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ABSTRACT We report the draft genome sequences of six strains of Salmonella en-
terica serovars Berta, Enteritidis, Infantis, and Kiambu, isolated from humans or
chicken meats in Osaka, Japan, that were negative for hydrogen sulfide production.
Their genome sizes ranged from 4,460,389 to 4,933,483 bp, with 3 to 9 rRNAs and
64 to 73 tRNAs and with coverages of 95� to 159�.

Salmonella enterica subsp. enterica is one of the leading causes of foodborne
gastrointestinal illnesses, some of which develop into invasive salmonellosis (1).

According to a Japanese governmental report, a total of 640 individuals suffered from
foodborne salmonellosis, representing approximately 3.7% of overall annual foodborne
illness patients (17,282 individuals), in 2018 in Japan (2). Epidemiology-based source
attribution studies have provided evidence that eggs and chicken meats are some of
the main sources of human salmonellosis worldwide (3). Traditionally, hydrogen sulfide
(H2S) production has been used as one of the biochemical hallmarks to selectively
isolate this pathogen through bacteriological culture procedures (4–6). However, non-
H2S-producing Salmonella spp. have been increasingly detected in human and food
specimens (7, 8).

To characterize the genomic traits of non-H2S-producing Salmonella spp., the draft
genome sequences of six strains, S. enterica serovar Berta SB12A043, S. enterica serovar
Enteritidis SE03A200, S. enterica serovar Infantis SI19A061, SI23A178, and SI12A186, and
S. enterica serovar Kiambu SK20A094, which originated from feces from human patients
with gastroenteritis or from food specimens (chicken meats), were examined. For
bacterial isolation from human feces, samples were preenriched in buffered peptone
water (BPW) (Oxoid, UK) at 37°C for 24 h, followed by plating onto Salmonella-Shigella
(SS) agar (Eiken Kagaku, Tokyo, Japan). The suspected white colonies were confirmed
to be Salmonella spp. by their antigenic characterization based on the Kauffmann-
White scheme using Salmonella antiserum Seiken (Denka, Tokyo, Japan). Bacterial
isolation from food specimens was performed as follows: 25 g of the samples was
preenriched in 225 ml of BPW at 37°C for 24 h, followed by selective enrichment using
Rappaport-Vassiliadis broth (Oxoid) at 37°C for 22 h. An aliquot of the culture was then
spread onto brilliant green sulfa agar (Becton, Dickinson and Company, Franklin Lakes,
NJ, USA) and incubated at 37°C for 24 h. The suspected colonies, appearing red to
pink-white surrounded by a red zone, were subjected to serotyping for bacterial
identification and classification, as described above. Finally, the strains obtained were
genetically confirmed to be Salmonella spp. by PCR assays, as described (9).

After cultivation in BPW for 18 h at 37°C with shaking, 1 ml of the culture was used
to extract genomic DNA from the six strains by using the Maxwell RSC blood DNA kit
(Promega, Madison, MA, USA) with minor modifications. In brief, the bacterial pellet
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obtained by centrifugation (14,500 � g for 5 min) of 1 ml of BPW culture was resus-
pended in 400 �l of homogenization solution (Promega), followed by homogenization
with a ZircoPrep minikit (Nippon Genetics, Tokyo, Japan) on a Digital Disruptor Genie
(Scientific Industries, Bohemia, NY, USA) for 5 min at 2,850 rpm. After centrifugation at
10,000 � g for 5 min, 100 �l of the sample lysates and 300 �l of lysis buffer were added
to the deep-well processing plate supplied in the kit, and DNA extraction was per-
formed in a Maxwell RSC instrument (Promega) with default settings. The concentra-
tion and purity of the isolated DNA were checked with a TapeStation 4150 system
(Agilent Technology, Santa Clara, CA, USA), and the exact concentration was
determined using the Qubit double-stranded DNA (dsDNA) high-sensitivity (HS)
assay kit, as recommended by the manufacturer (Thermo Fisher Scientific, Waltham,
MA, USA). Each 1-�g sample of genomic DNA was used to construct a library by
using the Ion Xpress Plus fragment library kit (Thermo Fisher Scientific). The
sequencing reaction was performed in an Ion GeneStudio S5 sequencer using the
Ion 530 kit in combination with the Ion 530 chip (Thermo Fisher Scientific). Raw
reads were trimmed and de novo assembled using CLC Genomics Workbench v20
(Qiagen, Hilden, Germany). The parameters for trimming were as follows: ambigu-
ous limit, 2; quality limit, 0.05; number of 5=-terminal nucleotides, 20; and number
of 3=-terminal nucleotides, 5. The parameters for the de novo assembly were as
follows: mapping mode, create simple contig sequences (fast); bubble size, 50; word
size, 20; minimum contig length, 1,000 bp; and perform scaffolding, no.

Data availability. The draft genomes of all six strains have been deposited in
DDBJ/EMBL/GenBank under the accession numbers provided in Table 1.
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TABLE 1 Strain and genome information for the current study

Strain
name Serovar Source Yr

No. of
reads

No. of
contigs Size (bp) N50 (bp)

GC
content (%)

Coverage
(�)

DDBJ
accession no.

SRA
accession no.

SB12A043 Berta Human feces 2000 318,248 79 4,791,818 105,935 52.3 159.0 BLQG010000000 DRR190999
SE03A200 Enteritidis Human feces 1991 198,280 91 4,831,261 91,788 52.0 95.1 BLQH01000000 DRR191000
SI19A061 Infantis Chicken meat 2007 226,712 99 4,878,412 96,185 52.2 119.1 BLQI01000000 DRR191001
SI23A178 Infantis Chicken meat 2011 265,963 100 4,933,483 75,389 52.1 143.8 BLQJ01000000 DRR191002
SI23A186 Infantis Chicken meat 2011 233,400 97 4,813,141 98,441 52.1 114.5 BLQK01000000 DRR191003
SK20A094 Kiambu Human feces 2008 227,083 69 4,460,389 121,564 52.2 114.7 BLQL01000000 DRR191004
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