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A B S T R A C T

Photothermal measurements with an infrared camera enable a fast and contactless part inspection. The main
drawback of existing reconstruction methods is the degradation of the spatial resolution with increasing imaging
depth, which results in blurred images for deeper lying structures. In this paper, we propose an efficient image
reconstruction strategy that allows prior information to be included to overcome the diffusion-based information
loss. Following the virtual wave concept, in a first step we reconstruct an acoustic wave field that satisfies the
standard wave equation. Therefore, in the second step, stable and efficient reconstruction methods developed for
photoacoustic tomography can be used. We compensate for the loss of information in thermal measurements by
incorporating the prior information positivity and sparsity. Therefore, we combine circular projections with an
iterative regularization scheme. Using simulated and experimental data, this work demonstrates that the quality
of the reconstruction from photothermal measurements can be significantly enhanced.

1. Introduction

Photoacoustic (or optoacoustic) tomography uses thermoelastic
expansion following a rapid temperature rise after the illumination of
light absorbing structures within a semitransparent and turbid material,
such as a biological tissue. Photothermal imaging belongs to the
methods of active thermography and measures directly the increased
temperature propagating by heat diffusion from the light absorbing
structures to the surface of the sample. Both methods have the same
optical absorption contrast and enable to detect hemoglobin, lipids,
water and other light-absorbing chromophores, but with greater pene-
tration depth than purely optical imaging modalities that rely on bal-
listic photons [1–3]. In photoacoustic tomography, the temporal evo-
lution of the acoustic pressure field is sampled using an array of
ultrasound detectors placed on the tissue surface or by moving a single
detector across the detection surface. From the measured pressure sig-
nals, images of the optical absorption within the tissue can be re-
constructed by time reversal and back projection methods or by solving
an inverse source problem [3–5]. In photothermal imaging the surface
temperature evolution is measured by an infrared camera.

The achievable spatial resolution for photoacoustic tomography and
photothermal imaging degrades with imaging depth, which results in
blurred images of deeper lying structures. Besides pure technical

limitations of the measurement equipment, the ultimate resolution limit
has its origin in the second law of thermodynamics: scattering, dis-
sipation or diffusion of the acoustic or “thermal” wave on its path
through the sample causes entropy production, which is equal to the
loss of information [6–8] (Fig. 1). As the information content of the
reconstructed image strongly correlates with the spatial resolution, the
higher entropy production from deeper lying structures causes a de-
gradation in resolution. Overcoming the resolution limit due to entropy
production is not trivial. Without taking into account additional
knowledge or information about the sample, no mathematical re-
construction algorithm can compensate for this information loss,
causing the degradation in resolution.

Super-resolution fluorescence imaging techniques, such as sto-
chastic optical reconstruction microscopy (STORM) [9], photoactivated
localization microscopy (PALM) [10], or super-resolution optical fluc-
tuation imaging (SOFI) [11] utilize the fact that the localization of point
sources (e.g. activated florescent molecules) is possible with a much
higher accuracy than the width of the point spread function (PSF).
Although the resolution in optical imaging has been greatly improved,
there continues to be rapid advancements in the development of high
resolution imaging methods also for many other imaging modalities.
Localization microscopy was also used to achieve super-resolution in
ultrasound imaging by using scattering microbubbles instead of
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fluorescent molecules as point sources [12,13], and recently even for in
vivo localization of single dyed droplets for photoacoustic tomography
[14]. Ultrafast localization microscopy allows for super-resolution ul-
trasound imaging of vasculature in whole organs [15].

In the field of optics, it has been known since 2007 that optical
diffusion in a strong scattering sample can be “inverted” by wavefront
shaping [16]. Coherent photons from a laser scatter in a deterministic
way (at least for a certain correlation time), which is measured point-
wise. The resulting scattering matrix is used to change the light wave
front, e.g. by a spatial light modulator in such a way that after diffusive
scattering the light is focused. For heat diffusion, phonons are not co-
herent and the propagation of phonons is highly uncorrelated in time.
Therefore, a “phonon scattering matrix” cannot be measured and used
to invert heat diffusion in time. For photoacoustic imaging in a (quasi)
diffusive regime a comprehensive overview about the advances in
super-resolution imaging was recently given by Shi et al. [17].

The degradation of spatial resolution with increasing imaging depth
in thermographic imaging could be circumvented by using structured
heating, e. g. by structured illumination patterns. For super-resolution
reconstruction out of numerous images with different illumination
patterns, we have successfully proposed a non-linear iterative joint
sparsity (IJOSP) algorithm [18,19].

These patterns can even be unknown, which is called blind struc-
tured illumination. We demonstrated this by imaging a line pattern and
a star-shaped structure through a metal sheet with a resolution that was
four times better than the resolution limit from entropy production
[19]. The structured illumination was realized using parallel slits cut in
an aluminum foil, where the excitation is carried out either by a flash
lamp, which passes through the slits in the foil, or by a high-power laser
with a line-shaped spot.

In this work, we demonstrate that even without structured illumi-
nation, just by taking into account prior information, such as positivity
and sparsity of the heated structures inside the sample and using ade-
quate iterative non-linear reconstruction algorithms, the increased
blurring with imaging depth can be reduced significantly. Positivity
comes from the fact that heating always causes a temperature increase.
By converting the temperature signal into a virtual wave, which is a
solution of the wave equation, positivity is not directly preserved for 2D
and 3D wave propagation. An initially nonnegative acoustic signal will
take negative values during propagation. In this work, we account for
this issue by calculating the circular or spherical projections, which is in
2D the Abel transformation and in 3D the time integral of the virtual
wave [20]. The circular and spherical projections preserve positivity of
the initial source. For one data point the information gain by a posi-
tivity constraint would be only a factor of two, but for a signal with n
data points this factor becomes 2n, which can be large for higher n.
More information could be gained by using also sparsity. Sparsity can
often be assumed because defects, such as cracks in samples, are usually

sparse and also in biomedical imaging the sample consists of different
types of tissues separated by “sparse” interfaces. The application of the
virtual wave concept (VWC) with prior information for a high-resolu-
tion thermographic image reconstruction is shown using 2D experi-
mental surface temperature data.

2. Virtual wave concept

The intention of the virtual wave concept is to reconstruct the initial
temperature distribution T0(r) based on temporal temperature data T(r,
t) measured at the sample surface (Fig. 2a, c). For this purpose, we
transform T(r, t) locally into a virtual wave field Tvirt(r, t) (Fig. 2d) in
order to enable the application of efficient and stable photoacoustic
image reconstruction methods. The reconstruction of the initial heat
sources is imaged in Fig. 2e.

2.1. Forward problem

The direct or forward problem is analytically given by the heat
equation
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The heat equation describes the heat diffusion process in a solid and
hence the temperature distribution T(r, t) as function of position vector
r=(x, y, z), where x, y, z are the Cartesian coordinates, and time t. α is
the thermal diffusivity. The right hand side of Eq. (1) represents the
source term. Herein, the temporal Dirac-Delta distribution δ(t) arranges
that the spatial temperature distribution T0(r) is introduced at time
t=0. The heat equation can be classified as parabolic partial differ-
ential equation (PDE) and describes an irreversible process. Practically
the forward problem is given by heating up the test specimen, e.g. by
absorption of optical radiation or induction of eddy current and mea-
suring the corresponding temporal temperature change at the surface.
In Fig. 2a an exemplary initial temperature distribution is illustrated.
The corresponding simulated surface temperature distribution T(y,
z=0) is imaged in Fig. 2c.

The propagation of the virtual wave Tvirt(r, t′) is based on the
acoustic wave equation for pressure [21]
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Herein, p(r, t) is the photoacoustic wave pressure, p0(r) is the initial
pressure distribution and c is the speed of sound. We claim, that the
following initial pressure and temperature distribution relation holds:

= = = =p t p c ρβT tr r r( , 0) ( ) ( ) for 0,0
2

0 (3)

where ρ is the material density and β is the thermal expansion

Fig. 1. Schematic sketch of the information
loss from entropy production during scattering,
dissipation, or diffusion. (a) Sample with sub-
surface structure, which should be imaged; (b)
propagation of the acoustic or “thermal” waves
to the sample surface: entropy production de-
termines the loss of information; (c) detection
of signals at the sample surface; (d) measured
signals at the detector surface as a function of
time. Due to entropy production, the signal
from the deeper structures has not only a
smaller amplitude. They are also broadened
compared to the signal from the structure just
beneath the surface.
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coefficient of the observed material. Then we define a virtual wave
field, where the above relationship is extended for times t > 0 by in-
troducing the virtual time scale t′:

′ =T t
p t
c ρβ

r
r

( , )
( , )

.virt 2 (4)

By substituting Eqs. (3) and (4) into the acoustic wave equation for
pressure, Eq. (2), the PDE for the virtual wave propagation yields:
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Herein, c is the virtual speed of sound and t′ corresponds to the virtual
time scale. The wave equation can be classified as hyperbolic PDE and
is, in contrast to the heat equation, time reversible. The virtual wave
exhibit wave properties such as wavefront propagation, reflection and
refraction [22,23]. Frequency domain- synthetic aperture focusing
technique (F-SAFT), a well known acoustic reconstruction method, is
used to reconstruct the initial temperature distribution T r( )0

rec . T0(r) is

again the initial temperature distribution.

2.1.1. Fredholm integral equation
According to Burgholzer et al. [24] the temperature distribution T(r,

t), can be calculated based on the virtual wave field Tvirt(r, t′) and the
kernel K(t, t′) for the same position vector r, but different time scales t
and t′:
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The kernel, Eq. (7), contains the thermal diffusivity α and virtual speed
of sound c, which are the characteristic parameters for heat and virtual
wave propagation. Eqs. (6) and (7) are valid for a temporal Dirac-Delta
like heating h(t)= δ(t) of the specimen. To obtain Eq. (7), we have to
Fourier transform Eqs. (1) and (5) temporally. Due to the elimination of

Fig. 2. Process steps of VWC based on simulated data with internal heat sources: (a) initial temperature distribution 2D (left) and 1D (right) at y= {6.5,13,19.5} mm,
(b) spatial temperature distribution at t=1 s, (c) simulated surface temperature field, (d) virtual wave field and (e) reconstructed field.
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the time derivatives one can find a relationship between temperature
field and virtual wave field for the same position vector r. Applying the
inverse Fourier transformation on this relationship yields Eq. (6) and
consequently Eq. (7). Due to the linear nature of wave and diffusion
equation, Eq. (6) can be extended for any heating function h(t) via
temporal convolution [6]. The benefit of VWC compared to the direct
solution of the inverse heat conduction problem (IHCP) comes with the
application on multidimensional heat conduction problems. Here the
VWC, in contrast to IHCP where the temporal and spatial components
are treated simultaneously, solves for the temporal virtual wave field
which yields the depth information such as defect depth, front wall and
backwall. This first reconstruction step is then post processed by
acoustic reconstruction methods where again the temporal information
and the spatial components are respected.

3. Image reconstruction

3.1. Inverse problem

Our goal is to convert the measured or simulated temperature field
into a so-called virtual wave field to enable the application of photo-
acoustic reconstruction methods. As mentioned previously, a con-
sequence of entropy production during heat diffusion, characterized by
the heat equation is that information is lost. Hence, calculating Tvirt
from T is a severely ill-posed inverse problem and regularization tools
are necessary to calculate an appropriate regularized solution [25].

Usually, thermographic data is discrete in time and space. Hence, it
is convenient to write Eq. (6) in discrete matrix form with
tk=(k− 1)Δt and ′ = − ′t j( 1)Δj t

=T KTvirt (8)

The matrices have the subsequent dimensions: ∈ ×T ℝm q, ∈ ×K ℝm n and
∈ ×T ℝn q

virt with k={1, 2, …, m} and j={1, 2, …, n}. The variable
ℓ={1, 2, …, q}, counts for the spatial extension in y. For a Dirac-Delta
like heating function h(t)= δ(t), the components of the K-matrix are
calculated in the following manner:
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During calculation of the matrix elements Kkj the expression (1/0) oc-
curs for k=1. Hence, the first row of the Kernel-matrix is set to zero: K
(1, :)= 0. In Eq. (9), the dimensionless numbers c͠ , ΔFo and η are de-
fined as

= = =′c c α η cΔ
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where c͠ equates to the Courant-Friedrichs-Levy (CFL) number [26], ΔFo

is the discrete Fourier number [27] and η is the ratio of these di-
mensionless numbers.

3.1.1. Reduction to circular projections
The quality of the regularized solution, i.e. the solution of the vir-

tual wave field can be enhanced if prior informations, such as positivity
or sparsity, are available. Considering the temperature distribution
based on a heating pulse, in all spatial dimensions, the temperature
distribution is always positive with respect to the ambient temperature
for each time step of the simulation or measurement data. In contrast to
this, the virtual wave field is not positive for all spatial dimensions.
Positivity of the virtual wave field can only be guaranteed if the re-
construction is based on a one dimensional heat conduction problem.
Hence, the intention is to transfer the multidimensional virtual wave
data, via circular projections into a positive data set in order to in-
corporate the additional condition positivity [20,28,29]. Therefore, we

consider the circular projection Mvirt which can be computed with the
inverse Abel transformation of the two dimensional virtual wave field
Tvirt:

= −M A T .virt
1

virt (11)

Herein A−1 is the inverse Abel transformation operator with respect to
time. For the 3D wave equation, the Abel transformation is replaced by
integration with respect to the temporal variable, which results in
spherical projections of the initial 3D source [25, Appendix A].

Our goal is now to relate the positive data, i.e. the circular projected
virtual wave signal Mvirt from Eq. (11) with the temperature signal T.
For this purpose, we recapitulate the temperature field of Eq. (8), that is
based on an arbitrary heating function h(t) represented by the vector h:

= =T K h T KT( * ) ¯ .virt virt (12)

Herein (*) denotes the temporal convolution operator applied to the
rows of K. Performing the inverse operation of Eq. (11) and substituting
this into Eq. (12) yields:

= = =T KT KAM KM¯ ¯ ¯̂virt virt virt (13)

= =K KA K h Awith ¯̂ ¯ ( * ) . (14)

In any dimension, the circular means of a non-negative function are
again non-negative. By solving Eq. (13) we can therefore incorporate
the known non-negativity of the circular projections of Tvirt as prior
knowledge when reconstructing Mvirt. In order to obtain the two-di-
mensional virtual wave field we can apply again the Abel transforma-
tion A to the reconstructed virtual circular projections. We apply reg-
ularization tools to solve the inverse problems Eq. (8) and Eq. (13). For
the inverse problem in Eq. (8) we use the truncated singular value
decomposition (T-SVD) for regularization. To solve the inverse problem
Eq. (13) we apply the alternating direction method of multipliers
(ADMM).

3.1.2. Regularization
In this work we use the direct regularization method truncated T-

SVD and the iterative regularization algorithm ADMM. For the sake of
simplicity, the solution strategies are described for 1D temperature
profiles of a single infrared camera pixel. The heat diffusion is still in 2D
or 3D, where the described solution strategies are applied separately to
each pixel location.

The solution using T-SVD approximates the least squares solution
and its objective function is given by [30]

−KT Tminimize 1
2

|| || .virt 2
2

(15)

Formally we have for the virtual wave solution:

∑=−

=
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μ
T

u T
v .
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k
i

i
ivirt

T SVD

1 (16)

Herein, k is the regularization parameter that is estimated using the
discrete Picard plot, where the only prior information is the noise level.
ui and vi are orthonormal column vectors of the matrices U and V,
obtained via SVD.

To incorporate the prior information positivity and sparsity we
apply the ADMM algorithm, which is an efficient iterative algorithm for
constrained optimization. [31]. Using ADMM the prior information
sparsity is respected, because we assume that the virtual wave field Tvirt

is sparse. ADMM is a descendant of the Douglas-Rachford splitting
method [32,33]. The idea is to split the objective function

− + λKM T Mminimize 1
2

|| ˆ || || ||virt 2
2

virt 1 (17)

into two parts in order to obtain separate problems that are easier to
solve. Hence, the new problem is given by:
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Then we can form the Lagrangian with respect to Eqs. (18) and (19). To
increase robustness, one adds a penalty term and an appropriate pen-
alty parameter ρ > 0 to the Lagrangian. This approach gives the aug-
mented Lagrangian and leads to the following iteration procedure to
reconstruct Mvirt [31]:
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Sλ/ρ is a threshold operator. In order to enforce positivity, we apply soft
thresholding only to the positive entries and set the negative entries to
zero. λ is a regularization parameter that is determined by the L-curve
method [34].

4. Experimental results

In this section we apply the VWC to pulse thermography data based
on internal heat sources. Based on the physical parameters, the time
resolution and the spatial resolution we can compute the kernel matrix
for T-SVD. Further, using the Abel transformation, we introduce the
prior information positivity. Then a comparison of the above presented
regularization tools is given. Finally, we apply F-SAFT to reconstruct
the initial temperature distribution. Since the information content of K̂̄
is higher than for K we expect a significant improvement of the reg-
ularized solution for ADMM compared to T-SVD. The reconstruction of
the internal heat sources is performed by F-SAFT.

4.1. Image reconstruction of internal heat sources

The test specimen is built up with graphite bars that are embedded
in epoxy resin. The geometric dimensions are shown in Fig. 3a. The

graphite bars are heated by laser excitation, where the laser has a
wavelength of 938±10 nm. As one can see in the exemplary surface
temperature profiles (Fig. 4a), the laser excitation causes a volumetric
heating of the epoxy resin and a surface heating of the graphite bars.
Hence, the epoxy resin behaves like a semi-transparent material for the
corresponding laser excitation (see Fig. 3b). The maximum power of the
diode laser is 250 W and the numerical aperture is 0.22. The raise time
is smaller than 10 μs and the bandwidth is greater than 50 kHz. In the
experiment the laser power was 250 W and the heating time was
th= 200 ms. The spatial laser power distribution was homogeneous
over the laser spot. The laser spot diameter was approximately 40 mm.
The heated graphite bars work as internal heat sources. Simultaneously,
the temperature evolution is measured on the surface of the test spe-
cimen using an infrared camera. The infrared camera has an image
frequency of 106 Hz in full frame modus and the noise equivalent
temperature difference (NETD) is smaller than 25 mK. This camera has
a cooled indium antimony (InSb) sensor, that is sensitive in the spectral
range of 3.0–5.1 μm. In this spectral range the epoxy resin is opaque.
Hence, we measure the temporal surface temperature at z=0 and not
the surface temperature of the graphite bars.

The spatial resolution is Δy = 0.098 mm and the time resolution is
Δt= 0.02 s. Fig. 4a illustrates temporal temperature slopes for different
position along the graphite bars. Fig. 4b shows spatial temperature
distributions for t={20,30,50} s related to the corresponding max-
imum. For both images, the gray lines show the original data and the
black lines the spatial mean value of three-hundred surface temperature
slices normal to the graphite bars. As one can see, the deeper the steel
rod, the lower the maximal temperature signal. This behavior is a
consequence of the diffusive nature of the thermal wave.

Based on the measured surface temperature, we calculate a virtual
wave field using T-SVD and ADMM. The thermal diffusivity
α=0.13e−6 m2/s was determined using the linear diffusivity fit (LDF)
method [35]. The dimensionless speed of sound was set in the stable
regime to =c 1͠ . Using T-SVD we directly solve for the virtual wave field
and set the benchmark for ADMM. Using ADMM, we then take into
account the prior information, sparsity via the cost function Eq. (17)

Fig. 3. (a) Test specimen built up with graphite bars, that are embedded in epoxy resin. (b) Principle sketch of the measurement set-up: The graphite bars are
stimulated by laser excitation. The resulting change of the surface temperature is measured with an infrared camera.
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and positivity is introduced by the Abel transformation. Consequently,
we calculate the regularized solution for the circular projections Mvirt.
To calculate the virtual wave field Tvirt we apply the Abel transforma-
tion to the circular projections Mvirt. The ideal virtual wave field and
the virtual wave fields calculated by T-SVD and ADMM are illustrated
in Fig. 5a. For the T-SVD, k=14 singular values were respected. For
the ADMM algorithm 40 iterations with a fixed penalty parameter
ρ=0.0016 and regularization parameter λ=7.58 were performed.
One can see, that the virtual wave field based on ADMM matches much
better the ideal virtual wave field compared to T-SVD. As a consequence
the image reconstruction of the internal heat sources based on ADMM
exhibit a much better spatial resolution compared to T-SVD.

To highlight the process steps of VWC the result of ADMM reg-
ularization is again illustrated in Fig. 6. The left side of Fig. 6 show the
results in 2D and the right side shows a 1D representation of the initial
temperature field, the measured surface temperature field, the calcu-
lated virtual wave field applying ADMM, and the reconstructed initial
temperature distribution applying F-SAFT. The 1D representations were
obtained by evaluating the corresponding 2D fields at y=

{6.2,12.85,19.25} mm (see different line styles). The evaluation at y
differ from the simulation because of inaccuracy in the manufacturing
of the specimen. Especially, for the 1D representation of the virtual
wave, we see the characteristics of 2D wave propagation. Compared to
the results obtained by simulation (Fig. 2e), the experimental results
(Fig. 6d) show non-symmetric rods.

For simulated data we used a homogeneous material with a certain
spatial initial temperature distribution (Fig. 2a). In the experiment we
see an influence caused by the volumetric heating of the semi-trans-
parent material that have different thermophysical properties (epoxy
resin and graphite). Hence, we have some balancing processes at the
interface of these two materials. Consequently, we expect that the non-
proper heating in the experiment affect a symmetric reconstruction of
the rods.

5. Conclusions

In this work an application of the VWC for thermographic image
reconstruction based on multidimensional temperature data was

Fig. 4. (a) Temporal temperature distribution
for several pixel positions. Because of the par-
tially volumetric heating of the epoxy resin we
have a sudden temperature increase at t=0.
(b) Spatial temperature distribution for several
time stamps. The gray lines show the original
data and the black lines the spatial mean value
of three-hundred surface temperature slices
normal to the graphite bars.

Fig. 5. (a) Comparison of the ideal virtual wave field to the reconstructed wave fields applying F-SAFT and ADMM. (b) Comparison of the initial temperature
distribution and the reconstructed initial temperature distributions using T-SAFT and ADMM.
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shown. We emphasize that VWC is only meaningful and different to an
IHCP when the reconstruction of defects is based on a multidimensional
heat conduction problem. The main goal of this work was to illustrate
that prior information significantly improves the regularized solution
and, hence, the reconstructed field. Using T-SVD for regularization the
information about measurement noise was considered in order to esti-
mate the regularization parameter k. Using ADMM, the prior informa-
tion positivity and sparsity were incorporated. For this purpose we re-
formulated the linear severely ill-posed inverse problem. The
regularization and reconstruction results show that respecting more
information about the data significantly increases the quality of the
regularized solution. Due to the linearity of the heat and wave equation
it is possible to employ VWC for thermo-tomography for the detection
and characterization of cracks in isotropic and anisotropic media.
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