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Abstract

Aim

Mouse models of sudden cardiac arrest are limited by challenges with surgical technique

and obtaining reliable venous access. To overcome this limitation, we sought to develop a

simplified method in the mouse that uses ultrasound-guided injection of potassium chloride

directly into the heart.

Methods

Potassium chloride was delivered directly into the left ventricular cavity under ultrasound

guidance in intubated mice, resulting in immediate asystole. Mice were resuscitated with

injection of epinephrine and manual chest compressions and evaluated for survival, body

temperature, cardiac function, kidney damage, and diffuse tissue injury.

Results

The direct injection sudden cardiac arrest model causes rapid asystole with high surgical

survival rates and short surgical duration. Sudden cardiac arrest mice with 8-min of asystole

have significant cardiac dysfunction at 24 hours and high lethality within the first seven days,

where after cardiac function begins to improve. Sudden cardiac arrest mice have secondary

organ damage, including significant kidney injury but no significant change to neurologic

function.

Conclusions

Ultrasound-guided direct injection of potassium chloride allows for rapid and reliable cardiac

arrest in the mouse that mirrors human pathology without the need for intravenous access.

This technique will improve investigators’ ability to study the mechanisms underlying post-

arrest changes in a mouse model.
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Introduction

Out of hospital cardiac arrest affects over 350,000 patients annually in the United States [1].

Only 10% of these patients will survive to hospital discharge and only 6% of the patients will be

discharged with a favorable outcome [2, 3]. These statistics suggest a dramatic need for novel

interventions to improve cardiac arrest outcomes. Numerous animal models of sudden cardiac

arrest (SCA) have been developed to help understand the mechanisms underlying cardiac

arrest mortality and to explore potential interventions in pre-clinical models [4, 5]. A review of

animal models of SCA found that only 6% of pre-clinical SCA studies were completed in mice

[5]. A mouse model has a number of advantages over large animal models, including rapid

breeding, cost-effectiveness, and opportunity for genetic manipulation [6]. However, mouse

use to model SCA has been limited by the time required to obtain venous access and difficulty

delivering life support related to the animal’s size [7, 8].

The major limitation to adoption of the mouse model is the difficult cannulation of the deli-

cate femoral or internal jugular (IJ) veins, resulting in prolonged surgical times and high

lethality necessitating extensive training in the model [9]. In this paper, we describe a novel

method for ultrasound-delivery of potassium chloride (KCl) directly into the left ventricle

(LV) to induce immediate cardiac arrest, bypassing the need for establishing intravenous

access. This direct cardiac injection method simplifies the surgical process Our model has

short procedure times and high rate of surgical survival, thereby increasing the opportunity for

study of preventative and therapeutic interventions, as well as mechanistic aspects of organ

damage and recovery.

Material and methods

Animal preparation

8-week-old C57BL/6J male and female mice were anesthetized using 5% isoflurane in 100%

oxygen via induction box until reaching the surgical plane. These mice were placed in a supine

position and quickly intubated while anesthetized by placing a 22 g catheter endotracheally

and then mechanically ventilated (MiniVent, Harvard Apparatus, Holliston, MA) at a rate of

150 bpm (125 μL for females and 140 μL for males). Animal temperature was maintained near

37˚C via heating pad and rectal temperature probe and heart rate (HR) was monitored contin-

uously using surface electrocardiogram (ECG; Visual Sonics, Toronto, Canada). HR was main-

tained between 400–500 bpm by adjusting isoflurane concentration. Depilatory cream was

applied to the thorax and the chest cleaned with alcohol. All studies were performed at the

University of Pittsburgh in compliance with the National Institutes of Health Guidance for

Care and Use of Experimental Animals and was approved by the University of Pittsburgh Ani-

mal Care and Use Committee (Protocol #18032212).

Ultrasound-guided KCl delivery and cardiopulmonary resuscitation (CPR)

Baseline transthoracic echocardiography was performed using the Vevo 3100 imaging systems

(Visual Sonics) with a 40 MHz linear probe along the long-axis of the heart. A 30-gauge needle

was carefully advanced under ultrasound-guidance through the intercostal space and directed

into the LV. Occasional premature ventricular contractions were noted during needle punc-

ture, typically 1–3 beats, but no sustained arrhythmias were recorded. 40 μL of 0.5M KCl in

saline (pre-warmed to 37˚C) was delivered into the LV cavity, causing immediate asystole as

observed on lead 2 of surface ECG. The ventilator was turned off at this time. Doppler imaging

was utilized over the aortic outflow tract to confirm that no blood was ejected during asystole.

The mice remained in asystole for 7.5 minutes, when a second 30-gauge needle was introduced
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into the LV and 500 μL of 15 μg/mL epinephrine in saline (37˚C) was delivered over approxi-

mately 30 seconds. At 8 minutes, the ventilation was resumed at 180 bpm and CPR initiated.

CPR was performed manually by finger compressions just lateral of the xiphoid process, aim-

ing for a depth of 1/3 to 1/2 of the animal’s thorax, at 300 bpm for 1 min. At 1 min, CPR was

briefly held and ECG evaluated for recovery of spontaneous circulation (ROSC). If a sinus

rhythm was observed on ECG, doppler imaging was performed to confirm aortic blood flow.

If not, one to two additional 1-minute cycles of CPR were performed. Animals not achieving

ROSC by 3 minutes were euthanized. Mice remained on the ventilator (without isoflurane) for

approximately 20–25 minutes until breathing spontaneously at a rate over 60 respirations/

minute. Sham mice received no KCl injection. Rather, sham animals were treated with a single,

direct LV injection of 500 μL epinephrine in normal saline. Sham animals did not experience

asystole or receive chest compressions, and were extubated within minutes after injection. All

animals were placed in a recovery cage under heat lamp for 2 hours with hourly temperature

monitoring by rectal thermometer for up to 4 hours.

Survival analysis

A cohort of sham and SCA mice that survived the initial surgery were designated for survival

analysis over a 4-week time frame. 5 sham mice and 13 SCA mice were included in this study.

Survival was assessed every morning over 4-weeks post-operatively.

Ultrasound and echocardiography

Echocardiography was performed at baseline, 1 day, 1 week, and 4 weeks as previously

described [10] and measured by a blinded operator. Briefly, transthoracic echocardiography

was performed using the Vevo 3100 system and analyzed using VevoLab v3.2.5 (Visual

Sonics). B-mode images were taken for at least 10 cardiac cycles along the parasternal long axis

of the LV and end-systolic volume (ESV) and end-diastolic volumes (EDV) calculated by mod-

ified Simpson’s monoplane method [11]. Short-axis M-mode images were obtained at the level

of the papillary muscle for representative images only. Ejection Fraction (EF) was calculated

from long-axis B-mode imaging as: 100 × (LV EDV − LV ESV) / (LV EDV).

A cohort of mice were assessed for renal perfusion following ROSC. The ultrasound probe

was oriented transversely across the abdomen at the plane of the right kidney. Mice remained

unconscious for approximately one hour after SCA, allowing for ultrasound without the need

for additional anesthesia. Doppler imaging over the renal artery evaluated the presence of

blood flow every thirty seconds until sustained blood flow was noted.

Serum analysis

After euthanasia, mice underwent cardiac puncture for collection of blood by heparinized

syringe. Blood was separated by centrifugation at 2000 x g at 4˚C for 10 minutes and the serum

was flash frozen. These samples were evaluated for blood urea nitrogen (BUN), serum creati-

nine, alanine aminotransferase (ALT), and creatine kinase (CK) by the Kansas State Veterinary

Diagnostic Laboratories (Manhattan, KS).

Tissue histology

Kidneys were fixed overnight in 10% formalin at 4˚C then washed with PBS and transferred to

70% ethanol at room temperature. After fixation, tissues were embedded into paraffin prior to

sectioning at 4 microns by the Histology Core at the Children’s Hospital of Pittsburgh. Sec-

tions were stained with hematoxylin and eosin (H&E). Renal tubular pathology was semi-
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quantitatively scored (0: no injury to 4: severe injury) in terms of tubular dilatation, formation

of proteinaceous casts, and loss of brush border [12]. Histological scoring was performed in a

blinded fashion at 40x magnification on outer medullary regions of the tissue sections. Eight

fields were evaluated per sample. Samples were imaged using a Leica DM 2500 microscope

(Leica, Wetzlar, Germany) and LAS X software (Leica).

Statistical analysis

Data were expressed and mean ± standard error in all figures. p� 0.05 was considered signifi-

cant for all comparisons. To determine whether sample data has been drawn from a normally

distributed population, D’Agostino-Pearson test was performed. For parametric data, Stu-

dent’s t-test was used to compare two different groups. For nonparametric data, Mann-Whit-

ney test was used. Survival analysis was assessed by using Kaplan-Meier and log rank (Mantel-

Cox) testing. All statistical analysis was completed using Graphpad Prism 8 software (San

Diego, CA).

Results

Baseline sex, weight, EF and HR are similar between groups

19 sham and 30 arrest mice were evaluated in this study. There was no difference in baseline

weight (sham: 22.6±0.9 g; arrest: 23.1±0.6 g, Table 1), EF (sham: 59.8±1.5%; arrest: 59.9±1.0%)

or HR (sham: 472±19 bpm; arrest: 488±11 bpm) between groups. A single mouse from the

sham group (1/19, 5.2%) died immediately following extubation and five mice died from the

arrest group (5/30, 16.7%), where four mice did not achieve ROSC and one mouse died

Table 1. Physiologic and surgical characteristics of Sham and SCA Mice.

Sham (±SEM) Arrest p-value

Age (d) 56.8±0.7 (n = 18) 57.7±0.6 (n = 25) 0.34

Weight (g) 22.6±0.9 (n = 15) 23.1±0.6 (n = 25) 0.63

Sex 10 female, 9 male 14 female, 16 male n/a

Surgical Survival

Total 18/19 25/30 n/a

Males 9/9 14/16

Females 9/10 11/14

CPR Duration n/a 1.32±0.11 (n = 25) n/a

Time to Extubation n/a 22.7±0.7 (n = 25) n/a

Initial Body Temp (˚C) 35.7±0.2 (n = 15) 35.5±0.2 (n = 25) 0.79

ROSC Body Temp (˚C) n/a 35.2±0.2 (n = 25) n/a

1 h Body Temp (˚C) 35.9±0.1 (n = 7) 35.9±0.3 (n = 14) 0.95

2 h Body Temp (˚C) 35.8±0.1 (n = 7) 35.2±0.3 (n = 13) 0.18

3 h Body Temp (˚C) 35.8±0.1 (n = 6) 33.0±0.6 (n = 9) <0.001

4 h Body Temp (˚C) 35.8±0.1 (n = 6) 32.9±0.1 (n = 5) <0.001

24 h Body Temp (˚C) 36.6±0.2 (n = 7) 34.8±0.4 (n = 10) 0.03

Baseline HR (bpm) 472±19 (n = 13) 488±11 (n = 19) 0.45

Baseline EF (%) 59.8±1.5 (n = 14) 59.9±1.0 (n = 19) 0.94

1 d HR (bpm) 521±18 (n = 14) 459±12 (n = 21) 0.007

1 d EF (%) 59.6±1.7 (n = 14) 39.9±3.0 (n = 21) <0.001

1 wk EF (%) 59.6±2.3 (n = 5) 41.4±3.4 (n = 6) 0.002

4 wk EF (%) 59.5±2.6 (n = 5) 49.8±5.3 (n = 6) 0.4

https://doi.org/10.1371/journal.pone.0237292.t001
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immediately after extubation. Arrest mice required an average of 1.32 minutes of CPR to

achieve ROSC and were extubated after an average of 22.7 minutes (Table 1). The distribution

of males and females is similar between groups (sham: 10 female, 9 male; arrest: 14 female, 16

male). While this study was not powered to examine sex-based changes amongst groups, surgi-

cal survival was not biased by sex distribution (S1 Table). There was no significant change to

1-day EF, CPR duration, or time to extubation between male and female arrest mice (S1

Table).

SCA mice have temperature and HR dysregulation after ROSC

There were no significant differences in body temperature between groups at baseline (sham:

35.7±0.2˚C; arrest: 35.5±0.2˚C) (Table 1, Fig 1). Following extubation, mice were kept in a

warmed recovery cage, and no difference was noted at 1 hour (sham: 35.9±0.1˚C; arrest: 35.9

±0.3˚C) or 2 hours (sham: 35.8±0.1˚C; arrest: 35.2±0.3˚C). Arrest mice had significantly lower

body temperatures once removed from the warming cage at 3 hours (sham: 35.8±0.1˚C; arrest:

33.0±0.6˚C, p<0.001), 4 hours (sham: 35.8±0.1˚C; arrest: 32.9±0.1˚C, p<0.001) and 24 hours

(sham: 36.6±0.2˚C; arrest: 34.8±0.4˚C, p = 0.03). Arrest mice also had significantly lower HR

one-day after SCA (sham 521±18 bpm; arrest 459±12 bpm, p = 0.007).

SCA mice have increased 30-day mortality

A cohort of post-operative mice from each group was designated for survival studies over a

4-week time course. At 24 hours, 100% of sham mice survived (5 of 5) compared to 92% of

arrest mice (12 of 13, p = 0.54). At 72 hours, 100% of sham mice were alive (5 of 5) compared

to 46% of arrest mice (6 of 13, p = 0.052 vs sham). At 4 weeks, 100% of sham mice survived (5

of 5, median survival of 28 days) compared to only 38% of arrest mice (5 of 13, median survival

3 days, p = 0.03; Fig 1).

SCA mice have reduced EF, which improves over time

Sham and arrest mice showed no difference in baseline EF (sham: 59.8±1.5%; arrest: 59.9

±1.0%). One day after arrest, there was a significantly depressed EF in the arrest group

(sham: 59.6±1.7%; arrest: 39.9±3.0%, p<0.001; Fig 2). EF of arrest mice remained signifi-

cantly depressed 1 week after SCA procedure (sham: 59.6±2.3%; arrest: 41.4±3.4%,

p = 0.002). Four weeks after arrest, there is no significance between EF of sham and SCA

groups (Fig 2).

SCA mice have evidence of prolonged ischemia after SCA and kidney

damage at one day

As kidney damage is a common side effect of cardiac injury [13], we evaluated the duration of

renal ischemia following SCA. A cohort of arrest mice (n = 10) were evaluated for kidney

reperfusion following ROSC by evaluating renal artery flow. The mean duration of kidney

ischemia was 20.6 minutes, with initial measurable kidney blood flow occurring on average

11.3 minutes after ROSC (Fig 3). Serum creatinine was significantly elevated in arrest mice at 1

day when compared to sham (sham: 0.36±0.06 mg/dL; arrest: 1.52±0.22 mg/dL, p<0.001; Fig

3), as was serum BUN (sham: 21.5±9.9 mg/dL; arrest: 156.0±39.8 mg/dL, p = 0.005). Semi-

quantitative scoring of tubular injury was performed at the outer medulla and was noted to be

higher in arrest mice (sham: 0.15±0.05; arrest: 3.33±0.29, p<0.0001).
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Fig 1. Direct LV injection model of SCA. A) Representative long-axis ultrasound image depicting introduction of a needle into the LV chamber. B) Representative

ECG tracings at baseline, during KCl injection, during asystole, immediately after ROSC is achieved, and during recovery. C) Depiction of time course of SCA in this

model. D) Temperature monitoring in sham and arrest mice at baseline, time of ROSC, and at 1, 2, 3, 4 and 24 hours post ROSC. Arrest mice have significanly depressed

body temperature at 3, 4, and 24 hours after arrest when compared to sham mice. E) Mortality curve demonstrating descreased survival in arrest mice as compared to

sham (initial sham n = 5; arrest n = 13). Data are expressed as mean +/- SEM. P-value: � < 0.05.

https://doi.org/10.1371/journal.pone.0237292.g001
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SCA mice have diffuse tissue injury at one day

To assess systemic damage, additional serum assays were performed at 1 day to evaluate for

liver damage (ALT), muscle damage (CK), tissue ischemia (lactate), and neurologic function.

These assays were notable for a significant increase in ALT (sham: 47.6±4.7 U/L; arrest: 135.6

±37.3 U/L, p = 0.047; Fig 3) in arrest mice compared to sham. No significant changes were

noted to serum CK (sham: 1244±252 U/L; arrest: 1811±570 U/L, p = 0.36) or normalized

serum lactate (sham: 1.00±0.06; arrest: 1.90±0.64, p = 0.15). Brief neurologic testing was per-

formed as previously reported [14] on 14 sham and 17 arrest mice one day after SCA

(Table 2). Two of the arrest mice were noted to have hind-leg ataxia and one mouse had slug-

gish movement; however, there was no significant difference in neurologic testing between the

groups (sham: score 12.0±0; arrest: score 11.8±0.1, p = 0.13; Fig 3).

Discussion

In this study, we modified the mouse model of SCA described by Hutchens et al. [9] by deliver-

ing KCl directly into the LV cavity under ultrasound guidance rather than IJ cannulation. This

Fig 2. Ejection fraction and heart rate in Sham and SCA Mice. A) Representative M-mode tracings of a sham (top) and arrest (bottom) mouse one day after SCA,

where red lines denote LV width during diastole and green lines denote systole. B) Heart rate (HR) and ejection fraction (EF) are similar between groups at baseline, but

significantly depressed in SCA mice compared to sham at 1 day after arrest. C) EF is significantly decreased in SCA mice compared to sham at matched timepoints at 1

day and 1 week, but there is no significant EF change by 4 weeks. Data are expressed as mean +/- SEM. P-values: �< 0.05, �� < 0.01, ���< 0.001.

https://doi.org/10.1371/journal.pone.0237292.g002
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delivery method causes immediate onset of asystole after KCl delivery in a highly controlled,

easily visualized, and easily adoptable manner. Pre-clinical models of SCA are rarely per-

formed in the mouse despite a large number of advantages of the murine model, including

Fig 3. Kidney, neurologic, and serum chemistry 1-day after SCA. A) Percentage of mice with recovered kidney perfusion over time since arrest (n = 10). Mean

recovery time was 20.55±0.68 min. B) SCA mice have increased kidney damage by semi-quantitative scoring of kidney injury in the outer medulla (n = 5/group). C)

Representative H&E stains of sham (top) and arrest (bottom) mice one-day after arrest demonstrating proteinaceous casts in renal tubules (black arrowhead) and

infiltrates (red arrowheads) with glomeruli marked (blue asterisk). D) Elevated serum creatinine and BUN in SCA mice at one-day. E) Neurologic scoring at one day. F)

ALT, CK, and lactate changes at one day. Data are expressed as mean +/- SEM. P-values: �< 0.05, ��< 0.01, ���< 0.001, ����< 0.0001.

https://doi.org/10.1371/journal.pone.0237292.g003
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rapid development, low maintenance cost, and the opportunity for genetic manipulation [6,

7]. The low utilization of the murine model is likely attributable to surgical difficulties related

to animal size. Groups that have embraced the mouse model of SCA almost uniformly rely on

intravenous delivery of KCl for induction of cardiac arrest, but have utilized various durations

of arrest (typically 4–16 minutes). These reports all use venous access either through the jugu-

lar or femoral veins for drug delivery. Establishing reliable venous access in the mouse remains

a major barrier to wide-spread adoption of the mouse model of SCA.

Our model spares the use of major vessels for drug delivery by using direct LV introduction

under ultrasound, resulting in procedure times around 30 minutes from anesthesia induction

to extubation, with low surgical mortality (16.7% of SCA mouse surgical mortality, Table 1).

While data is limited concerning procedure times in the traditional model, Abella et al.

describe 50 minutes of anesthesia induction and up to 40 min of venous instrumentation prior

to induction of asystole, followed by 2 hours of invasive monitoring [14]. More recently, Liu

et al. report venous instrumentation followed by 15 min of stabilization, followed by asystole

and CPR and then 30 min of invasive monitoring [15].

Ultrasound-guided catheter placement has already become a staple of hospital care for

many clinicians, allowing physicians and researchers to easily transfer a known skill set into a

translational model of SCA [16, 17]. As ultrasound continues to become more affordable and

accessible [18], we anticipate continued translation of ultrasound approaches into preclinical

models. Ultrasound utilization allows for continual non-invasive monitoring of cardiac

Table 2. 12-point neurologic function assessment for one-day Sham and SCA Mice.

Neurological Function

Level of Consciousness

No Tail Pinch Reflex 0

Weak Tail Pinch Reflex 1

Normal Tail Pinch Reflex 2

Corneal Reflex

No Blink 0

Delayed Blink 1

Normal Blink 2

Respiration

Irregular 0

Decreased Frequency with Normal Pattern 1

Normal Frequency and Pattern 2

Righting Reflex

No Righting 0

Sluggish Righting 1

Rapid Righting 2

Coordination

No Movement 0

Some Ataxia 1

Normal Coordination 2

Activity

No Spontaneous Movement 0

Sluggish Movement 1

Normal Movement 2

Total Possible Score 12

https://doi.org/10.1371/journal.pone.0237292.t002
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function throughout the arrest, resulting in precise assessment of ROSC and duration of asys-

tole by intermittent checks, similar to human resuscitation efforts. Previously published mod-

els that utilize only ECG as an indicator of ROSC may falsely register pulseless electrical

activity as a return of circulation, which may misidentify the time of asystole. Other models

utilize an LV pressure catheter to accurately record restoration of cardiac flow; however, this

requires the placement of an additional invasive canula. In the current report, the rapid proce-

dure time, high survival, reduced surgical skill required, and venous sparing by this technique

are highly advantageous over the traditional model.

Of the 30 mice that underwent arrest in this study, 25 survived the arrest and achieved

ROSC, resulting in a relatively low mortality rate (16.7%) for the procedure (Table 1). This is a

modest improvement over the 20% surgical mortality in the venous KCl mouse model

described by Hutchens et al. [9] and the 27% mortality in a ventricular fibrillation mouse

model described by Chen et al [8]. Only 1 of the 19 sham mice died during the procedure,

which is likely attributable to surgical error. A subset of mice was studied for up to 4 weeks to

assess long-term survival. At 72 hours, 6 of 13 arrest mice (46%) survived, which is in line with

comparable recent studies publishing between 10 and 45% survival at 72 hours [19–21]. 5 of 13

mice (38%) survived for the entire duration of the study (Fig 1). The cause of death is likely

multifactorial given the evidence of cardiac, renal, and liver damage. Previous works have

attributed deaths to shock and neurologic injury in mouse models of SCA, though we are

unable to verify these claims [14, 22]. We did not observe any evidence of pericardial effusion

on echocardiography or free blood in the thorax suggestive of myocardial rupture in any of

our mice.

After one day, EF in SCA mice is significantly decreased from 59.9% at baseline to 39.9%.

These values are in-line with previously published one day EFs and are likely attributable to

cardiac stunning [20]. EF remains significantly decreased at one week (41.4%), with improve-

ment at four weeks (49.8%, Fig 2). These values and their relative improvement are similar to

those observed in humans following cardiac arrest in the absence of coronary disease, as evi-

denced by a case series of cardiac arrest survivors, which noted 1 day EFs of 38%, 1 week EFs

of 44%, and 2–3 week EFs of 50% [23].

Maintenance of body temperature is critically important to neurologic outcomes following

SCA [24–26]. Baseline temperature was mildly depressed in both sham (35.7˚C) and SCA

mice (35.5˚C), likely as a consequence of isoflurane anesthesia [27]. Following extubation,

body temperature was maintained with active heating in a recovery cage for 2 hours. However,

body temperatures fell significantly after active heating was stopped, which is consistent with

post-arrest changes in humans [28] as well as previous mouse models of SCA [15, 29]. The

SCA mice continued to show significant temperature dysregulation and depressed HR at one

day (Fig 1, Table 1). We were unable to demonstrate significant neurologic deficit 24 hours

after arrest by utilizing a well-established, 12-point examination, though some mice did display

mild neurologic dysfunction [14]. Delayed, spontaneous hypothermia is known to be neuro-

protective in other rodent cardiac arrest models and may explain the paucity of neurological

injury noted [30]. We only noted ataxia in two mice and lethargy in one mouse following

SCA, with no observable deficits in sham mice. While some groups are able to demonstrate

neurologic injury with as little as 6-minutes of cardiac arrest [31], others have required

extended arrest time of 12–14 minutes to detect neurologic changes [22, 29]. The 8-min time

point was chosen as it is a well-established time-point in this field [9, 15, 32], however the pro-

cedure could be modified to allow for prolonged arrest time to study neurologic insult.

Mouse SCA models have been utilized to as a clinically-relevant model of both acute kidney

injury [33, 34] (one day after arrest) and chronic kidney disease (seven weeks after arrest,

attributed to prolonged inflammation after reperfusion) [34]. We show that our model of SCA
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similarly develops markers of AKI, as evidenced by elevated serum creatinine, BUN, and tubu-

lar damage 1 day after arrest (Fig 3). Kidney injury is not typically apparent with 8 minutes of

direct ischemia, which typically require 15–20 minutes for the development of focal injury

[35]. By utilizing doppler ultrasonography of the renal artery, we found that the kidney did not

receive measurable perfusion until 11.25 minutes after ROSC, for a total mean ischemia dura-

tion of 20.55 minutes, resulting in kidney ischemia times consistent with established direct

ischemia reperfusion injury models (Fig 3) [36, 37]. Previous work by Ikeda et. al. reports par-

tial restoration of cortical blood flow within minutes of ROSC which gradually improves over

the next twenty minutes [38], which is in line with our estimates of restoration of renal perfu-

sion by renal artery flow [38].

Finally, our model suggests the presence of global ischemic injury following SCA. ALT, a

non-specific marker of liver injury, is significantly elevated one-day after SCA (Fig 3). Some

mice had elevated levels of CK, a non-specific marker of muscle degradation, and serum lac-

tate, but these changes were not consistent in the SCA group. While these changes are sugges-

tive of secondary ischemic damage as seen in post-cardiac arrest patients, larger experiments

would be necessary to fully characterize these changes in our model. We anticipate that these

changes could become significant with prolonged arrest duration, but at the cost of increased

mortality. Further evaluation of this multiple organ damage and the degree to which each

organ system is involved may be an important step toward improving recovery and guiding

post-cardiac arrest interventions.

Limitations

While the ultrasound-guided model of SCA offers advantages over the currently established

intravenous model, there are a number of limitations to its use. First, the operator was not

blinded to sham vs SCA groups in our study, as the sham groups only received a single injec-

tion of epinephrine rather than an injection of KCl followed by an injection of epinephrine in

the arrest mouse. Second, there is potential myocardial injury related to the apical puncture by

needle, however, we did not observe any pericardial effusion or blood in the thorax suggestive

of myocardial rupture. Additionally, KCl is an artificial method for inducing asystole that may

not fully recapitulate arrhythmic models of SCA, which may have residual coronary flow and

intermittent LV contraction.

Conclusions

We demonstrate a novel mouse model of SCA that utilizes direct LV injection of KCl under

ultrasound guidance that allows for rapid and reliable arrest with low surgical mortality. This

model develops significant cardiac, kidney, and liver injury at one day as well as neurologic

injury in some animals. This model lowers the barrier to entry for establishing a mouse model

of SCA, which will help researchers investigate the mechanisms underlying SCA mortality.
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