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Abstract: Edge-cloud collaborative inference can significantly reduce the delay of a deep neural
network (DNN) by dividing the network between mobile edge and cloud. However, the in-layer data
size of DNN is usually larger than the original data, so the communication time to send intermediate
data to the cloud will also increase end-to-end latency. To cope with these challenges, this paper
proposes a novel convolutional neural network structure—BBNet—that accelerates collaborative
inference from two levels: (1) through channel-pruning: reducing the number of calculations and
parameters of the original network; (2) through compressing the feature map at the split point to
further reduce the size of the data transmitted. In addition, This paper implemented the BBNet
structure based on NVIDIA Nano and the server. Compared with the original network, BBNet’s
FLOPs and parameter achieve up to 5.67× and 11.57× on the compression rate, respectively. In the
best case, the feature compression layer can reach a bit-compression rate of 512×. Compared with the
better bandwidth conditions, BBNet has a more obvious inference delay when the network conditions
are poor. For example, when the upload bandwidth is only 20 kb/s, the end-to-end latency of BBNet
is increased by 38.89× compared with the cloud-only approach.

Keywords: collaborative intelligence; deep learning; model compression; feature compression;
cloud computing

1. Introduction

In recent years, deep learning has achieved awesome performance in various smart-
application scenarios [1,2]. At present, the most common DNN deployment methods
are mobile-only and cloud-only [3]. Mobile-only deploys the DNN model on an edge
device. This deployment method can only handle simple inference tasks in edge devices.
Regarding cloud-only, it deploys the DNN model in the cloud, sends the original data
directly to the cloud, and finally returns the inference result. In this way, the original data
are transmitted in the channel, which is not only a threat to sensitive data but also increases
communication delay. Kang et al. [4] proposed a new method of deep neural network
partition deployment to achieve the effect of joint inference on the edge device and the
cloud. This method is called collaborative intelligence. By this means, the edge device
deploys the early layer of the neural network and uploads the intermediate feature data to
the cloud to execute the remaining network layer.

In the status quo approaches, there are two methods for edge-cloud collaborative
inference-based convolutional neural networks (CNN). On the one hand, the initial method
is not to change the structure of the CNN [4–6]. It is to directly divide the CNN from a
certain layer in the middle, but because of the in-layer data amplification [7], the split
point will always be in the later layer of CNN. Eshratifar et al. [8] pointed out that in
the collaborative method, more than 75% of the total energy and delay costs are caused
by communication. On the other hand, it is to change the deep network structure [9,10].
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In BottleNet [10], the author introduces a bottleneck layer to reduce the feature data size
transmitted by the middle layer and speed up the CNN inference process. Chen [9]
proposed an early exit mechanism to terminate the calculation on the edge device at an
appropriate point to promise application latency requirement. These works have made a
lot of progress in collaborative inference, and the choice of the best split point has always
been a critical issue for this mechanism. However, the choice of the best split point is
usually restricted by the model itself. In addition, the trade-off between loss of accuracy
and model size and speeding up inference should be considered.

Therefore, to address these problems, we propose a novel CNN structure in edge-
cloud collaborative inference—BBNet. As shown in Figure 1, The structure of BBNet is
deeply decoupled from the CNN as follows two aspects: first, it compresses the complete
network, to reduce the overall size of the model and the amount of calculation. When
designing the network structure, we reduced the number of channels of the overall network
proportionally for different classification tasks. In addition, it then added a scaling factor
based on L1 regularization to all BN layers. Each scaling factor corresponds to a specific
convolutional channel. By setting the threshold, we can identify less important channels
(or neurons). Liu [11] pointed out that pruning unimportant channels may temporarily
reduce the performance of the model, but by global fine-tuning of the pruned model will
obtain a model with higher generalization ability, fewer parameters, and lower runtime
memory. Second, based on obtaining a simplified network in the first step, we partition the
convolutional neural network. Part of the CNN is calculated on the edge device, and the
other is sent to the cloud. Since the intermediate features of the deep model have lower
entropy compared with the original model [10], inspired by this, we introduced a feature
compression layer after the optimal split point to reduce the size of the transmitted feature
tensor and reduce the cost of communication.
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Figure 1. The framework of BBNet (1) First step is to obtain a simple network through channel-
pruning. Channel-pruning associates the scaling factor on the BN layer with the channels in the
convolutional layer, and then deletes the unimportant channels through sparse training. (2) Based on
the simplified network, the feature compression layer is placed at different segmentation points to
further reduce the transmission feature size. The feature compression layer is composed of a learnable
feature reduction unit, which restores its lost accuracy through precision perception training.
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The BBNet collaborative inference structure can be applied to general supervision
tasks. This structure can be roughly understood as treating the channel in the CNN as the
latitude of the model, and treating each pre-partition point as the longitude of the model.
Then BBNet optimizes the model from the latitude and longitude of the model, therefore
speeding up the edge-cloud collaborative inference.

Our main contributions are as follows:

• We propose a novel convolutional neural network structure in edge-cloud collabora-
tive inference which economizes end-to-end latency through accelerated inference
from two directions.

• Improved model compression, which can reduce the number of model calculations
and parameters while the accuracy loss is small.

• We designed the feature compression layer, which can achieve the highest bit-compression
rate within the defined accuracy loss range.

• Finally, the BBNet prototype was implemented on NIVIDIA Nano and the server.
The evaluation results based on different static network bandwidths demonstrate the
effectiveness of the proposed BBNet framework.

The remainder of the paper is structured as follows: Section 2 provides backgrounds
and related technical information for BBNet. Section 3 provides a more detailed design of
BBNet. In Section 4, we give the test environment on the actual hardware and compare the
experimental results of different approaches. Section 5 gives the summary of our paper
and proposals for future works.

2. Related Work

Based on the related work, we proposed the structure of BBNet shown in Figure 1,
which combines three technologies, namely model compression, DNN model partition,
and feature compression. In the next few subsections, we will introduce the relevant work
from these three aspects. Due to the limited computing resources of edge devices, model
compression techniques are used to reduce the overall model size and speed up inference
when designing the BBNet structure. This step is called the latitude from the model to
reduce the end-to-end latency. In addition, affected by the in-layer data amplification and
the redundancy in intermediate features, BBNet also compresses the features after the split
points, which is called for by the longitude of the model to reduce the end-to-end latency.
More specific details are introduced in Section 3.

2.1. Model Compression

The current mainstream model compression methods include parameter quantifica-
tion [12,13], network-pruning [11,14,15], and knowledge distillation [16]. DNN parameters
mostly use floating-point numbers. Parameter quantization maps floating-point numbers
to a certain range so that the size of the feature map can be reduced [7], and the compu-
tationally expensive floating-point operations are avoided. Network-pruning is roughly
divided into weight-pruning and channel-pruning. The point of network-pruning is to
delete the least important channels or weights. The point of weight-pruning is to remove
individual neurons in the filter or connections between neurons across different layers [17].
However, due to the irregular network structure after pruning, this strategy requires special
software and hardware support. To further improve the compression ratio, Deep Feature
Compression [14] combines pruning, weight-sharing, and Huffman coding to compress
DNN. The point of channel-pruning is usually to remove unimportant channels between
layers. In Network-Slimming [11], the author proposed a method of channel-level sparsity
in the network which way is simple but effective. This method does not require special
software/hardware accelerators. In the channel-pruning method, we were inspired by
this. Knowledge distillation is mainly aimed at training a student network from the output
prediction data of a teacher network [16], to reduce the model size and computing resources
while maintaining the same accuracy as the teacher network.
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Model compression provides an elementary way to reduce model size and accelerating
the execution. Considering the redundancy in the model channel, the structural design of
BBNet is based on one form of model compression, which called channel-pruning. Then,
we introduce two approaches to further improve the speed for more effective collaborative
inferences. These two approaches are introduced in the following two subsections.

2.2. DNN Model Partition

Many works offload the DNN inference task from local to the cloud [4,8,18–20] to make
full use of the computing resources between edge and cloud. In Neurosurgeon [4], Kang et
al propose a partially offloaded scheme. It consists of two parts, first determining a partition
point in the DNN structure, and keeping the front layer in the local device, then offloading
the remaining layer to the cloud for collaborative inference. DDNN [18] uses a similar
principle and map sections of a DNN onto a distributed computing hierarchy. DDNN
can accommodate the DNN inference in the cloud, while also allowing fast, localized
inference using the shallow part of the neural network at the edge and terminal devices.
JointDNN [8] uses a graph-based method to explain the general architecture of DNN
layers and formulate the computing scheduling problem in the mobile cloud computing
environment as the shortest path problem and ILP problem. Moreover, JointDNN also
uses lossless encoding (PNG compression) to reduce the amount of intermediate data
transmission. Their works illustrate that the DNN model partition can achieve low-latency
inference with a small loss of accuracy.

Recently, more and more work has adopted DNN model partition in actual intelligent
applications [21–23]. FedHmome [22] is a joint learning framework for home health
detection based on edge-cloud, which learns a shared global model in the cloud from
multiple families at the edge of the network. The work of Wang et al. [23] proposed a
dynamic resource allocation scheme to select the best division point of DNN inference tasks
in the intelligent application of vehicles. These works indicate that DNN model partition
has become an effective model inference method.

2.3. Feature Compression

Although DNN model partition can significantly reduce the end-to-end delay, the lo-
cation of the split point is still restricted by the structure of the model itself. Many works
have further processed the feature data in the DNN [24]. For example, in JALAD [7],
Li et al. used quantization and Huffman coding to compress in-layer feature maps to
reduce the data size. In semantic image compression, the work in [25] achieves the purpose
of compression by encoding deep features and then reconstructing the input image from
them. In [5], the author proposed a deep feature compression structure, which consists
of a pair of encoders and decoders and can be applied to the environment of edge-cloud
collaborative inference. However, the above work is all processed on the output feature
data of the original DNN, and the structure of the DNN is not changed. In BottleNet [10],
the author proposed a bottleneck unit, which is composed of a learnable lossy compressor
and uses compressed sensing training to reduce the accuracy loss caused by lossy compres-
sion. Follow-up work also has done research on multi-task learning [26], considering the
sparsity in the feature maps which motivate the emergence of feature compression layer
after split point.

Our work belongs to the category of edge-cloud collaboration, which integrates
channel-pruning, model partition and feature compression technologies to accelerate DNN
inference from the two direction of mode latitude and longitude. In addition to the novel
design combining these technologies, BBNet also considers adaptively finding the best
split point under different bandwidth conditions to achieve the best inference effect.

3. Proposed Method

This section first describes a channel-pruning scheme to reduce the size of the CNN
model (FLOPs and parameter), and then introduces the selection of partition points and the
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detailed design of the feature compression layer. Our optimization objective is to accelerate
the speed of collaborative inference within the scope of a small loss of accuracy.

3.1. Channel-Pruning

Due to channel-level sparsity, this does not require special libraries to obtain the bene-
fits, and can produce considerable model-size compression and accelerated inference [11].
BBNet chooses the channel-pruning method to remove unimportant channels. The specific
details are presented next.

3.1.1. Scaling Factor and Sparsity

Motivated by the fact that the in-layer feature map exhibits good sparsity and the
DNN model has a high generalization ability, this paper first selectively reduces the number
of channels of the CNN model before training according to different classification tasks.
Second, this paper uses a scale factor γ label for each channel and multiplies it by the
output of that channel. Then, the joint weights and these scale factors are used for training,
and L1 regularization is used to restrict the model, and the model is processed in the
direction of sparseness. Finally, we trim the channels below the threshold and fine-tune the
network. The overall training loss target is as follows:

L = ∑
(x,y)

l( f (x, w), y) + λ ∑
γ∈τ

g(γ) (1)

Among them, L is the overall loss function. ∑
(x,y)

l( f (x, w), y) is the loss function under

normal training conditions, where (x,y) denotes the train input and target, and w denotes
the weight.

λ ∑
γ∈τ

g(γ)τ is the loss function caused by sparsity, γ denotes a scaling factor for each

channel, and λ is used to balance two terms. In addition, the state space of γ is represented
by τ.

When g(γ) = |γ|, it is expressed as using L1 regularization to restrict the scale factor
to achieve sparsity. We use the sub-gradient descent method for the non-smooth L1 penalty
term. Channel-pruning is supposed to delete all the inputs and outputs of the channel,
and then it will create a simple network. The scale factor and weight are optimized at
the same time during training to identify less important channels without affecting the
generalization ability of the network model.

3.1.2. The Scaling Factor in BN Layer

The BN layer is adopted in most modern CNNs as a standard method to achieve fast
convergence and better generalization performance. We use mini-batch statistics in the
BN layer to standardize internal activations to incorporate channel-wise scaling factors.
The conversion formula performed in the BN layer is as follows, where Zin and Zout
represent the input and output of the BN layer.

Zout = αẑ + β (2)

Among them, α and β are trainable affine transformation parameters (scale and shift),
which provide the possibility to transform the normalized activation linearly to any scale.
We directly use α as the scaling factor, so that it does not bring extra overhead to the network.
ẑ is the value to be input to be standardized, and the specific formula is as follows:

ẑ =
zin − µβ√

δβ
2 + ε

(3)

where µβ and δβ are the average and the standard deviation value of input activations over
β, and ε is the balance conversion factor.
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3.1.3. Channel-Pruning and Global Fine-Tuning

We can create a model with many scaling factors close to zero after the regularization
training induced by the previous channel-level sparseness. Then we sort these scaling
factors, and define a global threshold for this purpose, which is a certain percentage of
all scale factors. In the experiment, we chose a threshold of 40%, i.e., to trim 40% of the
channels with a smaller scaling factor. Through channel-pruning, a smaller model structure
can be obtained. Pruning the trained model may result in a decrease in the accuracy of
the model, but then through fine-tuning the model globally can make up for the loss
of accuracy.

3.2. Feature Compression Layer

Although channel-pruning can accelerate the speed in CNN inference and its capabil-
ity, from another angle, this section introduces a detailed design about feature compression
to accelerate collaborative inference further. As shown in Figure 2, the feature compres-
sion layer is composed of a learnable micro-network and a quantization unit, which is
responsible for learning the dense representation of intermediate features to reduce the
data size in the layer. Through accuracy-aware training, we can keep the accuracy loss
within reasonable constraints and maximize the data compression rate. Next, we will
explain details about the feature compression layer.
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Figure 2. Feature compression layer design, which consists of a pair of learnable feature reduc-
tion units.

3.2.1. Reduction Unit and Recover Unit

The learnable micro-network is composed of a feature reduction unit and feature
recovery unit. Each unit corresponds to a convolutional layer, batch normalization layer,
and activation layer. The feature reduction unit is implemented in two dimensions: space
reduction and channel reduction. In addition, the recovery unit adopts a similar principle.
More specifically, different size convolution filters control the output of the channel, and the
convolution kernel controls the spatial-dimension size of the feature. The intermediate
feature tensor before compression layer can be expressed as (batch_size, c, w, h) and after
compression layer is expressed as (batch_size, c′, w′, h′). To compress the c channel to the
c′, and change spatial dimension to h′ and w′, the filter size is set to c′ and the convolution
kernel step is set to

[ w
w′
]
and

[
h
h′

]
, respectively.

In the experiment, the same spatial-dimension scaling factor size is used, i.e.,
[

h
h′

]
.

It is worth noting that to add nonlinear features after the compression layer, we added a
batch normalization layer and an activation layer after the convolution layer. We use the
Tanh function, because the output value is limited to the range of [−1, 1], which is more
conducive to further quantifying the data in network communication.

3.2.2. Quantization Unit

At present, most DNN parameters are represented by 32-bit floating-point numbers,
which is a waste of communication resources in network transmission. In addition, recently
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there has been proof of work that only using 4-bit to represent DNN parameters. Its
impact on accuracy will not exceed 1% [27]. Therefore, 8-bit is selected in the experiment
to quantify the intermediate eigenvalues. The quantitative formula is as follows:

V′ = round[(V + 1) · (2n − 1)], V ∈ (−1, 1) (4)

where V ∈ RC×W×H is the feature tensor after the reduction unit, and C, W, and H
correspond to the number of channels, width, and height of the tensor, respectively. The dif-
ference between this method and the quantization method in [5] is that in [5] they need to
upload the max(V) and min(V) in the tensor to the cloud, but we do not need it. This is
because we chose Tanh as activation function. Next, to save the transmission bandwidth,
we use the small byte to represent the quantized value. The quantization-recover unit is
the inverse process of the above formula, but this process is done in the cloud.

3.2.3. Accuracy-Aware Training

Inserting the feature compression layer after the simple network model will inevitably
lower the generalization ability of CNN. To solve this problem, we will adopt the accuracy-
aware training method. First, to save training time, we freeze all layers except the feature
compression layer [28]. Second, we keep the accuracy loss within the constraint range,
and obtain the maximum compression ratio of each partition point by iterative training. It
is noteworthy that after the Accuracy-Aware Training, the compression ratio of each split
point will be determined.

3.3. Formulation of Partition Point

Based on the learnable feature compression layer, we propose a deep structure parti-
tion strategy to reduce the end-to-end inference latency. Before obtaining the best split point,
the end-to-end latency of processing the input data must be measured. The end-to-end
latency consists of three parts, the edge device processing latency TMi, the transmission
latency TUi, and the cloud processing latency TCi. We use i ∈ [1, 2, . . . , N] to denote the
number of layers of the deep neural network, and N to denote the maximum index of the
DNN layer. The proposed algorithm mainly includes three stages: (1) training; (2) anal-
ysis; (3) selection. Algorithm 1 gives a detailed description. For a simplified network
model, which has L different positions, we place the feature compression layer after the
pre-partition point of the network model. In the experiment, we chose the ResNet structure
with branch structure. In addition, driven by accuracy-aware training, we obtain the struc-
ture with the best compression rate. For the solution of L different split points, according
to optimization goal, we choose the minimum end-to-end latency as our best partition
strategy. Z is the end-to-end latency, and xi is a binary variable, indicating whether to
choose the i-th layer as the split point. The overall optimization goal is as follows:

min Z =
N

∑
i=1

TMi·xi +
N

∑
i=1

TUi · xi +
N

∑
i=1

TCi · xi

s.t
N

∑
i=1

xi = 1

vars xi ∈ {0, 1}

(5)

In this way, we programmed finding best split point i-based end-to-end latency. We
further study the time complexity to solve this problem.

From Algorithm 1, we can receive a result that the time complexity is O(N ∗ C′max ∗ Smax).
The time complexity of the algorithm depends on the size of N, C′max and Smax. However,
when there is a large search space, we adopt an early exit mechanism which is based on
accuracy. In the initial stage, an accuracy threshold range will be given. If the training accuracy
of model is already within the threshold range, the algorithm will jump out of the loop and
continue to execute the next layer.
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Algorithm 1 The partition algorithm.
Input:
N: The numbers of layers in the DNN
L: The numbers of partitioning points in the DNN
Kmobile: current load level of mobile
Kcloud: current load level of cloud
tmobile(j, Kmobile): The latency in mobile with j partitioning point and Kmobile load level
tcloud(j, Kcloud): The latency in mobile with j partitioning point and Kcloud load level
Smax: The max of spatial scaling factor
C′max: The max of channel number
modelcompact: The compact model after Channel-pruning
NB: The bandwidth of wireless network
acc: The accuracy of training model
Output:
The best partitioned mode
Variables:{

Dj ‖ j = 1, 2, . . . , M
}

: The compressed data size in each of M splitting point
//train phase

1: for i = 1; i <= N; i++ do
2: for C′ = 1; C′ <= C′max; C′++ do
3: for S = 1; S <= Smax; S++ do
4: Place feature compression layer-based modelcompact
5: Train()
6: if acc >= target accuracy then
7: Save()
8: Break()
9: end if

10: end for
11: end for
12: end for

//implementation phase
13: for i = 1; i <= N; i++ do
14: TMi = tmobile(j, Kmobile)
15: TUi = Dj/NB
16: TCi = tcloud(j, Kcloud)
17: end for

//select phase
18: if OptTarget is min latency then
19: return argminj=1...M (TMi + TUi + TCi)
20: end if

4. Evaluation
4.1. Experiment Setup
4.1.1. Edge and Cloud Settings

We implemented a BBNet prototype based on NVIDIA JETSON NANO and a PC
to verify the feasibility and efficiency of BBNet. The detailed hardware configuration is
shown in Tables 1 and 2. In addition, we use WonderShaper tool [29] to control the network
bandwidth, and define the accuracy loss boundary. It is worth noting that in the actual time
latency measurement, there are sometimes slight differences of a few milliseconds under
the same conditions. We take the average value after multiple measurements to ensure the
accuracy of the data and set the batch size to 100, which means that the end-to-end delay is
the result of processing 100 pictures at a time.
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Table 1. Mobile device specification.

Component Specification

System Jetson Nano Developer Kits
GPU NVIDIA Maxwell w/128 NVIDIA CUDA cores
CPU quad-core ARM Cortex-A57 64-bit

Memory 4 GB LPDDR4

Table 2. Cloud platform specification.

Component Specification

System windows 10.0
GPU NVIDIA Geforce GTX1060 1280 NVIDIA CUDA cores
CPU Intel(R) Core(TM) i7-8750H CPU @2.20 GHz

Memory 16 GB DDR4

4.1.2. Model Selection and Pre-Partition Point Selection

The ResNet18 [30] model was selected as backbone network, and the CNN structure
was built using the Pytorch [31] framework. We consider the first convolutional layer
as the first pre-partition point. For the subsequent RB (residual block) layer, we use the
number of channels as a benchmark, and the same number of channels is regarded as
a pre-split point. As shown in Figure 3, it is the structure of RestNet18 which contains
five different split point (block 1–5). In contrast to the original model structure, we use a
3× 3 convolution kernel size instead of 7× 7 for the size of the convolution kernel in the
first convolution layer. Although this will increase the computational complexity of the
model, its classification accuracy will increase a lot, so we use the modified ResNet18 as
our benchmark model. As shown in Figure 4, the size of the intermediate feature tensor of
ResNet18 is always larger than the size of the model input image. Therefore, it is difficult
to accelerate collaboration inference only by directly dividing the network in the mobile
edge and the cloud.
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Figure 3. ResNet-18 architecture and different residual blocks.
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4.1.3. Dataset

We choose CIFAR10 as the training set and test set. CIFAR10 is composed of natural
images with a resolution of 32× 32 and contains a total of 60,000 pictures, comprising
50,000 in the training set and 10,000 in the test set. CIFAR10 is composed of 10 cate-
gories. We use a standard data enhancement scheme [30,32,33] to rotate, shift and mirror
the image. In addition, the input data are normalized using the channel average and
standard deviation.

4.2. Reduce Model Size

The first step is to delete the unimportant channels through the pruning strategy from
a channel perspective. We call this model latitude, reducing the number of computing
resources required, and accelerating edge-cloud collaborative inference at the same time.
Table 3 shows the diversification of accuracy, parameters and FLOPs in different ResNet18
model. BBNet achieves a significant savings in both parameters and FLOPs within small
accuracy loss compared with baseline. More specifically, the parameter saving is up to
11.5× and the FLOPs reductions are around 5.6× compare between baseline and Fined-
Tuned. The setting of baseline is the ResNet18 model with the size of the convolution
kernel adjusted. For Cifar10, we reduced the number of channels proportionally when
creating the model, which has little effect on the classification results. The channel of
ResNet18 has been reduced with a pruning rate of 40%, and its accuracy has dropped a
lot, but after global fine-tuning, its accuracy can be restored to a good level. The accuracy
after fine-tuning is 0.53% lower than that of the baseline because the method of pruning
optimization is based on the reduce channel model.

Table 3. ResNet18 on cifar10.

Baseline Reduce Channel Pruned (40%) Fine-Tuned Rate

Top1 accuracy (%) 94.27 93.59 13.2 93.74 –
Parameters (M) 11.17 2.79 0.97 0.97 11.5×

FLOPs (G) 27.28 6.86 4.81 4.81 5.6×

We also compared the structure of ResNet18 in other work, which is represented
by CCT [34] in Figure 5. In addition, RC is an abbreviation of reduce channel. Through
the comparison of different models, BBNet has significant savings in computational cost.
Therefore, our method can achieve fast inference on resource-constrained devices.
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Figure 5. Comparison of FLOPs and parameter in different ResNet18 models.
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4.3. Bit-Compression Rate of Different Split Points

In the structure of edge-cloud collaborative inference, the end-to-end latency overhead
mainly includes the calculation latency on the device and communication latency. In the
second stage of the work, we put the feature compression layer at different split points.
Then use accuracy-aware training to select different bit-compression rates for different
partition points. We call it the longitude of the model, reducing the size of the transmitted
feature data, and speeding up the edge-cloud collaborative inference. This method will
achieve the maximum bit-compression rate within the threshold range of the accuracy loss.
In the experiment, we set the accuracy loss threshold to 2.5% and epoch size set to 160.

Figure 6 plots the accuracy changes of different split points under accuracy-aware
training. Due to the iterative search for different bit-compression ratios, only the curve of
the maximum bit-compression ratio is shown in the figure. In addition, the experiment is
based on a simple network, and other layers are frozen to save training time. Therefore, it
can be observed that the model can reach high accuracy from the beginning of training.
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Figure 6. Variation of accuracy in different block of best bit-compression in BBNet.

Next, Figure 7 shows the original model, channel-pruning, and the bit relationship
between different split points of BBNet and the original picture size. It can be clearly
seen that the intermediate output data size of the original model is much larger than the
original picture, which is caused by the effect of the intermediate layer data amplification [7].
In addition, BBNet has achieved a good bit-compression rate at every split point. Compared
with the original model, BBNet can achieve a compression rate of up to 512×. As the
partition point deepens, the bit-compression rate of BBNet is higher, which is the result of
precision perception training. This also shows that the closer to the output point, the smaller
the influence of the data in the compression layer on the final result.

Different data sizes in the middle layer will inevitably affect the transmission delay.
For this reason, we measured the transmission delay of different split points of BBNet under
different bandwidths, as shown in Figure 8. In the experiment, to measure the accuracy,
the batch size is set to 100. The transmission delay of each picture at different split points is
obtained based on batch size pictures. It can be observed that as the bandwidth increases,
the size of the transmitted data will have less and less impact on the transmission latency.
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Figure 7. The output data size after each pre-partition point (block 1–5) in different ResNet18 structures.
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Figure 8. Comparison of the transmission latency of different split points of BBNet and the transmis-
sion latency of the original picture.

4.4. End-to-End Latency Improvement

We implemented a BBNet prototype based on NVIDIA Nano and a PC. For the
ResNet18 structure without pruning strategy and feature compression layer, the accuracy
tested on nano-only is 94.27%, which is called the target accuracy. Through Algorithm 1,
we obtain the best split point under different bandwidth states. Moreover, the location of
the best split point will change with different bandwidths. Table 4 shows the inference
delays of nano-only, cloud-only, and BBNet under different bandwidths. In the experiment,
the batch size is set to 100 and control the accuracy loss within 2.5%. For the end-to-end
latency, if it is only divided directly between the edge and the cloud, the structure of
Resnet18 cannot achieve better results than only cloud inference and edge-only inference,
because no matter which layer is in the middle, the output data in the middle is much
larger than the original data size.

As shown in Figure 9, the position of the best partition point gradually moves deeper
into the model as the bandwidth decreases. This shows that when the network status
becomes worse, BBNet is more inclined to implement more network layers at the edge.
This is because, in the case of a poor network, the communication overhead has a greater
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impact on the end-to-end delay than the delay executed at the edge. BBNet starts from
these two aspects (the latitude and longitude of the model), so no matter how the network
bandwidth changes, it can always achieve a good acceleration inference effect. For example,
when the network bandwidth is the only 100 kb/s, compared to cloud-only, the end-to-end
delay of BBNet has achieved an acceleration effect of 9.57×. In addition, in the case of poor
network conditions, the advantages of BBNet will be more obvious.

Table 4. Comparison of different approach for CNN inference.

Bandwidth (kbps) Time (s) Acc (%) Offloaded Data (B)

nano-only – 4.7436 94.27 –

cloud-only

100 11.378 94.27 307,200
300 4.233 94.27 307,200
500 2.802 94.27 307,200
700 2.188 94.27 307,200
900 1.850 94.27 307,200

1100 1.635 94.27 307,200
1300 1.486 94.27 307,200
1500 1.376 94.27 307,200
2500 1.093 94.27 307,200
3500 0.970 94.27 307,200

BBNet

100 1.188 93.58 1600
300 1.164 93.58 1600
500 1.122 91.88 12,800
700 1.097 91.88 12,800
900 1.083 91.88 12,800

1100 1.074 91.88 12,800
1300 1.069 91.88 12,800
1500 1.064 91.88 12,800
2500 0.993 92.10 140,800
3500 0.934 92.10 140,800
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Figure 9. BBNet’s end-to-end latency and the change of the best split point under different bandwidths.

From Figure 10, we can observe that when the communication environment is in
extreme conditions (the communication bandwidth is less than 100 kb/s), the end-to-end
latency of BBNet for inference 100 pictures can still be maintained at about 1.3 s. This
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is because in the depth of the model, the bit-compression rate become higher as less
transmission delay is required. In addition, we also compared the two models for inference
in the cloud (the original model and the model after pruning) and the BBNet collaborative
inference method.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20 40 50 60 80 100

E
n

d
-t

o
-E

n
d

 l
a

te
n

c
y

 r
a

te

Bandwith(kbps)

original Network(cloud-only) Pruned Network(cloud-only) BBNet

Figure 10. The advantage of BBNet is more obvious in the case of poor network bandwidth less
than 100 kbps.

5. Summary and Future Work

This paper proposes a convolutional neural network structure for edge collaborative
inference—BBNet—which combines three methods of channel-pruning, feature compres-
sion and model partition. The fusion of these three methods is rare in other works. BBNet
mainly solves the problem of increased end-to-end latency after some CNN split point
compared with cloud-only, because the features transmitted in the middle are larger than
the size of the original data. Second, it solves the problem that the model structure cannot
be directly deployed on resource-constrained edge devices. BBNet not only reduces the
overall size of the model, but also accelerates edge-cloud collaborative inference in two
directions (the latitude and longitude of the model). Finally, we tested the model structure
in the actual hardware environment. Compared with other baselines, BBNet has lower
end-to-end inference latency, and our method will perform more prominently under poor
network conditions.

Although this structure has achieved good results, it still has limitations because the
sparsity rate in the experiment is manually fine-tuned through experience. In addition,
to find a suitable candidate model, an offline search method is used at each partition point,
which will increase the training time. In future work, we will introduce reinforcement
learning methods to explore the characteristics of this network structure with a large
search space.
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