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Acute social defeat represents a naturalistic form of conditioned fear and is an excellent model in which
to investigate the biological basis of stress resilience. While there is growing interest in identifying
biomarkers of stress resilience, until recently, it has not been feasible to associate levels of large numbers
of neurochemicals and metabolites to stress-related phenotypes. The objective of the present study was
to use an untargeted metabolomics approach to identify known and unknown neurochemicals in select
brain regions that distinguish susceptible and resistant individuals in two rodent models of acute social
defeat. In the first experiment, male mice were first phenotyped as resistant or susceptible. Then, mice
were subjected to acute social defeat, and tissues were immediately collected from the ventromedial
prefrontal cortex (vmPFC), basolateral/central amygdala (BLA/CeA), nucleus accumbens (NAc), and dorsal
hippocampus (dHPC). Ultra-high performance liquid chromatography coupled with high resolution mass
spectrometry (UPLC-HRMS) was used for the detection of water-soluble neurochemicals. In the second
experiment, male Syrian hamsters were paired in daily agonistic encounters for 2 weeks, during which
they formed stable dominant-subordinate relationships. Then, 24 h after the last dominance encounter,
animals were exposed to acute social defeat stress. Immediately after social defeat, tissue was collected
from the vimPFC, BLA/CeA, NAc, and dHPC for analysis using UPLC-HRMS. Although no single biomarker
characterized stress-related phenotypes in both species, commonalities were found. For instance, in both
model systems, animals resistant to social defeat stress also show increased concentration of molecules
to protect against oxidative stress in the NAc and vmPFC. Additionally, in both mice and hamsters, un-
identified spectral features were preliminarily annotated as potential targets for future experiments.
Overall, these findings suggest that a metabolomics approach can identify functional groups of neuro-
chemicals that may serve as novel targets for the diagnosis, treatment, or prevention of stress-related

mental illness.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

a greater risk for developing PTSD than those exposed to non-
personal trauma (Charuvastra and Cloitre, 2008). However, many

Stress is a contributing factor in the etiology of several psychi-
atric conditions including depression (Heim et al., 2008), panic
disorder (Abelson et al., 2007), and post-traumatic stress disorder
(PTSD) (Meewisse et al., 2007). Aggression is a particularly salient
form of trauma, and people exposed to interpersonal violence are at
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individuals who experience stressful events do not develop a
stress-related psychopathology, and there is a great deal of interest
in what makes certain individuals resilient. Stress resilience refers
to the ability of individuals to maintain normal levels of psycho-
logical, biological, and social functioning following a traumatic
event. Importantly, resilience is an active process and not simply
the absence of a pathological response to stress (Charney, 2004;
Russo et al., 2012; Feder et al., 2009).

Animal models of social defeat stress have been put forth as high
validity models of stress-related mental illness and, interestingly,
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individuals exhibit pronounced variability to the effects of social
defeat (Nestler and Hyman, 2010). Genetically identical, inbred
mice display a great deal of variability in social avoidance following
10 days of chronic social defeat (Krishnan et al., 2007; Berton et al.,
2006) and two days of repeated social defeat (Meduri et al., 2013;
Dulka et al., 2015). Susceptible mice avoid novel animals in a so-
cial interaction test following social defeat stress, whereas resilient
(or resistant) mice investigate novel animals following social defeat
stress in a pattern similar to non-defeated controls (Golden et al.,
2011). In the chronic social defeat model, brain-derived neuro-
trophic factor (BDNF) signaling in a neural circuit involving the
ventral tegmental area and nucleus accumbens (NAc) is critical for
the expression of defeat-induced social avoidance in susceptible
animals (Berton et al., 2006). The ventromedial prefrontal cortex
(vmPFC) also provides top-down inhibitory control of the NAc and
amygdala, which promotes a resistant phenotype after social defeat
stress (Vialou et al., 2014). In a mouse model using a single day of
acute social defeat, BDNF signaling in the basolateral amygdala
(BLA) is necessary for acquisition of defeat-induced social avoid-
ance (Dulka et al., 2016). The development of the susceptible and
resistant phenotypes is largely unknown, although the epigenetic
changes that underlie stress vulnerability may be linked to envi-
ronmental influences during pre-natal and post-natal develop-
ment, including the establishment of early dominance hierarchies
(Peaston and Whitelaw, 2006; Wong et al., 2005).

Syrian hamsters are aggressive and territorial animals that
exhibit a striking change in behavior following social defeat stress.
Following exposure to a single bout of social defeat, male hamsters
fail to defend their home territory and instead exhibit submissive
and defensive behavior toward novel non-aggressive intruders for
up to one month (Huhman et al., 2003). This stress-induced change
in agonistic behavior is called the conditioned defeat response and
is similar to the defeat-induced social avoidance shown by rats and
mice (Kudryavtseva, 1994; Meerlo et al., 1996). The conditioned
defeat response in hamsters is an ethologically relevant form of
conditioned fear and is regulated by many of the same brain re-
gions, neural circuits, and neurochemicals as conditioned fear.
Neurotransmission in the central amygdala (CeA) is critical for the
expression of the conditioned defeat response (Jasnow and
Huhman, 2001). In the BLA, NMDA receptors, BDNF, and cAMP
response element binding (CREB) protein are each necessary for the
acquisition of the conditioned defeat response (Day et al., 2011;
Jasnow et al.,, 2005; Taylor et al., 2001). Neurotransmission in
several other brain regions is known to modulate the conditioned
defeat response, such as the NAc, ventral hippocampus (vHPC), and
vmPFC (Gray et al., 2015; Markham et al., 2010; Markham et al.,
2012). A great deal of variation exists in the amount of submis-
sive and defensive behavior exhibited by hamsters following social
defeat. To investigate vulnerability to the conditioned defeat
response, we allowed dyads of hamsters to establish and maintain
dominance relationships and then tested dominant and subordi-
nate animals for their conditioned defeat response. We found that
dominant hamsters show a reduced conditioned defeat response
and increased c-Fos immunoreactivity in the vmPFC compared to
subordinate and control animals (Morrison et al., 2011; Morrison
et al., 2014). Furthermore, pharmacological blockade of neural ac-
tivity in the vmPFC reinstated the conditioned defeat response in
dominant hamsters but did not alter conditioned defeat in sub-
ordinates or controls (Morrison et al., 2013). While a great deal is
known about the brain regions and neural circuitry that control the
conditioned defeat response, relatively little is known about the
neurochemistry within these structures.

There is growing interest in identifying neurochemical bio-
markers to aid in the diagnosis, risk assessment, and prevention of
stress-related mental illnesses such as PTSD (Yehuda et al., 2013;

Zoladz and Diamond, 2013; Baker, Nievergelt, and O'Connor,
2012). Additionally, neurochemicals identified after a stressor can
serve as mechanistic biomarkers, and such biomarkers can be used
to improve the treatment of stress-related psychopathologies.
While attempts to identify biomarkers continue to be a major focus
of biomedical research, at present biomarkers have not made it into
clinical application for mental illness. Part of the difficulty is that
individual neurochemicals are unlikely to correlate with diagnosis,
risk, or treatment response for complex forms of stress-related
psychopathology. Taking a multifactorial approach is an essential
first step toward developing biomarkers for mental illness.
Metabolomics is a quantitative analysis of small molecules present
in biological systems and has been increasingly used for the dis-
covery of biomarkers (Griffiths et al., 2007; Oldiges et al., 2007;
Kaddurah-Daouk et al., 2008). The use of untargeted metab-
olomics allows the user to take a discovery-based approach, which
initially results in a data generating experiment. After relative
quantitation of known metabolites based on pre-determined
retention times and accurate mass (<5 ppm), the user is still left
with thousands of unidentified spectral features (USFs) that
potentially relate to a novel compound.

This study focused on characterizing the neurochemical profiles
in select brain regions that distinguish animals that are susceptible
and resistant to the effects of acute social defeat stress. In both mice
and hamster models, we expected that susceptible and resistant
animals would differentially express specific neurochemical me-
tabolites in brain regions known to modulate defeat-induced
changes in behavior. Further, a comparative approach is expected
to aid in the discovery of biomarkers by identifying similar classes
of compounds associated with stress susceptibility and resilience in
both animal models.

2. Methods
2.1. Animals and housing conditions

Male C57BL/6 mice (7—8 weeks old, 20—27 g) were used as
subjects (Envigo, Indianapolis, IN). Mice were maintained on a
12:12 light/dark cycle with ad libitum access to food and water in a
temperature controlled room (21 + 2 °C). Animals were housed in
polycarbonate cages (18.4 cm x 29.2 cm x 12.7 cm) with corncob
bedding, cotton nesting materials, and wire mesh tops. All behav-
ioral procedures were performed during the first three hours of the
dark phase of their cycle. Subjects were handled several times one
week prior to social defeat to habituate them to the stress of human
handling.

Male Syrian hamsters (3—4 months old, 120—180 g) were ob-
tained from our breeding colony that is derived from animals
purchased from Charles River Laboratories (Wilmington, MA). All
animals were housed in polycarbonate cages (12 cm
x 27 cm x 16 cm) with corncob bedding, cotton nesting materials,
and wire mesh tops. Food and water were available ad libitum.
Cages were not changed for one week prior to domi-
nant—subordinate encounters to allow individuals to scent mark
their territory. Subjects were handled several times one week prior
to dominant—subordinate encounters to habituate them to the
stress of human handling. Animals were housed in a temperature
controlled colony room (21 + 2 °C) and kept on a 14:10 h light:dark
cycle to facilitate reproductive maturation. All behavioral protocols
were performed during the first 3 h of the dark phase of their cycle.
Procedures in both mice and hamsters were approved by the Uni-
versity of Tennessee Institutional Animal Care and Use Committee
and are in accordance with the National Institutes of Health Guide
for the Care and Use of Laboratory Animals.
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2.2. Experimental procedures

2.2.1. Social defeat stress

Mice were subjected to acute social defeat stress using a resident-
intruder model adapted from the social defeat literature in Syrian
hamsters (Huhman et al., 2003; McCann et al., 2014; Clinard et al.,
2015). During social defeat stress, subjects were exposed to adult
male Hsd:ICR (CD1) mice that were individually housed to maintain
aggression (35—40 g, Evigo). The CD1 mice were prescreened for
high levels of aggression, and animals exhibited attack latencies of
less than 30 s. Social defeat stress consisted of three, 2-min aggres-
sive encounters in the home cage of a novel CD1 resident aggressor
mouse with 2-min inter-trial intervals in the subjects’ home cage, for
a total duration of 10-min. These defeats were evaluated by an
observer in real time to verify that each subject received multiple
attacks from each CD1 mouse. An attack was defined as a rapid lunge
followed by a bite or bite attempt. To correct for potential variation in
the amount of aggression subjects received, the first defeat episode
did not begin until the subject submitted to an attack from the
resident aggressor. Non-defeated control animals were exposed to
the empty home cage of three separate CD1 mice for 2-min with 2-
min inter-trial intervals in their home cage.

In hamsters, social defeat stress consisted of subjects being
placed in the home cages of three separate hamsters that were
larger, older animals (>6 months, >190 g). These larger animals
were called resident aggressors, and they were individually housed
to maximize territorial aggression. Resident aggressors were also
prescreened to ensure that they reliably attacked and defeated
intruders. Subjects were exposed to three resident aggressors in
consecutive 5-min aggressive encounters, with 5-min inter-trial
intervals in their own home cage, for a total duration of 25-min.
Similarly to mice, the first defeat episode did not begin until the
subject submitted to an attack from the resident aggressor. Subjects
submitted immediately in the second and third defeat episodes.
Non-defeated control animals were placed in the empty home
cages of three separate resident aggressors for three 5-min expo-
sures to control for the novel environment and olfactory cues
associated with social defeat stress. Social defeats were digitally
recorded for behavioral analysis. The frequency of attacks by the
resident aggressor was recorded and scored by a blind observer.
Whether or not subjects fought back against the resident aggressor
during the first social defeat episode was also recorded.

In both mice and hamsters, aggressive encounters were care-
fully monitored for wounding and animals that received minor
scratches were treated with an antiseptic solution. No animal
received a wound that resulted in signs of pain or distress and none
of the animals were removed from the study because of wounding.

2.2.2. Social interaction testing

Social interaction testing was performed in mice to identify
animals that were susceptible and resistant to the effects of social
defeat stress. Testing was performed in an open field arena
(43.2 cm x 43.2 cm x 43.2 cm) under dim light conditions. Social
interaction testing was modeled after conditioned defeat testing in
Syrian hamsters (Huhman et al., 2003; McCann et al., 2014), as well
as social interaction testing following chronic social defeat in mice
(Golden et al., 2011). Social interaction testing consisted of two 5-
min trials: CD1 mouse target absent and CD1 mouse target pre-
sent. During the target absent trial, subjects were habituated to an
empty perforated plastic box that was positioned against one of the
four walls. The target present trial occurred immediately following
the target absent trial, and a novel CD1 mouse was placed inside the
perforated plastic box. The perforated box allowed for sensory in-
formation, but no physical contact. An observer blind to experi-
mental conditions quantified the duration of time the subject spent

in the interaction zone. The interaction zone was defined as a 3 cm
area surrounding the plastic box. Considerable variation exists in
behavioral responses to social defeat in C57 mice, and an interac-
tion ratio has been used to categorize mice as either susceptible or
resistant to social defeat (Krishnan et al., 2007; Golden et al., 2011).
The interaction ratio is calculated as (Time investigating target
present)/(Time investigating target absent). Defeated mice with
interaction ratios of less than 1.0 are defined as susceptible and
defeated mice with interaction ratios equal to or greater than 1.0
are defined as resistant to social defeat.

2.2.3. Dominant-subordinate relationships

Hamsters were not exposed to social interaction testing because
it was not necessary to phenotype animals following social defeat
stress. Rather, hamsters were given the opportunity to establish
dominance relationships, and we have previously shown that over
time dominant animals become resistant to social defeat stress
whereas subordinates become susceptible (Morrison et al., 2014).
To establish social status, subjects were weight-matched into
resident-intruder dyads and paired in daily social encounters for 14
days as described previously (Morrison et al., 2014). Subjects were
randomly assigned as a resident or intruder, and all social en-
counters occurred in the resident's home cage. Encounters were 10-
min in duration prior to the establishment of dominance relation-
ships, while all subsequent encounters were 5-min. Dominant and
subordinate animals were identified by the direction of agonistic
behavior within each dyad. If a dyad did not form a dominance
relationship after 5 encounters, the animals were excluded from
statistical analysis.

2.24. Experimental design

In Experiment 1, 62 mice were exposed to social defeat stress
and 12 mice were non-defeated controls. Twenty-four hours later,
mice received social interaction testing and were identified as
susceptible (N = 51) or resistant (N = 11). Mice were tested until the
resistant group reached sufficient statistical power, although brain
tissue was collected from only the first 11 mice identified as sus-
ceptible. It is noteworthy that the percentage of resistant mice
observed in this study (about 18%) is less than what has been re-
ported elsewhere in chronic social defeat models (about 30%)
(Krishnan et al., 2007). To investigate defeat-induced changes in
neurochemical activity, mice received a second bout of social defeat
stress or empty cage exposure one week following their social
interaction test.

In Experiment 2, 30 hamsters were paired in daily dominant-
subordinate encounters. Three dyads were excluded from analysis
because they failed to establish a stable dominance relationship.
Twenty-four hours after the final dominance encounter, 12 domi-
nants and 12 subordinates received social defeat stress. Fourteen
control animals did not receive dominance encounters and were
exposed to empty cages instead of social defeat.

2.2.5. Tissue collection

Immediately following the final social defeat encounter, animals
were sacrificed with isoflurane and rapidly decapitated. A brain
matrix was used to generate 1 mm thick brain slices that were
rapidly frozen on glass slides. Tissue punches (1 mm diameter)
were collected bilaterally from regions containing the BLA/CeA,
dorsal hippocampus (dHPC), NAc, and vmPFC. Tissue punches were
flash frozen in liquid nitrogen and stored at —80 °C until metabolite
extraction. In some brain regions, tissue was not assayed because of
inaccurate punches. In mice, 3 samples were lost from the BLA/CeA,
4 samples were lost from the dHPC, 2 samples were lost from the
vmPFC, and 1 sample was lost from the NAc. In hamsters, due to
inaccurate punches, 2 samples were lost from the BLA/CeA, 8
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samples were lost from the dHPC, 7 samples were lost from the
vmPFC, and 6 samples were lost from the NAc.

2.3. Untargeted metabolomics using ultra-high performance liquid
chromatography-high-resolution mass spectrometry (UPLC-HRMS)

Analysis by UPLC-HRMS was completed in accordance with
previously published protocols (Lu et al., 2010). Refer to Supple-
mental Information for additional details on the extraction proto-
col, chromatography specifications, and mass spectrometry (MS)
parameters. The Metabolomic Analysis and Visualization Engine
(MAVEN) software package, an open source program that reduces
the complexity of metabolomics analysis, was used to select me-
tabolites from a pre-existing list of over 270 compounds (Melamud
et al., 2010). Henceforth, identified metabolites are referred to as
known metabolites, which were previously validated for exact
mass and retention time using chemical standards from Fisher
Scientific or preexisting chromatography (Lu et al., 2010). MAVEN
enables the user to directly extract all spectral features from a
single sample. Any spectral feature that was not confirmed as a
known metabolite will henceforth be referred to as an unidentified
spectral feature (USF). Metabolite ion counts were normalized us-
ing the ratios of intensities among metabolites within a sample to
remove errors due to sampling and instrumental variability using a
modification of known methods (Altmaier et al., 2008; Suhre et al.,
2011). This internal ratio normalization (IRN; see Supplemental
Information) technique provides normalized fold changes for the
selected array comparisons, as well as p-values from complimen-
tary univariate analysis techniques, one-way ANOVA with Tukey
post-hocs and two-tailed Student's t-tests. These fold changes were
then used to generate heatmaps of known metabolites (for mice see
Fig. S-1, for hamsters see Fig. S-2).

Additionally, unnormalized ion intensities of known and un-
known metabolites were also analyzed using partial least squares
discriminant analyses (PLS-DA). PLS-DA is a statistical method,
similar to principal components regression, which finds a linear
regression model by projecting predicated variables and the
observed variables into a new space. From these PLS-DA analyses,
variable importance in projection (VIP) score plots can be extrap-
olated. The VIP score is a common feature selection tool that is a
probability function calculated by totaling the weighted sum of
squares of the loading vectors (Xia et al., 2009), and this tool en-
ables a matrix reduction of selected metabolites for further inves-
tigation. A metabolite with a VIP score greater than or equal to 1.0
was considered a variable that highly contributed to the observed
separation within the PLS-DA plot. Further description of the
extraction protocol, the UPLC-HRMS procedures, and the data
processing methods can be found in the Supplemental Information.

2.4. Statistical analysis

Data were analyzed using one-way ANOVAs followed by Tukey's
post-hocs, Student's t-tests, and chi-square tests, where appro-
priate. Statistical significance was set at . = 0.05. Data are reported
as mean + SEM, except where noted. Statistical reduction of USFs
was accomplished using Student's t-tests (p < 0.05) and VIP score
(>1.0), and individual metabolites of interest were confirmed to be
significant through one-way ANOVA analysis and Tukey's post hoc
tests.

3. Results
3.1. Behavioral data

To characterize mice as susceptible or resistant to the effects of

acute social defeat stress, mice were evaluated in a social interac-
tion test. One-way ANOVA analysis revealed significant differences
in interaction ratios between non-defeated controls, susceptible,
and resistant mice (F(2, 30) = 31.11, p < 0.0001). Tukey's post-hoc
comparisons demonstrated that susceptible mice had a signifi-
cantly lower social interaction ratio compared with resistant mice
and controls (p < 0.001 and p < 0.001, respectively), whereas
resistant mice and controls did not significantly differ in their social
interaction ratios (p = 0.70) (Fig. S-3). A subset of the defeats were
quantified, and there were no significant differences between
susceptible (8.81 + 0.74) and resistant (8.22 + 0.40) mice in the
number of attacks received per 2-min e (t = 0.38, df = 13,p = 0.71).
No mouse, resistant or susceptible, fought back against the resident
aggressor during any of the defeat episodes, and all attacks
occurred within the first 30-sec.

In hamsters, the daily dyadic encounters were videotaped and
monitored in real time to determine the direction of aggression. On
average, dominance relationships were established on day 1.07
(SD = 0.26). Dominant animals continued to direct aggression to-
wards the subordinate throughout the two-week period. Two pairs
were excluded because they did not form a dominance relationship
after 5 days of dyadic encounters, and one pair was excluded
because of a switch in dominance status on day 6. The number of
attacks received during social defeat stress, as well as the duration
of fighting back by subjects during the first defeat were scored by
an observer blind to treatment conditions. There were no signifi-
cant differences between dominant (5.94 + 0.86) and subordinate
(5.14 + 0.69) hamsters in the number of attacks received (t = 0.91,
df = 70, p = 0.37). Dominant hamsters (8/12) also fought back
significantly more often than subordinates (0/12) (%% = 12.00,
df = 1, p = 0.0005).

3.2. Metabolomics data

3.2.1. PLS-DA reveals distinct metabolic profiles in both mice and
hamsters

Figs. 1 and 2 represent the PLS-DA plots generated from the four
select brain regions of both mice and hamsters, respectively. The
shaded ellipses represent the 95% confidence intervals for each
treatment condition. Significant separation of metabolites was
achieved for both mice and hamsters, which suggests that the
phenotypes exhibit a significantly different metabolic pattern of
known and unknown metabolites in each brain region. Further-
more, from the VIP scores derived from the PLS-DA analyses, we
extracted variables that differentiated susceptible and resistant
mice or subordinate and dominant hamsters. Each brain region
exhibited a unique set of relevant (VIP > 1.0) metabolites (Mice;
BLA/CeA: 29, dHPC: 25, vimPFC: 33, NAc: 33 and Hamster; BLA/CeA:
48, dHPC: 39, vmPFC: 29, NAc: 29). VIP score plots for both mice
and hamsters are available as Supplemental Information (for mice
see Fig. S-4, for hamsters see Fig. S-5).

3.2.2. Identifying representative known metabolites

Representative metabolites were chosen based on the following
parameters: p < 0.05 and VIP >1.0. For mice, one-way ANOVA
analyses revealed several significant neurochemical metabolites
that differentiated resistant and susceptible animals. In the dHPC,
significant differences were observed in the relative abundance of
GABA (F2, 25) = 4.360, p = 0.024); specifically, Tukey's post hoc
comparisons demonstrated that susceptible mice had elevated
levels of GABA compared to resistant mice (Fig. 3A; p = 0.018). In
the NAc, significant differences were observed in the relative
abundance of cystine (F(2, 30y = 9.050, p = 0.001), and resistant mice
had significantly higher levels compared to subordinates (Fig. 3B;
p = 0.001). In the vmPFC, significant differences were seen in the
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Fig. 1. Metabolite patterns from untargeted metabolomic approach. Qualitative
profiling for control (yellow), resistant (red), and susceptible (blue) mice was con-
ducted with PLS-DA. PLS component 1 (X-axis) and PLS component 2 (Y-axis) represent
the highest two X-scores of dimensions 1 and 2 for matrix X of metabolite ion abun-
dances, respectively. Ellipses express a 95% confidence interval. Plots exhibit significant
separation and clustering of samples across all four brain regions. A) BLA/CeA, B) dHPC,
C) NAc, D) vmPEFC. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

relative abundance of IMP (inosinic acid) (F2, 28) = 3.487, p = 0.044)
and AMP (F2, 28) = 3.334, p = 0.050). For both IMP and AMP,
resistant mice had significantly higher levels compared to sub-
ordinates (Fig. 3C; p = 0.037 and Fig. 3D; p = 0.042, respectively).
Surprisingly, no significant differences were observed in the BLA/
CeA of mice.

In hamsters, one-way ANOVA analyses also revealed changes in
neurochemical metabolite expression. In the BLA/CeA, serine
differed significantly across conditions (F, 33y = 3.542, p = 0.040);
specifically, dominants had significantly lower levels compared to
controls (Fig. 4A; p = 0.034). In the NAc of hamsters, a statistical
trend was observed in the relative abundance of fumarate (Fp,
30) = 2.837, p = 0.074; VIP = 0.831), and dominant animals tended
to have a higher expression compared to subordinates (Fig. 4B;
p = 0.063). In the vmPFC, tyrosine differed significantly across
animals (F(2, 30y = 9.096, p = 0.001), and dominant hamsters had a
higher relative abundance compared to controls and subordinates
(Fig. 4C; p = 0.001 and p = 0.018, respectively). Also in the vmPFC,
significant differences were observed in the expression of methi-
onine (F, 30) = 8.017, p = 0.002), specifically, dominants had a
higher relative abundance compared to controls and subordinates
(Fig. 4D; p = 0.001 and p = 0.023, respectively). However, in the
dHPC, no significant differences were observed across conditions.

3.2.3. Identifying representative unknown metabolites

The discovery of thousands of USFs reveals the true complexity
of mammalian metabolism. In the BLA/CeA, dHPC, NAc, and vmPFC
of hamsters, the total USFs identified were 6981, 5622, 9565, and
7420, respectively, and 2383, 2457,1987, and 2098 in mice (Table S-
1). Following statistical reduction of USFs (see Supplemental In-
formation), we identified a total of 27, 28, 33, and 28 features in
hamsters and 27, 27, 30, and 29 features in mice from the BLA/CeA,
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Fig. 2. Metabolite patterns from untargeted metabolomic approach. Qualitative
profiling for control (yellow), dominant (red), and subordinate (blue) hamsters was
conducted with PLS-DA. PLS component 1 (X-axis) and PLS component 2 (Y-axis)
represent the highest two X-scores of dimensions 1 and 2 for matrix X of metabolite
ion abundances, respectively. Ellipses express a 95% confidence interval. Plots exhibit
significant separation and clustering of samples across all four brain regions. A) BLA/
CeA, B) dHPC, C) NAc, D) vimPFC. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

dHPC, NAc, and vmPFC, respectively. The compilation of USFs rep-
resents a list of unique parent masses not found in our list of known
metabolites.

Regarding unknown metabolites, only USFs that revealed sig-
nificant changes between dominant and subordinate hamsters, or
resistant and susceptible mice, were further investigated using the
Human Metabolome Database (HMDB) (Wishart et al., 2013) to
produce a list of potential compound matches. Significance was
established through the following parameters: Student t-test:
p < 0.05, VIP >1.0, and the mean decrease in accuracy (MDA) (top
10%). Since each parent mass could exist as an adduct (i.e. [M+Na-
H]), the number of matches were anywhere from 0 to 50. Com-
pound matches were screened against existing literature to deter-
mine biologically relevant matches.

The following features were selected from both mice and
hamsters (Supplemental Information, Table S-2). Two features from
the BLA/CeA, m/z 279.0458 (F(2, 26) = 4.919, p = 0.015) and m/z
297.0563 (F2, 26) = 5.2, p = 0.013), were significantly reduced in
resistant mice compared to controls (p = 0.036 and p = 0.043,
respectively) and susceptible mice (p = 0.027 and p = 0.017,
respectively). These features are believed to be the same compound
but detected as separate adducts. In the NAc, the m/z 274.1045
feature (F2, 30) = 242.613, p < 0.001) revealed a significant decrease
in susceptible mice compared to controls (p < 0.001) and resistant
mice (p < 0.001), while resistant mice were also significantly
increased compared to controls (p < 0.001).

In the BLA/CeA of hamsters, the m/z 316.1012 feature (F,
33) = 11.073, p < 0.001) was significantly increased in subordinates
compared to controls (p = 0.001) and dominants (p < 0.001). Also,
in the BLA/CeA, the m/z 289.0903 feature (F 33) = 3.434,
p = 0.044) was significantly decreased in subordinates compared to
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dominants (p = 0.044). Two features; m/z 320.0619 (F2, 29) = 3.163,
p = 0.057) and m/z 342.0441 (F(3, 29) = 5.402, p = 0.010) in the NAc
were selected as potential adduct masses, which means that they
are derived from the same compound. These features showed a
decreased concentration in subordinate hamsters compared to
dominant hamsters (p = 0.050 and p = 0.010, respectively).

4. Discussion

4.1. Identifying the characteristic metabolome associated with
social defeat

For the first time, UPLC-HRMS based metabolomics analyses
were used to investigate the metabolic fluctuations associated with
stress resistance. Metabolomics as a field is currently at its infancy.
Complications arising from biological diversity and poor under-
standing of how to interpret results defines the current state of the
field. There are thousands of metabolites within a biological sys-
tem, not to mention that each metabolite can be involved within
multiple metabolic pathways. These current issues present an op-
portunity to discover novel aspects of biological systems. An
untargeted method was used for the current analysis, with the goal
of identifying features that could lead to the discovery of a novel
biomarker. Specifically, we used a comparative approach to identify
similar metabolites that are associated with stress resistance in
both models. The varying levels of global metabolites for both mice
and hamsters were analyzed using PLS-DA, which resulted in

significant clustering of subjects and separation of phenotypes. The
separation of the phenotypes in the PLS-DA plots suggests that
stress-induced metabolic fluctuations can reliably predict pheno-
typic responses to social defeat stress. Based on VIP scores and
Tukey's post hoc comparisons, significant fluctuations were found
in amino acid and neurotransmitter metabolism that are associated
with stress susceptibility and resistance in both mice and hamsters.

Interestingly, both mice and hamsters that are susceptible and
resistant to social defeat stress show changes in small molecules in
the NAc that modulate oxidative stress. The relative abundance of
the amino acid cystine was higher in resistant mice compared to
susceptible mice. Cystine is a critical component of the cystine-
glutamate exchange, also known as the system xc—. The uptake
of cystine that results from a cystine-glutamate exchange is
important for maintaining the levels of glutathione, a critical
antioxidant (Bridges et al., 2012; Reissner, 2014). Furthermore,
system xc-dependent glutathione production modulates protection
from oxidative stress (Shih et al., 2006). Taken together, the upre-
gulation of cystine in resistant mice may help protect them against
defeat-induced social avoidance. In hamsters, the levels of fumarate
tended to be higher in the NAc of dominants compared to sub-
ordinates. Fumarate is an intermediate in the Krebs cycle used by
cells to produce energy in the form of adenosine triphosphate
(ATP). Not surprisingly, oxidative stress suppresses the Krebs cycle
(Tretter and Adam-Vizi, 2000). Esterification of the unsaturated
dicarbonic acid, fumarate can be enzymatically catalyzed to form
fumaric acid esters (FAEs), such as dimethyl fumarate that has been
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Fig. 4. Effects of social defeat and dominance status on the relative abundance of neurochemical metabolites in hamsters. A) In the BLA/CeA, dominant hamsters had significantly
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shown to exert neuroprotective effects against neuroinflammation
via activation of the Nrf2 antioxidant pathway (Linker et al., 2011).
Additionally, research has also shown that dimethyl fumarate
protects cells from oxidative stress (Albrecht et al., 2012). In addi-
tion to these molecules within the NAc that modulate oxidative
stress, evidence of protection from oxidative stress was further
observed in the vmPFC of dominant hamsters. To illustrate,
methionine was elevated in dominants compared to both controls
and subordinates. Methionine is an antioxidant that has been
shown to reverse the effects of oxidative stress (Patra et al., 2001;
Nandi et al., 2005; Luo and Levine, 2009). Overall, subjects resis-
tant to acute social defeat had elevated levels of small molecules in
the NAc and vmPFC following social defeat that protect against
oxidative stress, such as cystine, fumarate, and methionine.

This study also revealed significant defeat-induced changes in
neurotransmitters and their precursors. In the dHPC, susceptible
mice had significantly higher levels of GABA compared to both
resistant and control mice. Stress exposure has been shown to in-
crease GABA levels in the hippocampus. For instance, mild stressors
such as novel cage exposure and more intense stressors such as
forced swimming both increase hippocampal GABA levels (De
Groote and Linthorst, 2007). Furthermore, microdialysis reveals
increased extracellular levels of GABA in response to novelty stress
in the vHPC (Bianchi et al, 2003). In hamsters, we found that
dominant animals had increased tyrosine concentrations in the
vmPFC compared to subordinates. Tyrosine serves as a critical
precursor to catecholamines and has antioxidant properties (Yen
and Hsieh, 1997; Giil¢in, 2007). Rats given tyrosine before acute

tail-shock displayed neither shock induced norepinephrine deple-
tion nor the deficits in exploratory behaviors observed in saline-
treated animals (Reinstein et al., 1984). Similarly, pre-treatment
with tyrosine not only prevented behavioral depression and
norepinephrine depletion after acute restraint stress and inter-
mittent tail-shock but also suppressed the rise in plasma cortico-
sterone (Reinstein et al., 1985).

Additionally, we found that dominant hamsters had lower
serine concentrations in the BLA/CeA compared to control ham-
sters. D-serine is an endogenous modulator of the glycine site of
NMDA receptors and functions to facilitate memory processes
(Mothet et al., 2000; Collingridge et al., 2013). Systemic adminis-
tration of D-serine has been shown to enhance both object recog-
nition and T-maze performance (Bado et al., 2011). While partial
agonists at the glycine site on NMDA receptors have been proposed
as cognitive enhancers to facilitate cognitive behavioral therapy
(Davis et al., 2006), systemic administration of D-serine induces
oxidative stress in the rat brain (Armagan et al., 2011). One possi-
bility is that dominant animals may have less endogenous serine to
bind to the glycine site of the NMDA receptor in the BLA, which may
also reduce the potential for oxidative stress.

Finally, in the vmPFC of mice, changes were observed in mole-
cules relate to cellular energy consumption. More specifically,
resistant mice had significantly higher levels of IMP (inosinic acid)
and AMP (adenosine monophosphate) in the vmPFC immediately
following social defeat compared to susceptible mice. AMP is pro-
duced during adenosine triphosphate (ATP) synthesis, while IMP is
generated via ATP degradation in two metabolic pathways in which
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AMP is generated and then degraded to either IMP or adenosine
(Seki et al., 2017). Taken together, these two molecules are indica-
tive of increased cellular activity in the vmPFC of resistant mice.

4.2. Characterization of unidentified spectral features affected by
social stress

The current state of metabolomics research is focused on the
structural elucidation of USFs from an untargeted experiment.
Through this technology, the breadth of the metabolome can be
revealed but there are many steps involved with confirmation of
structure. This hypothesis driven experiment has produced thou-
sands of USFs, which are potential metabolites that could better
explain the entire metabolome of a subject. Here, we provided a
high-throughput method for the characterization of USFs. In this
experiment, the aim was to find a reduced list of metabolites that
exhibited significant metabolic changes associated with social
stress defeat and provide possible compound matches to be eval-
uated in future experiments.

Preliminary annotation of USFs revealed a common trend in
which several of the compounds were related to oxidative stress. In
the NAc of mice, the 274.1945 m/z at 4.7 min feature was matched
to norophthalmic acid. This neurochemical was significantly
decreased in susceptible mice and increased in resistant mice. As a
tripeptide analogue of glutathione, norophthalmic acid has been
shown to be an intracellular antioxidant. It is known that distur-
bance of glutathione homeostasis either leads to or results from
oxidative stress (Gongalves et al., 2008; Schulz et al., 2000). This
was particularly interesting because cystine levels in NAc of mice
were also elevated in resistant mice after social defeat. As a dimer of
cysteine, fluctuations in concentrations of this compound have a
direct effect on levels of glutathione. Because resistant mice show
increased concentrations of both compounds, it suggests that sus-
ceptible mice respond to social defeat stress with fewer essential
antioxidants which may reduce their coping ability. Also, in the
BLA/CeA of hamsters, the 289.0903 m/z at 11.6 min feature corre-
sponded to N-acetylcarnosine (NAC). This free-radical scavenger is
a natural N-acetylated dipeptide consisting of alanine and histidine.
Carnosine derivatives have been shown to act as natural antioxi-
dants with hydroxy radical, singlet oxygen scavenging and lipid
peroxidase properties (Babizhayev et al, 1994). Although this
compound hasn't been associated with stress-related behavior,
NAC treatment has been shown to reduce the effects of cataracts,
which are caused by oxidative stress on the lens (Babizhayev et al.,
2001). In the present study, NAC was increased in dominant ham-
sters, again suggesting a potential mechanism that protects against
oxidative stress.

In a separate correlation, two USF features from hamsters
exhibited effects on the efficiency of mitochondrial activity. In
mammalian cells, mitochondria have been shown to produce
reactive oxygen species (ROSs) to reduce oxidative damage and
contribute to redox signaling to the nucleus (Murphy, 2009). L-
acetylcarnitine (LAC) has a known biological function of improving
the efficiency of mitochondrial function by facilitating the move-
ment of acetyl CoA into the matrices (Wutzke and Lorenz, 2004). In
our study, the amount of LAC (316.1012 at 11.6 min) was signifi-
cantly increased in the BLA/CeA of subordinate hamsters. This
observation reveals that the cellular mitochondrial activity is being
up-regulated in subordinate hamsters after social defeat. Addi-
tionally, the NAc samples revealed a significant decrease of relative
concentration in subordinate hamsters for a set of parent masses at
15 min; 320.0619 ([M-H]) and 342.0441 ([M+Na-2H]). These fea-
tures both correlated to beta-citryl-L-glutamic acid (BCG), which is
a derivative of glutamate found in the developing brain of rats
(Miyake et al., 1978). This metabolite has been shown to be an iron

carrier that is used to activate the enzyme aconitase (Hamada-
Kanazawa et al., 2011), which is used to enhance cell viability by
accelerating mitochondrial activity. Alterations to normal mito-
chondrial function during stress can contribute to cell death
through two mechanisms; change in production of ROSs and
release of death regulatory and signaling molecules from the
intermembrane space (Garcia-Ruiz et al., 1995; Ouyang and Giffard,
2004).

Finally, preliminary annotation of unknown metabolites in-
dicates changes in small molecules associated with memory func-
tion. For example, in the BLA/CeA of mice, two features (m/z,
279.0458 ([M-H]) and 297.0563 ([M-H20-H])) at 11.5 min revealed
the existence of the same compound, N-acetylserotonin sulfate
(NAS). NAS is an intermediate in the endogenous production of
melatonin from serotonin (Weissbach et al., 1960), and has been
shown to act as a classic antioxidant through hydrogen donation
(Barsacchi et al.,, 1998). NAS has also been shown to improve
cognition (Alvarez-Diduk et al., 2015) and increases BDNF levels
(Yoo et al., 2011). Interestingly, NAS has been shown to directly
activate the TrkB receptor (Jang et al., 2010). TrkB, as the primary
receptor for BDNF, is critical for learning and memory related
plasticity (Minichiello, 2009). One possibility is that increased NAS
in susceptible mice is associated with a stronger memory of the
defeat experience. This possibility is consistent with our previous
finding that inhibition of the BDNF synthesis pathway in the BLA
reduced defeat-induced social avoidance (Dulka et al., 2016).

Some limitations of the present study should be acknowledged.
While untargeted metabolomics provides opportunity for the dis-
covery of novel biomarkers, large quantities of data are produced
and an agreed upon high-throughput method for structure eluci-
dation has not been validated. We have used statistical significance
to reduce the number of USF considered for discussion, although
additional tandem MS/MS analyses should be performed to defin-
itively characterize novel metabolites. Additionally, this study is
limited in that it only used male subjects, which is particularly
concerning given that women are more likely to develop a stress-
related mental illness (Kessler, 2003; Bekker and van Mens-
Verhulst, 2007). Indeed, a sex bias exists in neuroscience research
(Beery and Zucker, 2011), especially within the realm of social
defeat models. One noteworthy exception can be seen in work with
the California mouse (Peromyscus californicus), a monogamous
species in which both males and females aggressively defend their
home territories (Ribble and Salvioni, 1990). In this species, females
are particularly susceptible to social defeat compared to males, and
analyses of brain activity immediately following social interaction
testing suggested that cellular activity in the NAc may be related to
social avoidance (Trainor, 2011). While these data suggest that the
NAc may be ideally situated to study biomarkers in females, sex-
differences in stress-induced social withdrawal in the California
mouse are also associated with BDNF in the bed nucleus of the stria
terminalus (Greenberg et al., 2013). Overall, further research is
needed to characterize the stress-induced neurochemical profiles
of females.

5. Conclusions

We found that 18% of C57 mice show resistance to social
avoidance following an acute social defeat. Similarly, hamsters that
have maintained dominant social status exhibit less defeat-induced
social avoidance compared to subordinates. While an analysis of
defeat-induced changes in metabolites within select brain regions
indicates that the concentrations of many small molecules differ
between susceptible and resistant animals, no single biomarker
was observed in both species. However, both dominant hamsters
and resistant mice show changes in neurochemicals within similar



B.N. Dulka et al. / Neurobiology of Stress 7 (2017) 103—112 m

functional classes. Importantly, animals resistant to social defeat
stress show an increased concentration of molecules to protect
against oxidative stress in the NAc and vmPFC. Overall, a metab-
olomics approach to the study of stress resilience can identify
functional groups of neurochemicals that may serve as novel tar-
gets for the treatment of stress-related mental illness.
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