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Abstract

Obstructive sleep apnea (OSA) is a syndrome leading to chronic intermittent hypoxia, and

the up-regulation of toll-like receptors (TLR) 2 and 6 on peripheral blood cells has been

reported. We hypothesized that DNA methylation in TLR2 and TLR6 genes may play a role

in the development of OSA and its excessive daytime sleepiness (EDS) phenotype. DNA

methylation over 28 cytosine-phosphate-guanine (CpG) sites of the TLR2 promoter region

and 3 CpG sites of the TLR6 gene body, and their protein expressions were measured by

using pyrosequencing and ELISA methods in 18 heathy subjects (HS) and 58 patients with

severe OSA (divided into 18 non-EDS and 40 EDS group). Patients with severe OSA had

higher DNA methylation levels over five CpG sites (#1, #2, #3, #25 and #28) and lower DNA

methylation levels over CpG site #18 of the TLR2 promoter region, higher DNA methylation

levels over two CpG sites (#1 and #3) of the TLR6 gene body, and higher protein expres-

sions of TLR6 than HS. The CpG site #2 of the TLR6 gene body was hypermethylated in

severe OSA patients with EDS. Both DNA methylation levels over CpG site #1 of the TLR6

gene body and protein expressions of TLR6 were reduced after more than 6 months of

nasal CPAP treatment in seven selected patients. Aberrant DNA methylation of the TLR2

promoter region and TLR6 gene body are associated with the consequence of severe OSA

and its EDS phenotype.

Introduction

Obstructive sleep apnea (OSA) is a syndrome characterized by repetitive upper airway collapse

during sleep, leading to chronic intermittent hypoxia, sleep fragmentation, oxidative stress

and the damage similar to that caused by ischemia-reperfusion injury [1, 2]. Indeed,
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intermittent hypoxia (IH) activates a number of signaling pathways that are involved in oxygen

sensing, oxidative stress, metabolism, catecholamine biosynthesis, and immune responsive-

ness. The cumulative effect of these processes over time can undermine cell integrity and lead

to a decline in its function, cell injury and cell death [3]. These consequences not only result in

excessive daytime sleepiness (EDS) and impaired cognitive function, but are also correlated

with cardiovascular morbidities such as stroke, ischemic heart disease (IHD), congestive heart

failure (CHF), and arrhythmias [4–7].

DNA methylation is a heritable, tissue-specific, and reversible gene regulatory process that

is highly modified in response to environmental factors, including intermittent hypoxia [8, 9].

DNA methylation occurs at position 5 of the pyrimidine ring of cytosines in the context of the

cytosine followed by guanine dinucleotide sequence (CpG) forming the basis of epigenetic

mechanisms modulating gene expressions by inhibition of the binding of transcription factors

(TF) at the promoter regions. The negative correlation between gene expression and the DNA

methylation at the promoter regions is well-established, whereas recent studies have proven

that DNA methylation status in the gene body shows a positive correlation with gene expres-

sion through alternative splicing [10–14]. DNA methylation does not only affect TF binding

leading to de-regulated gene expression. More importantly, there is a crosstalk between DNA

methylation and histone modifications which directly affects transcriptional gene activity.

Although aberrant DNA methylation in the promoter regions of several inflammation-

related genes such as IL1R2 (interleukin 1 receptor 2), AR (androgen receptor), NPR2 (natri-

uretic peptide receptor 2), and SP140 (speckled protein 140) genes have been reported in

patients with OSA [15], little is known about the role of DNA methylation over the TLR genes

in the development of OSA and its clinical phenotypes. In our previous study, we found co-

upregulation of TLR 2 and 6 on peripheral blood neutrophils and mononuclear cells in

patients with OSA, and these changes could be reversed after continuous positive airway pres-

sure (CPAP) treatment [16, 17]. It has been demonstrated that hypoxia inducible factor (HIF)-

1α coordinates selective induction of both TLR2 and TLR6 during persistent hypoxia [18], and

the intermittent hypoxia led to greater than two fold upregulation of the TLR2 in healthy vol-

unteers has also reported[19]. The down-regulation of TLR2 expressions through aberrant

DNA methylation of certain CpG sites over TLR2 promoter region has been demonstrated in

patients with active pulmonary tuberculosis (TB) disease and cystic fibrosis [20]. In this study,

we hypothesized that DNA methylation in the promoter region of TLR2 and in the TLR6 gene

body might play a role in the development of severe OSA and the EDS phenotype.

Materials and methods

Subjects

This study was approved by the Institutional Review Board of Chang Gung Memorial Hospi-

tal, Taiwan (certificate number: 102-3887B). The participants were recruited from both Sleep

and Health Examination Centers of Kaohsiung Chang Gung Memorial Hospital from Febru-

ary 2014 through February 2017. Informed consent was obtained from each subject participat-

ing in the study. Adults (aged 20 to 65 years) who were diagnosed as healthy subject (HS) with

primary snoring (defined as Apnea-hypopnea index(AHI)< 5 and were free of other sleep dis-

order) or severe OSA (defined as AHI >30) after full-night polysomnographic studies in our

sleep laboratory were included. The exclusion criteria were ongoing infections, autoimmune

disease, use of immunosuppressive agent in the past 6 months, narcolepsy, severe obesity

(body mass index [BMI]� 35 kg/m2), and those with a BMI < 21 kg/m2. Patients with severe

OSA were further divided into two subgroups according to the Epworth sleepiness scale (ESS):

OSA with ESS≦10 (non-EDS group) and OSA with ESS>10 (EDS group). Seven patients with
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severe OSA who had been under nasal CPAP management at least 4 hours per night for more

than 6 months were included for further comparison.

Polysomnography

Body height, body weight, and BMI were measured prior to the overnight polysomnographic

study. Subjective sleepiness was assessed using the ESS, a 24-point questionnaire comprised of

8 questions, each with a 0–3 scale that assesses a subject’s tendency to fall asleep during various

situations, where a higher score indicates increased sleepiness[21, 22]. The completed poly-

somnography examination, including electroencephalography, electrooculography, chin and

anterior tibial electromyography, respiratory effort detectors, nasal/oral flow sensors, and

pulse oximetry, was performed using a standardized commercial device (Sandman SD32+TM

Digital Amplifier [Embla, Colorado, U.S.A.]).

All subjects completed their polysomnographic study with at least 4 hours of total sleep

time as indicated by electroencephalography. Sleep stage scoring was done at 30-second inter-

vals by experienced technicians according to the standard criteria [23]. Obstructive apnea was

defined as a cessation of airflow for at least 10 seconds with the subject making an effort to

breathe during apnea. Obstructive hypopnea was defined as an abnormal respiratory event

with at least a 30% reduction in thoraco-abdominal movement or airflow as compared to base-

line, lasting for at least 10 seconds, with a greater than 4% oxygen desaturation. The AHI was

defined as the total number of apneas and hypopneas per hour of electroencephalographic

sleep. An AHI of at least five events per hour of sleep established the diagnosis of OSA (pri-

mary snoring, AHI <5; mild OSA, AHI = 5.0–14.9; moderate OSA, AHI = 15.0–29.9; severe

OSA, AHI�30.0). The CPAP-treated patients had undergone a CPAP titration study with a

manually titrated machine (GoodKnight 420E, Nellcor Puritan Bennett, California, U.S.A.) to

get an optimal pressure before starting their treatment with either fixed or auto-adjusted posi-

tive airway pressure machines at home.

Measurement of DNA methylation levels over the TLR2 promoter region

and TLR6 gene body by bisulfite pyrosequencing method

Twenty milliliters of venous blood were withdrawn from healthy subjects and patients with

severe OSA at around 07:30–08:30AM after overnight fast and sleep. The venous blood (20 ml)

was also obtained before and after 6-month CPAP management in 7 patients with severe OSA

who had been under CPAP therapy.

Genomic DNA was isolated from whole blood using a genomic DNA purification kit (Pure-

gene). Three regions of the TLR2 promoter element (NCBI Reference Sequence:

NC_000004.12 and NG_016229.1), including 28 CpG sites, were amplified (Figs 1 and S1–S2).

Two regions of the TLR6 gene body, including 3 CpG sites (NCBI Reference Sequence:

NG_028087.1) were analyzed (CpG site #1 and #2 were in the intron 1, and #3 was in the exon

2 of the gene body) (Figs 1 and S3–S4). Sodium bisulfate treatment was performed using EZ

DNA MethylationTM Kit (ZYMO RESEARCH, USA) and PCR amplification was performed

using PyroMark PCR Kit (Qiagen, Germany). The PCR condition was 45 cycles of 95 for 20 s,

50 for 20 s, and 72 for 20 s, followed by 72 for 5 min. Primer sequences used for PCR amplifica-

tion and pyrosequencing are listed in S1 Table. The biotin-labeled PCR product was captured

by Streptavidin SepharoseTM High Performance (GE Healthcare, Germany). Quantitation of

cytosine methylation was done using the PyroMark Q24 system (Qiagen, Germany). The

amount of C relative to the sum of the amounts of C and T at each CpG site was calculated as

percentage. Representative pyrograms of CpG di-nucleotides assayed are presented in S5 Fig.
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Measurement of TLR2 and TLR6 total protein expression by enzyme-

linked immunosorbent assay (ELISA)

TLR2 and TLR6 protein expression were measured by using TLR2 and TLR6 Human ELISA

Protocol Kit (USCN Life Science Inc, USA)

Statistical analysis

Data were expressed as the mean ± standard deviation. Independent samples t-test or Mann–

Whitney U test was used for comparing continuous variables. Categorical variables were ana-

lyzed using Chi-square test. ANOVA model followed by post-hoc Bonferroni analysis was per-

formed to analyze the differences in continuous variables among HS, non-EDS and EDS

groups. Paired samples t-test was used to compare the change in the levels of DNA methylation

and protein expressions before and after CPAP management. Multivariate linear regression

with hierarchical comparison was performed in two steps with all potential co-variables (age,

body mass index<BMI>, gender, diabetes mellitus<DM>, hypertension, stroke, valvular

heart disease <VHD>, ischemic heart disease <IHD>, congestive heart failure<CHF>,

arrhythmia, rhinitis, obstructive airway disease<OAD>, malignancy, renal failure and gastro-

esophageal reflux disease<GERD> were entered in the first step, and the OSA or EDS were

Fig 1. Diagrams showing CpG site locations of the TLR2 and TLR6 genes (genome build “GRCh38.p13”). (A)~(B): A zoom of the 28

CpG sites assayed in the TLR2 gene and their genomic sequences based on NCBI Reference Sequence (NC_000004.12 and

NG_016229.1). (C): A zoom of the 3 CpG sites assayed in the TLR6 gene and their genomic sequences based on NCBI Reference

Sequence (NG_028087.1). (C): Diagram showing CpG site locations of the TLR2 gene. The CpG site #27 and #28 were in the exon 1 of

the gene body, and the others were in the promoter regions. (D): Diagram showing CpG site locations of the TLR6 gene. CpG site #1 and

#2 were in the intron 1, and #3 was in the exon 2 of the gene body.

https://doi.org/10.1371/journal.pone.0228958.g001
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entered in the second step) to determine independent factors contributing to the DNA methyla-

tion of the TLR2 promoter region and the TLR6 gene body, and their protein expressions in

patients. A p value of less than 0.05 was considered statistically significant. All statistical analy-

ses were performed with SPSS for Windows, version 18.0 (SPSS, Chicago, IL, USA). To assist

in the interpretation of p-values given the number of statistical tests performed, q-values (false

discovery rate) were calculated separately for multiple comparisons of the DNA methylation

and protein expression levels by Benjamini-Hochberg test using R Console software, version

3.4.0. (2017 The R Foundation for Statistical Computing). A q value threshold of 0.1 was

selected to separate false from true discoveries, so up to 10% of declared discoveries should be

expected to be false.

Results

Demography

A total of 18 healthy subjects (HS) and 58 patients with severe OSA were included in the study.

Patients with OSA were older (37.72±9.20 vs. 49.43±10.07, p< .001) and more obese (BMI

24.54±3.58 vs. 29.06±5.23, p = .001). Male gender and prevalent hypertension were also more

frequently noted in patients with severe OSA (Table 1).

DNA methylation and protein expression levels in OSA and healthy

subjects

DNA methylation levels over CpG sites #1, #2, #3, #8, #9, #13, #19, #22, #25 and #28 of the

TLR2 promoter region and TLR2 protein expression were all increased in patients with severe

OSA as compared with HS, while DNA methylation levels over CpG site #18 of the TLR2 pro-

moter region was decreased (Fig 2 and S2 Table). Both DNA methylation levels over CpG site

Table 1. Demographic characteristics between healthy subjects and patients with severe OSA.

HS(n = 18) OSA (n = 58) p value

Age 37.72±9.20 49.43±10.07 < .001

BMI 24.54±3.58 29.06±5.23 .001

Gender(M/F) 10(55.6%)/8(44.4%) 54(93.1%)/6(10.3%) .001

DM 0(0%) 8(13.8%) .187

Hypertension 0(0%) 22(37.9%) .002

Stroke 0(0%) 1(1.7%) 1.00

VHD 1(5.6%) 10(17.2%) .441

IHD 0(0%) 3(5.1%) 1.00

CHF 0(0%) 2(3.4%) 1.00

Arrhythmia 0(0%) 1(1.7%) 1.00

Rhinitis 3(16.7%) 13(22.4%) .75

OAD 0(0%) 7(12.1%) .192

Malignancy 0(0%) 4(6.9%) .57

Renal failure 2(11.1%) 6(10.3%) 1.00

GERD 1(5.6%) 15(25.9%) .10

WBC 6.32±1.52 6.84±1.99 .351

TSH 1.44±.73 1.88±1.40 .30

Chol 187.93±33.36 190.96±35.01 .76

TG 111.80±58.65 165.45±109.11 .07

HbA1c 5.39±.31 8.96±16.76 .48

https://doi.org/10.1371/journal.pone.0228958.t001
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#1 of the TLR6 gene body and TLR6 protein expressions were significantly increased in

patients with severe OSA versus HS (Fig 3 and S2 Table).

Multivariate linear regression analysis showed that OSA was the independent factor of

DNA methylation levels over CpG sites #1, #2, #3, #18, #25 and #28 of the TLR2 promoter

region, CpG sites #1 and #3 of the TLR6 gene body, and protein expressions of TLR6 (Tables 2

and S3). Apnea-Hypopnea index (AHI) or oxygen de-saturation index (ODI) were also inde-

pendent factors of DNA methylation levels of the TLR2 promoter region, TLR6 gene body,

Fig 2. Comparisons of DNA methylation levels over the TLR2 promoter region and TLR2 protein expressions. (A)DNA

methylation levels over CpG site #1, #2, #3, #8, #9, #13, #19, #22, #25 and #28 of the TLR2 promoter region were increased (p = .006,<

.001, .006, .027, .003, .018, .004, .013, .005, and .015 respectively ), while DNA methylation levels over CpG site #18 of the TLR2 promoter

region was decreased (p = .027). (B)TLR2 protein expression were increased in patients with severe OSA (p< .001).

https://doi.org/10.1371/journal.pone.0228958.g002

Fig 3. Comparisons of DNA methylation levels of the TLR6 gene body and TLR6 protein expression. (A)DNA methylation levels

over CpG site #1 of TLR6 gene body and (B)TLR6 protein expressions were increased in patients with severe OSA (p< .001 and< .001

respectively).

https://doi.org/10.1371/journal.pone.0228958.g003
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and protein expressions of TLR6 (S4 and S5 Tables). These results remained statistically signif-

icant in DNA methylation levels over CpG sites #1 and #3 of the TLR6 gene body after correc-

tion for multiple comparisons with all q values <0.1. (Tables 2 and S6–S8). In addition, the

DNA methylation levels over CpG sites #1 and #3 were significant correlated to protein

expressions of TLR6 after the analysis using Pearson correlation (p< .001 and p = .028

respectively).

DNA methylation and protein expression levels in OSA with and without

excessive daytime sleepiness

All the severe OSA patients were divided into two groups based on Epworth sleepiness scale

(ESS): 18 patients with ESS less than or equal to 10 (non-EDS group) and 40 patients with ESS

more than 10 (EDS group). Using ANOVA model followed by post-hoc Bonferroni correction

analysis among the HS, non-EDS and EDS groups, we found that the demographic character-

istics were not significantly different between non-EDS and EDS groups, but these two groups

had significantly older age, were more obese and had a larger proportion of prevalent hyper-

tension than did the HS group (Table 3). DNA hypermethylation over CpG site #2 of the TLR6
gene body was noted in the EDS group versus non-EDS group (Fig 4 and S9 Table). EDS was

the independent factor of the DNA methylation level over CpG site #2 of the TLR6 gene body

after multivariate linear regression analysis and multiple comparisons. (S10 and S11 Tables).

DNA methylation and protein expression levels after CPAP management

In seven patients with severe OSA who had received more than 6 months of CPAP treatment,

DNA methylation levels over CpG sites #1, #9 and #23 of the TLR2 promoter region, CpG sites

#1 and #3 of the TLR6 gene body, and TLR2 and TLR6 protein expressions were all reduced,

and DNA methylation levels over CpG sites #24 and #26 of the TLR2 promoter region were

both elevated (Fig 5 and S12 Table). After multiple comparison corrections with the Benjamini

and Hochberg method, CPAP management was still an independent factor for the changes in

the DNA methylation levels of CpG sites #1, #9, and #23 of the TLR2 promoter region, and

CpG sites #1 and #3 of the TLR6 gene body (S13 Table)

Discussion

The main findings of our study are summarized as follows(Tables 4 and 5):

Table 2. Summary of results of multivariate linear regression and multiple comparison: OSA is the independent risk factor of DNA methylation levels over CpG

site #1, #2, #3, #18, #25 and #28 of the TLR2 promoter region, CpG site #1 and #3 of TLR6 gene body, and protein expression of TLR6. (The complete data was pre-

sented at S6 Table).

Multivariate linear regression Multiple comparisons

4F p 4R2 β t pr2 q
TLR2 promoter region CpG#1 4.546 .037 .051 .327 2.132 .071 .153

CpG#2 5.202 .026 .055 .339 2.281 .081 .123

CpG#3 5.293 .025 .053 .335 2.301 .082 .123

CpG#18 4.333 .042 .056 -.342 -2.082 .069 .154

CpG#25 6.221 .015 .072 .389 2.494 .095 .123

CpG#28 5.856 .019 .070 .383 2.420 .090 .123

TLR6 gene body CpG#1 20.736 < .001 .192 .635 4.554 .260 < .001

CpG#3 9.421 .003 .120 .502 3.069 .138 .033

Protein expression TLR6 97.805 < .001 .325 .825 9.890 .645 < .001

https://doi.org/10.1371/journal.pone.0228958.t002
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1. Both DNA methylation levels of the TLR6 gene body over CpG site #1 and #3, and protein

expressions of TLR6 were significant correlated, and increased in patients with severe OSA.

2. Aberrant DNA methylation levels of the TLR2 promoter region, hypermethylated TLR6
gene body, and increased protein expressions of TLR6 were all independently associated

with higher AHI and ODI.

3. DNA methylation levels of the TLR6 gene body over CpG site #2 were increased in OSA

with EDS phenotype.

4. The altered DNA methylation levels over CpG sites #1 and #3 of the TLR6 gene body as

well as TLR2 and TLR6 protein expressions were reversed after nasal CPAP management.

These results provide evidence for the first time that aberrant DNA methylation of the

TLR2 promoter region and TLR6 gene body might be involved in the consequence of OSA and

its clinical phenotypes.

Persistent hypoxia can induce hypermethylation or demethylation of specific genes [24–

26], while the impact of chronic intermittent hypoxia on DNA methylation remains uncertain.

Previous studies [15, 27] have found aberrant DNA methylations in several genes and might

constitute an important determinant of disease severity and vulnerability to EDS in OSA. In

addition, both TLR2/6 co-expressions on neutrophil and monocyte were increased either in

OSA patients or with intermittent hypoxia with re-oxygenation treatment in vitro [16]. The

cause-and-effect relationship between hypermethylation or demethylation of these genes and

Table 3. Demographic characteristics between healthy subjects, non-EDS and EDS patients.

HS(n = 18) Non-EDS(n = 18) EDS(n = 40) p value

Age 37.72±9.20 49.16±7.79 49.56±11.06 < .001�

BMI 24.54±3.58 28.74±5.67 29.21±5.09 .004��

Gender(M/F) 10(55.6%)/8(44.4%) 14(77.8%)/4(22.2%) 38(95%)/2(5%) .001@

DM 0(0%) 3(16.7%) 5(12.5%) .247

Hypertension 0(0%) 7(38.9%) 15(37.5%) .009@@

Stroke 0(0%) 0(0%) 1(2.5%) .643

VHD 1(5.6%) 4(22.2%) 6(15%) .406

IHD 0(0%) 0(0%) 3(7.5%) .252

CHF 0(0%) 1(5.6%) 1(2.5%) .607

Arrhythmia 0(0%) 1(5.6%) 0(0%) .214

Rhinitis 3(16.7%) 4(22.2%) 9(22.5%) .200

OAD 0(0%) 1(5.6%) 6(15%) .161

Malignancy 0(0%) 3(16.7%) 1(2.5%) .049

Renal failure 2(11.1%) 1(5.6%) 5(12.5%) .714

GERD 1(5.6%) 3(16.7%) 12(30%) .099

WBC 6.32±1.52 6.85±1.79 6.82±2.09 .648

TSH 1.44±.73 2.09±1.96 1.79±1.10 .441

Chol 187.93±33.36 196.10±38.45 188.39±33.40 .702

TG 111.80±58.65 141.62±78.89 177.36±120.63 .091

HbA1c 5.39±.31 10.91±20.99 8.07±14.64 .638

� p = .002 and p< .001were noted in HS versus Non-EDS and EDS group respectively; �� p = .035 and p = .004 were noted in HS versus Non-EDS and EDS group

respectively;
@ p = .148 and p = .001 were noted in HS versus Non-EDS and EDS group respectively;
@@ p = .034 and p = .011 were noted in HS versus Non-EDS and EDS group respectively.

https://doi.org/10.1371/journal.pone.0228958.t003
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the consequences of OSA are still unclear, and we speculated that chronic intermittent hypoxia

might contribute to systemic inflammation and adverse consequences through inducing aber-

rant DNA methylation. However, it is equally possible that these epigenetic changes might

occur in the prenatal period or early life and predispose subjects to an epigenotype and subse-

quently a phenotype with more frequent hypoxic events during sleep in adulthood.

Toll-like receptors play central roles in the innate immune response by recognizing con-

served structural patterns in diverse microbial molecules [28]. They are key mediators of

innate immunity in both vertebrates and invertebrates, respond to various pathogen-associ-

ated stimuli, and transduce the complex signaling responses that are required for inflamma-

tion and for the subsequent development of adaptive immunity [29]. TLR2 has been shown to

sense bacterial lipopeptides: it heterodimerizes either with TLR1 to recognize tri-acylated lipo-

peptides or with TLR6 to recognize di-acylated lipopeptides [30]. Intermittent hypoxia induces

several inflammatory cascades, including the production of reactive O2 species, HIF-1 activa-

tion, and activated TLRs [3].

Our results emphasize the role of TLR6 in association with its epigenetic change in OSA.

Aberrant DNA methylation levels of the TLR2 promoter region and TLR6 gene body as well as

protein expressions of TLR6 were all independently associated with AHI and ODI. The rever-

sion of the DNA methylation levels of the TLR2 promoter region, TLR6 gene body and protein

Fig 4. Comparisons of DNA methylation levels over the TLR2 promoter region, TLR6 gene body, and protein expressions of TLR2

and TLR6 between non-EDS and EDS groups. (A)~(D) The DNA methylation levels over the TLR2 promoter region, and protein

expressions of TLR2 and TLR6 were not significantly different except that CpG site #2 of the TLR6 gene body was hypermethylated

significantly in the EDS group (p = .032).

https://doi.org/10.1371/journal.pone.0228958.g004
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expression of TLR2/TLR6 after CPAP management were also observed in seven selected

patients. These results suggest that chronic intermittent hypoxia during sleep would induce

Fig 5. Changes in DNA methylation and protein expression levels of the TLR2 promoter region and TLR6 gene body in 7 selected

severe OSA patients before and after more than 6-month CPAP treatment. (A) DNA methylation levels over CpG site #1, #9 and #23

of TLR2 promoter region were decreased (p = .018, .015 and .006 respectively) and DNA methylation levels over CpG site #24 and #26 of

TLR2 promoter region were increased (p = .028 and .042 respectively). (B)~(D) DNA methylation levels over CpG sites #1 and #3 of the

TLR6 gene body, and TLR2 and TLR6 protein expressions were reduced (p< .001, p = .003, p< .001 and< .001 respectively).

https://doi.org/10.1371/journal.pone.0228958.g005

Table 4. The summarized results of multivariate linear regression and multiple comparisons in DNA methylation levels of TLR2 promoter region, TLR6 gene body,

and protein expressions of TLR2 and TLR6 between healthy subjects and patients with severe OSA. The DNA methylation levels over CpG#1, #2, #3, #18, #25, and

#28 of TLR2, and CpG#1 and CpG#3 of TLR6 were significant differently between HS and OSA after multivariate linear regression. However, only the CpG#1 and CpG#3

of TLR6 were increased significantly in OSA after multiple comparisons. The TLR6 expression was also increased significantly in OSA.

HS (n = 18) OSA(n = 58) p q
TLR2 promoter region CpG#1 cg153684036 12.11±2.888 16.25±9.822 .037 0.1526250

CpG#2 cg153684048 12.11±2.166 17.24±9.528 .026 0.1225714

CpG#3 cg153684062 12.28±2.886 15.18±5.823 .025 0.1225714

CpG#18 cg153684194 8.00±2.086 6.63±2.492 .042 0.1540000

CpG#25 cg153684244 6.56±3.698 9.83±5.016 .015 0.1225714

CpG#28 cg153688942 2.94±1.798 4.34±2.686 .019 0.1225714

TLR6 gene body CpG#1 cg13006575 56.61±9.432 66.26±5.565 < .001 0.0004455

CpG#3 cg25769980 87.28±6.952 90.28±2.996 .003 0.0330000

Protein expression TLR6 1.3219±.40024 12.9591±3.29140 < .001 na

https://doi.org/10.1371/journal.pone.0228958.t004
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the changes in the epigenesis of TLR2/TLR6 genes and the downstream protein expressions,

especially TLR6. TLR6 might well serve as a biomarker in the diagnosis, disease severity, or

evaluation of management in serial follow-up in OSA, but further investigation is warranted.

Although DNA methylation levels over several CpG sites in the TLR2 promoter region

were increased in OSA patients, hypomethylated CpG site #18 in association with increased

TLR2 protein expression was noted. In our previous study [20], we showed hyper-methylated

CpG site #18 was in association with decreased TLR protein expression in active pulmonary

TB patients. Thus, we speculated that CpG#18 methylation status may have a major effect on

TLR2 gene expression under chronic intermittent hypoxic stimuli in OSA. Given the hyper-

methylated CpG sites #1 and #3 of the TLR6 gene body are in association with increased TLR6

protein expressions, we speculated that heterodimerization between TLR2 and TLR6 might be

enhanced through aberrant DNA methylation of these two genes as well as through hyper-

methylation of the AKT1 and LY86 genes, both of which are involved in the activation of TLR

signaling [31–34].

EDS is one of the prominent symptoms of OSA [35], and in particular, it is known to be a

predisposing factor for accidents, interpersonal (communicative) problems, and reduced pro-

ductivity [36–38]. EDS is also correlated with the severity of OSA [39] and might be a useful

clinical marker to identify patients at risk of metabolic syndrome, hypertension and low-grade

inflammation [40–42], which might all be linked to cardiometabolic morbidity and mortality.

Nocturnal hypoxemia is a major determinant of EDS in Chinese OSA patients [39]. In our

patients, hypertension was more prevalent in OSA but not significantly different between non-

EDS and EDS groups. Increased DNA methylation over CpG site #2 of the TLR6 gene body

was noted in the EDS group. This finding suggests that hypermethylation of the TLR6 gene

body might also participate in the development of the EDS phenotype, but further investiga-

tion in a larger cohort of patients is necessary.

The limitations of our study should be acknowledged. Firstly, we enrolled only patients

with severe OSA in order to avoid the potential confounding variables emanating from low

severity of OSA. Secondly, this was a small population and cross-sectional case-control study,

but we had direct comparison before and after CPAP treatment in some selected OSA patients.

Further studies with sufficiently large sample sizes are required for internal and external valid-

ity and reliability of the results. Thirdly, although the difference of DNA methylation level

between HS and OSA patients in statistically, it is insufficient for indicating the regulation of

TLR2 and TLR6 expression. The further investigation by performing luciferase assay should be

considered. Fourthly, the mechanisms of regulation of gene expression by DNA methylation

Table 5. The summarized results of multivariate linear regression and multiple comparisons in DNA methylation levels of TLR2 promoter region, TLR6 gene body,

and protein expressions of TLR2 and TLR6 in OSA before and after CPAP management. (genome build “GRCh38.p13”). The DNA methylation levels over CpG#1,

#9, #23, #24, and #26 of TLR2, and CpG#1 and CpG#3 of TLR6 were significant differently in multivariate linear regression. After CPAP management, only the CpG#1

and CpG#3 of TLR6 were decreased significantly in multiple comparisons. The TLR2 and TLR6 expression was also decreased significantly after CPAP management.

Before After Difference p q
TLR2 promoter region CpG#1 cg153684036 12.00±2.70 8.142±.89 3.85±3.18 .018 0.08485714

CpG#9 cg153684120 4.86±1.06 2.42±1.27 2.42±1.90 .015 0.08250000

CpG#23 cg153684240 7.71±2.28 4.42±.53 3.28±2.05 .006 0.03960000

CpG#24 cg153684242 7.14±2.91 15.00±7.30 -7.85±7.22 .028 0.11550000

CpG#26 cg153684275 5.57±2.07 12.00±5.83 -6.42±6.60 .042 0.15400000

TLR6 gene body CpG#1 cg13006575 70.14±3.89 53.86±4.38 16.29±3.45 < .001 0.00026400

CpG#3 cg25769980 90.29±1.38 85.00±2.71 5.29±2.93 .003 0.02475000

Protein expression TLR2 706.53±73.29 268.04±26.62 438.49±69.84 < .001 na

TLR6 11.59±2.57 3.70±.86 7.89±1.84 < .001 na

https://doi.org/10.1371/journal.pone.0228958.t005
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of promoter region are thought that highly methylated DNA region inhibit for binding of tran-

scription factor to their binding motif. However, we did not check what of the region of TLR2
promoter highly methylated in patient contains transcription factor binding motif. Fifthly, to

assess the compliance and adherence of CPAP management by using CPAP >4 hours per

night for 6 months might be insufficient. Further reassessment of compliance and adherence

of CPAP management by using residual AHI (eg, "effective AHI [43]) is warranted. Sixthly,

further in vitro study is needed to establish the cause-and-effect relationship between intermit-

tent hypoxia and aberrant DNA methylation of the TLR2 and TLR6 genes. Seventhly, these

particular methylation may have biological significance but additional support from epigenetic

atlases and/or multiple site tests should be warranted.

Conclusions

This study provides a novel finding of aberrant DNA methylation in OSA. Hyper-methylated

TLR6 gene bodies are associated with the consequence of severe OSA and its EDS phenotype.

Increased protein expressions of TLR6 might serve as a biomarker for OSA. CPAP manage-

ment partly reversed the altered DNA methylation levels and protein expressions of TLR2 and

TLR6. Further verification and investigation of underlying mechanisms are warranted.
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