORVU3Hr1G098200 (Table 3).

For NSS, 15 SNPs showed significant association with −log10 p-value ≥ 3. Six of
them were associated with adaptive candidate genes. Three SNPs were control-specific:
HORVU3Hr1G018650, HORVU3Hr1G020430 and HORVU3Hr1G020660 and another three were
drought-specific: HORVU2Hr1G091030, HORVU2Hr1G091170 and HORVU3Hr1G019590. No
constitutive genes were identified (Table 3).

In total, 15 SNPs were associated with NGS parameters. Seven SNPs showed association with
candidate genes. Five genes were control-specific: HORVU2Hr1G091030, HORVU3Hr1G018650,
HORVU3Hr1G020430, HORVU3Hr1G020660 and HORVU3Hr1G019590 and two drought-specific genes:
HORVU2Hr1G091030 and HORVU2Hr1G091170 (Table 3).

For TGW parameters, seven SNPs showed significant association with −log10 p-value ≥ 3. Only
two SNPs showed association with candidate genes. One was control-specific, HORVU3Hr1G098200,
and the other drought-specific one was HORVU3Hr1G098200 (Table 3).

Overall, all the identified genes revealed a pleiotropic effect, i.e., each gene controlled more
than one trait. The gene HORVU3Hr1G098200, for instance, regulates the variation of ten traits
(Table 3). On the contrary, they differ in their mode of action, and some of them are adaptive genes
such as HORVU2Hr1G091170 and HORVU3Hr1G018650. The first gene modulates the variation of
NGS and NSS under drought; whereas the second controls them under control. Other genes are
constitutive, such as HORVU3Hr1G116790 and HORVU3Hr1G115810 (Table 3). Surprisingly, the gene
HORVU3Hr1G098200 showed a constitutive/adaptive mode of action. It controls the variation of (TGW)
constitutively, while regulating the variation of (AE, AL, SH and SH) in an adaptive manner, i.e., under
control only.
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Table 3. The functional annotation of the putative candidate genes associated with the studied traits under drought and control growth conditions.

Trait Marker Chr Pos. SNP Pos. Gene Gene Pos. GO ID Annotation in Barley Orthologs

NGS_C
NGS_D
NSS_D

SCRI_RS_166540 2H 75.56 646934425 HORVU2Hr1G091030 646930069-646939693 None
RNA polymerase II
C-terminal domain
phosphatase-like 1

AT4G21670

NGS_D
NSS_D SCRI_RS_157347 2H 75.56 647255135 HORVU2Hr1G091170 647252087-647258342 None expansin B3 AT4G28250

AE_C
NGS_C
NSS_C

SCRI_RS_229693 3H 44.26 48643412 HORVU3Hr1G018650 48643412-48647662
GO:0000287
GO:0003824
GO:0030976

pyruvate decarboxylase-2 AT5G54960

AE_C
NGS_C
NSS_C

BOPA2_12_30737 3H 45.55 63626447 HORVU3Hr1G020430 63623393-63623651 None Protein HASTY 1 AT3G05040

AE_C
NGS_C
NSS_C

BOPA1_7045-950 3H 45.55 64618663 HORVU3Hr1G020660 64617802-64621872 GO:0005515
Chromosome 3B,

genomic scaffold, cultivar
Chinese Spring

AT2G36270

AE_C
NGS_C
NSS_D

BOPA1_2391-566 3H 46.25 55590274 HORVU3Hr1G019590 55915087-55917096 GO:0003677 myb domain protein 37 AT5G23000

AE_C
SH_C SCRI_RS_230075 3H 103.27 624309908 HORVU3Hr1G088300 624309585-624311169 None

Chromosome 3B,
genomic scaffold, cultivar

Chinese Spring
AT2G36270

AE_C
SH_C BOPA2_12_30223 3H 104.32 627767267 HORVU3Hr1G089160 627749990-627754917

GO:0003677
GO:0003700
GO:0006355

AP2-like
ethylene-responsive
transcription factor

AT2G28550

AE_C
SH_C SCRI_RS_192360 3H 104.26 627260224 HORVU3Hr1G089080 627258327-627265762 None undescribed protein

AE_DTI
AL_DTI

AE_C
AL_C
SH_C
SL_C

TGW_C
TGW_D
SH_DTI
AT_DTI

SCRI_RS_177313 3H 126.69 657713242 HORVU3Hr1G098200 657712024-657713975 GO:0005515
Chromosome 3B,

genomic scaffold, cultivar
Chinese Spring

AT2G36270

AE_DTI
SH_DTI BOPA2_12_10981 3H 154.15 696452271 HORVU3Hr1G116790 696450874-696453390

GO:0005215
GO:0006810
GO:0016020

Aquaporin-like
superfamily protein AT2G36830

AE_DTI
SH_DTI SCRI_RS_237738 3H 154.6 694105354 HORVU3Hr1G115810 694103839-694106776 None Kinetochore protein spc25
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3.4. SNP-Gene-Based Analysis

Twelve SNPs at chromosomes 2H and 3H were physically co-located inside the candidate
genes (Table 3). Two SNPs at 2H (SCRI_RS_166540 and SCRI_RS_157347) were detected within the
genes HORVU2Hr1G091030 and HORVU2Hr1G091170, respectively. Meanwhile, ten SNPs at 3H were
co-located within the physical position of candidate genes. For example, SNP numbers BOPA1_2391-566
and SCRI_RS_177313 were located within HORVU3Hr1G019590 and HORVU3Hr1G098200 genes,
respectively. Interestingly, these SNPs were mostly associated with NGS, NSS, and TKW under drought
stress. The rest of the genes at 3H were associated with traits under drought stress or with DTI for SH
and AE.

The allelic analysis of the SNPs that are associated with traits under drought showed that alleles
A, G and A from markers SCRI_RS_166540, SCRI_RS_157347 and BOPA1_2391-566, respectively,
have a highly significant impact on NSS (Figures 5a and 6). The genes HORVU2Hr1G091030
and HORVU2Hr1G091170 at 2H controlled NGS under drought via markers SCRI_RS_166540 and
SCRI_RS_157347, where alleles G and A, respectively, increased NGS significantly (Figures 5b and 6).
Only one marker (SCRI_RS_177313 from HORVU3Hr1G098200 gene) showed a significant effect on
TKW by allele A that increased the value under drought (Figure 5b).
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3.5. Expression Analysis of Candidate Genes

The expression analysis of candidate genes in different organs showed a wide range of expression
for the genes (Figure 6). Notably, the associated genes with spikelet and grain number per spike
under drought stress (Figure 5) showed a high expression for most of the organs (Figure 6). Gene
HORVU2Hr1G091170 at 2H in particular that had high impact on spikelet and grain numbers under
drought showed highest expression in the respective grain organs, e.g., lodicule and rachis in addition to
spike at 1–1.5 cm length (Figure 6). The second highest expressed gene from the highly associated ones
was HORVU2Hr1G091030. This gene was highly expressed in developing grain and lodicule (Figure 6).
The expression of these genes demonstrated their biological roles in the spikelet and grain development
under drought conditions. Other genes, e.g., HORVU3Hr1G020660 and HORVU3Hr1G018650, showed
high expression particularly in senescing leaves, suggesting their roles in leaf development (Figure 6).

4. Discussion

Studying drought stress tolerance under field conditions in cereals such as barley is very limited,
as it requires complex and laborious experiments for population characterization, in addition to being
influenced by environmental factors [3,4]. Nevertheless, the present study focused on investigating
the natural variation in diverse spring barley collections and on identifying candidate genes associated
with the traits of interest under field conditions.

In the present study, there was a considerable reduction in most traits under drought stress
compared to control conditions. These results indicated that drought stress reduced grain yield by
decreasing NSS, NGS, and TGW. Our results are supported by the findings of [2,24], who examined
the response of spring barley to pre- and post-anthesis drought and reported a yield reduction due to
pre-anthesis water deficit on several fertile spikes and grains per plant. Our results are in agreement
with those of Samarah, Alqudah, Amayreh and McAndrews [2], who found that drought stress reduced
grain yield by reducing the number of tillers, spikes and grains per plant and individual grain weight
in barley (Hordeum vulgare L.) as a result of early maturity and shortened grain filling duration at 25%
field capacity compared to control. In conclusion, drought stress negatively influenced barley yield
through impairing grain development, size and grain filling duration.

Agronomic traits such as grain yield and its components (NSS, NGS, and TGW) are the major
selection criteria for drought tolerance in barley breeding [25]. Therefore, understanding the interplay
among these parameters is of high importance. The correlation between TGW and NGS was always
negative and significant under control and drought, respectively. The positive and significant
correlation between TGW and SL indicates that yield mainly depends on spike length. Zhou et al. [26]
suggested that the grain yield traits interacting with each other, increase in one of them (e.g., TGW)
can be correlated with a reduction in another (e.g., NGS), which is in agreement with our results.
In support of our findings, in a European spring barley collection [27], it was found that NGS
showed negative correlations with all other yield parameters except grain length, concluding that
the yield was mainly dependent on grain size and SL rather than NGS. Several reports showed
that drought-tolerant genotypes implement high productivity under both stressed and unstressed
conditions [2,28]. Therefore, the comparative analysis of the yield components under drought and
well-watered conditions can be used for predicting stress tolerance of genotypes, and then in selection
of more tolerant barley lines for future breeding purposes [24,29].

The Role of Putative Candidate Genes in Drought Tolerance

Promising genomic regions are located at position 75.56 cM on chromosome 2H, harboring two
important candidate genes. The first one is HORVU2Hr1G091030, which encodes RNA polymerase II
C-terminal domain phosphatase-like 1 (CPL1), for NGS_C, NGS_D, and NSS_D. CPL1 is a negative
regulator of stress-responsive gene transcription, ABA, and stress responses [30]. In Arabidopsis,
CPL1 regulates gene expression under various osmotic stresses through ABA signaling [30]. Loss
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of CPL1 function in the mutants enhances tolerance to oxidative stress including drought and salt
stresses [31]. In rice, OsCPL1 is expressed in the young spikelets [32]. Most likely, this gene is expressed
during the development of barley spikelets under drought. Additionally, it controls the NGS under
drought and control conditions in a constitutive manner. The second candidate, HORVU2Hr1G091170,
encodes expansin B3 for NSS_D and NGS_D. Expansins have been implicated in the responses of
various plant species to water stress. In maize, increased expansin activity was found to be involved
in maintaining the growth of primary roots at a low water potential [33]. The expression of a root
β-expansin gene, GmEXPB2, is remarkably participated in root system architecture responses to several
abiotic stresses, such as Fe, P, and water deficiency [34]. RhEXPA4 is a rose expansin gene that is
up-regulated in rose petals after dehydration [35], and it confers salt and drought tolerance to transgenic
Arabidopsis [36]. In potato, most of expansin-like B genes have a potential role in multistress tolerance
and upregulated under stresses including drought [37]. These two genes—HORVU2Hr1G091030
and HORVU2Hr1G091170—showed different expression profiles (Figure 6). The noisy expression
profile of HORVU2Hr1G091170, suggesting a stress-responsive gene, exclusively regulates the variation
of NGS_D and NSS_D under drought (Table 3). While the slightly constant expression profile of
HORVU2Hr1G091030 indicates a constitutive gene that regulates the variation of NGS under control
and drought. These findings are in accordance with the results of several authors who found that
the stress-responsive genes exhibiting noisy expression profiles, while the constitutive ones showing
constant expression patterns reviewed in Lopez-Maury et al. [38].

Notably, the allelic diversity analysis shows that allele A and G from HORVU2Hr1G091030 and
HORVU2Hr1G091170 genes, respectively, have a significant positive impact on NSS and then NGS
under drought stress. The expression of these genes during spike, spikelet and grain developmental
stages demonstrates their influence on agronomic traits under drought stress conditions. In terms
of molecular breeding, the above-mentioned alleles were the highest alleles explained the natural
variation under drought stress suggesting their usefulness in breeding programs. Taken together, this
provides evidence that these genes are drought-specific and involved in the drought stress-tolerance
pathway. These findings indicate that both genes are of high importance for enhancing barley grain
yield under drought stress.

Interestingly, ten candidate genes were detected on chromosome 3H. Out of these, three genes at
positions 44.26 and 45.55 cM were identified as candidates for various traits such as AE, NGS, and NSS
under control conditions. The first one is HORVU3Hr1G018650 encoding pyruvate decarboxylase-2
(PDC2), which belongs to pyruvate decarboxylase (PDC) gene family. Pyruvate has been involved in
the ethanolic fermentation pathway that is associated with flooding tolerance when plant cells switch
from respiration to anaerobic fermentation [39]. Additionally, fermentation has important functions
in the presence of oxygen, mainly in germinating pollen and during abiotic stress. This indicates
the interdependency between pyruvate decarboxylase (PDC) and AE, NGS, and NSS under control
conditions. Furthermore, PDC, which catalyzes the first step in this pathway, is thought to be a main
regulatory enzyme [40]. In Arabidopsis, the expression of PDC genes during abiotic stresses has
been reported [41]. In maize and Arabidopsis, strong induction of fermentation genes takes place
in anaerobic conditions [42]. Thus, it is conceivable that ethanolic fermentation is part of a general
response to environmental stress, e.g., drought stress.

For traits such as AE_C, NGS_C, and NSS_D at position 46.25 cM, HORVU3Hr1G019590 encodes
myb domain protein 37. MYB (myeloblastosis) has a regulatory role in ABA signaling by activating
some stress-inducible genes [43]. In Arabidopsis, MYB, namely AtMYB60, AtMYB44, and AtMYB15,
have been implicated in the regulation of stomatal closure and ABA-mediated response to drought
and salt stresses [44]. Agarwal et al. [45] detected that AtMYB15 was expressed in both vegetative and
reproductive organs and up-regulated by cold and salt stresses. The differential expression of numerous
MYB TFs in the Triticeae was shown to be involved in the response of abiotic stress conditions such as
drought and salt stresses [46,47]. These findings suggest that the genes in question are constitutive
genes and may have a role in drought tolerance in barley during heading and maturation.
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For SH_C and AE_C, HORVU3Hr1G089160 encodes AP2-like ethylene-responsive transcription
factor at position 104.32 cM. The AP2/ERF superfamily regulates diverse developmental responses
such as flower pedicel abscission [48], leaf senescence [49], cell proliferation and shoot branching [50].
Houston et al. [51] observed that mutants of HvAP2 internode lead to the reduction of elongation
in both the culm and the spike in barley, suggesting that the HvAP2 alleles increase grain yield by
controlling spike density. In the current study, the allelic variation was only observed under control
condition indicating that this gene might not be involved directly in drought tolerance.

Additionally, HORVU3Hr1G116790 encodes Aquaporin-like superfamily protein which is a
candidate for SH_DTI and AE_DTI. Aquaporins (AQPs) are a class of water channel proteins that belong
to the major intrinsic protein (MIP) superfamily of membrane proteins [52]. These proteins regulate
the movement of water and other small molecules across plant vacuolar and plasma membranes [53].
Aquaporins have also been suggested to have an essential role in plant tolerance of biotic and abiotic
stresses [54], and extension growth [52]. Furthermore, it was reported in [55] that various aquaporin
homologs are involved in plant stress responses against a variety of environmental stresses that disturb
plant cell osmotic balance and nutrient homeostasis.

The most effective gene HORVU3Hr1G098200 was mapped at 126.69 cM. This gene orchestrates
the variation of ten traits both in constitutive and adaptive manner (Table 3). This explains the
significant correlations between these traits, either under control or drought (Table 3 and Figure 3A,B).
Shi et al. [56] reported that Chromosome 3B harbors genes that may be significant in controlling
agronomical important traits, such as yield and resistance to biotic and abiotic stress in wheat. The QTL
for these traits maps quite close to semidwarf1 (sdw1) on chromosome 3H at 126.69 cM. The semi dwarf
1 (sdw1) gene has previously been found to control the most desired agronomic traits barley reviewed
by Hedden [57]. The pleiotropic effect of sdw1 gene was evidenced in wheat [58,59].

Additionally, the gene HORVU3Hr1G098200 showed an interplay between the constitutive and
adaptive control pattern. For example, it constitutively controls the variation of thousand grain weight
(TGW) under both control and drought stress. At the same time, it controls the spike heading only
under control in an adaptive manner (Table 3). This pattern indicates that HORVU3Hr1G098200 is
partially constitutive and partially stress-responsive gene. Therefore, we considered it an adaptive
gene when it controlled a trait(s) under control or drought. On the other hand, we considered it
constitutive when it controlled trait(s) under both conditions. This gene, nevertheless, exhibited
constant expression profile in different plant tissues, spanning the reproductive period from anther
extrusion until the seed set, suggesting a key role in controlling different traits and more likely to
be constitutive (Figure 6). This finding is consistent with the results of [60], who found that cells
express some genes constantly to maintain the concentration of some proteins tuned with the cell
physiological needs. The constant expression pattern characterizes the constitutive genes rather than
the stress responsive (adaptive) ones (reviewed in Lopez-Maury, Marguerat and Bahler [38]. According
to Blum [61], drought stress when expressed as a final yield is affected by constitutive and adaptive
plant traits (genes). These constitutive QTL/genes represent an instrumental tool for selection as they
show stability across different environments compared to the adaptive ones. Moreover, the selection
for drought tolerance based on these QTL/genes does not require drought stress.

The last candidate gene is HORVU3Hr1G115810, which encodes Kinetochore protein spc25
and affects AE_DTI and SH_DTI. Kinetochore proteins may have a pivotal role for centromere and
kinetochore functioning [62–64], and chromosome segregation mediating [65]. Specifically, kinetochore
protein MIS12 is required for the co-orientation of sister kinetochores during meiosis I in maize [66].
NDC80 kinetochore protein serves as a contact point for chromosome–spindle interaction [67].
Interestingly, QTL at 3H 126 and 154 cM have previously been reported to be associated with grain
number and yield in barley under drought stress conditions [4,68,69].

On chromosome 3H, three genes (HORVU3Hr1G020660, HORVU3Hr1G088300, and
HORVU3Hr1G098200) are counterparts of the ortholog in Arabidopsis, AT2G36270. The corresponding
genes are expressed during the reproductive stage in the different flower and seed organs (Figure 6),
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indicating their significance in flowering and seed set. Our results are in accordance with the findings
of Klepikova et al. [70], who compared the spatiotemporal expression and stability of a lot of genes in
79 organs and developmental stages. Additionally, they found that AT2G36270 had been significantly
expressed in senescent organs (leaves and silique); this is similar to expression profile of the gene
HORVU3Hr1G020660 that highly expressed in senescent leave (Figure 6). Taking these findings together,
the similarity of spatiotemporal expression patterns, as well as functions of these genes in both barley
and Arabidopsis, suggests that they might be are homologous for AT2G36270.

The significant role of AT2G36270 (ABI5, AtABI5 and BZIP39) during different growth stages,
as well as in drought tolerance, has been evidenced in several studies. Finkelstein et al. [71]
reported that it encodes a member of the basic leucine zipper transcription factor family, involved in
ABA-regulated gene expression during germination, seed development and subsequent reproductive
stage. In particular, ABI5 regulates a set of the late embryogenesis-abundant genes during both seed and
ABA-inducible vegetative gene expression in wild-type and abi5-1 plants [71]. Mittal et al. [72] reported
that overexpression of AtABI5 in transgenic cotton (Gossypium hirsutum) showed resistance to the
imposed drought stress through ROS scavenging and osmotic adjustment, enhancing photosynthesis, as
well as traits of drought avoidance (bigger root and leaf systems) and tolerance (longer internode length
and higher stem weight) leading to better establishment under water shortage. In rice (Oryza sativa),
overexpression of OsbZIP46CA1 significantly increased tolerance to drought and osmotic stresses at
flowering stage, and suggested that OsbZIP46 is a positive regulator of ABA signaling and drought
stress tolerance by modulating many stress-related genes [73].

In summary, the present study showed the value of using field experiments to investigate
natural phenotypic and genetic variation in a worldwide panel of barley accessions underlying
agronomic traits such as grain yield and its components which can be exploited for crop improvement.
Drought stress negatively influences most of the studied traits. In addition, we observed significant
positive correlations among various traits within both control and drought treatments. Candidate
genes associated with drought response were detected on two chromosomes, notably 2H and 3H.
Interestingly, most the candidate genes are described to be involved in responses to abiotic stresses
such as drought and salt. Interestingly, the genomic regions at 75 cM on 2H and 126.69 cM on 3H
harbor three candidate gene HORVU2Hr1G091030 HORVU2Hr1G091170 and HORVU3Hr1G098200,
which are highly associated with spikelet and final grain number per spike, suggesting the crucial role
in controlling grain yield under drought conditions. The discovered SNPs and candidate genes for
drought response will be helpful for breeding drought tolerant barley cultivars.

5. Conclusions

Conclusively, the present study showed that drought negatively affects the yield-related traits.
Despite of the reduction in most traits under drought, the heritability estimates for all respective
traits were high, indicating the potential of this collection to conduct a GWAS analysis looking for
drought-controlling alleles/genes. Additionally, the present study revealed that combining GWAS and
bioinformatics is a very instrumental approach to identify candidate genes even for polygenic traits
such as the yield-related components. Our results confirmed that the yield-related components are
under polygenetic control; under contrasting growth conditions (control and drought). The candidate
genes exhibited different patterns of traits control; some genes were adaptive (HORVU2Hr1G091170),
while other genes were constitutive (HORVU2Hr1G091030 and HORVU3Hr1G098200). The constitutive
pleiotropic genes are of high importance to improve drought tolerance because they can be employed
to improve several traits at a time with no need to test under drought. The causative genes showed
different expression patterns; the constitutive genes showed constant expression profiles, while the
adaptive genes showed a noisy expression profile. Most of the causative genes were expressed in
spikelet organs (palea, lema and lodicules), as well as in grain, spike and leaf, indicating their potential
role in drought tolerance, in particular, during the reproductive stage. To get more comprehensive and
clear answers, a new detailed experiment is underway to study the gene expression of the candidate
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genes identified in this study especially, the gene HORVU3Hr1G098200 because it regulates the variation
of ten traits, and because of its constitutive/adaptive mode of action.
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Table S1: Summary of the most significant SNP associated with studied traits.
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