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Fibromyalgia syndrome (FMS) is characterized by pain referred to deep tissues. Diagnosis and treatment of FMS are complicated by
a variable coexistence with regional pain, fatigue, sleep disruption, difficulty with mentation, and depression. The widespread, deep
pain of FMS can be a consequence of chronic psychological stress with autonomic dysregulation. Stress acts centrally to facilitate
pain and acts peripherally, via sympathetic vasoconstriction, to establish painful muscular ischemia. FMS pain, with or without a
coexistent regional pain condition, is stressful, setting up a vicious circle of reciprocal interaction. Also, stress interacts reciprocally
with systems of control over depression, mentation, and sleep, establishing FMS as a multiple-system disorder. Thus, stress and
the ischemic pain it generates are fundamental to the multiple disorders of FMS, and a therapeutic procedure that attenuates stress
and peripheral vasoconstriction should be highly beneficial for FMS. Physical exercise has been shown to counteract peripheral
vasoconstriction and to attenuate stress, depression, and fatigue and improve mentation and sleep quality. Thus, exercise can
interrupt the reciprocal interactions between psychological stress and each of the multiple-system disorders of FMS. The large
literature supporting these conclusions indicates that exercise should be considered strongly as a first-line approach to FMS therapy.

1. Mechanistic Base of FMS Prevention
and Therapy

Clinical diagnosis of fibromyalgia syndrome (FMS) has
relied heavily upon tender point counts, a convenient eval-
uation of pain sensitivity that has come under scrutiny in
terms of reliability and validity [1]. Tender point testing is
designed to provide objective evidence for hypersensitivity
to palpation of deep tissues, consistent with patient reports
of ongoing pain referred to deep tissues. The location of
ongoing pain changes over time but is widespread in the
aggregate. The pain is chronic but is not always present.
These features suggest that deep tissues are chronically
sensitized and are easily brought to threshold for activation
of nociceptors. Accordingly, tests of deep pressure sensitivity
with control over the stimulus and thorough psychophysical
evaluations reveal allodynia and hyperalgesia for stimulation
of a muscle within the aggregate distribution of FMS pain.
When muscular indentations are controlled in duration
and force, FMS subjects report lower pain thresholds [2]

and substantially more pain for suprathreshold stimulation
than control subjects [2–8]. Repetitive stimulation at the
threshold force for pain during a single indentation produces
higher ratings by FMS subjects, compared to repetitive
threshold stimulation for control subjects. Pain is longer in
duration for FMS subjects following a series of repetitive
muscular indentations. These observations [8] provide diag-
nostic verification of the ongoing deep muscular pain that
brings FMS patients to the clinic.

FMS pain can arise from peripheral influences of the
autonomic nervous system [9, 10] in response to aversive
mood states (e.g., anxiety, fear, sorrow, and depression)
that are referred to generally as mental suffering or dis-
tress. Distress activates the hypothalamopituitary axis (HPA)
and sympathetic nervous system to generate physiological
adaptations referred to as psychological stress reactions [11].
Stress, when chronic, results in cardiovascular dysfunction
[12–16] with reduced peripheral blood flow as a result
of vasoconstriction [17–19] and reduced endothelium-
dependent vasodilatation [20, 21]. Also, chronic stress
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produces mitochondrial damage and pathological changes
in the vasculature that reduce blood flow [22]. Resting
levels of peripheral vasoconstriction are particularly high for
females, relative to males [23–29], and FMS primarily is a
female pain disorder [10]. Consistent with a predisposition
toward peripheral vasoconstriction, females are particularly
susceptible to Raynaud’s syndrome [30, 31], characterized by
excessive cutaneous vasoconstriction and pain in response
to ambient cold. Also, peripheral artery disease (PAD) with
reduced peripheral blood flow is more prevalent for women
[32, 33]. Over time, reduced peripheral blood flow can lead
to development of muscular ischemia [34, 35].

Phasic peripheral vasoconstriction, when robust, is
painful, as demonstrated by the cold pressor test. Recordings
of muscle nerve sympathetic activity (MSA) during ice water
immersion of a hand or foot have shown that pain and MSA
activity are highly correlated [36]. Similarly, acute muscular
ischemia is painful, as evidenced by the submaximal effort
tourniquet test [37]. Thus, when psychological stress and
peripheral vasoconstriction become chronic and establish
muscular ischemia, with sensitization of nociceptors [38, 39],
muscular pain is easily evoked [9]. In turn, nociceptive
input (e.g., from ischemic muscles) increases sympathetic
vasoconstrictor outflow to muscles [40, 41], reinforcing the
ischemia. Pain from vasoconstriction and muscular ischemia
can explain the referral of FMS pain to deep tissues.

In addition to ongoing or spontaneous muscular pain,
psychophysical testing of FMS individuals has revealed
widespread cutaneous hyperalgesia [42]. A parsimonious
explanation for this effect is that nociceptive input from deep
tissues sensitizes spinal neurons having convergent input
from the skin, resulting in cutaneous hyperalgesia within the
distribution of deep FMS pain [43]. The most thoroughly
studied form of central sensitization is temporal summation
(windup), a form of central synaptic magnification that
requires repetitive or tonic nociceptive input to central
neurons [43]. This phenomenology has led to proposals that
central sensitization underlies FMS pain [42] and also is
responsible for the widespread cutaneous hyperalgesia that
accompanies regional pain conditions [44]. However, central
sensitization from nociceptive driving does not readily
explain the widespread cutaneous hyperalgesia that accom-
panies regionally localized pain conditions [37, 45–59].
Spinal neurons supplying areas of cutaneous hypersensitivity
can be located distant from a source of regional pain. For
example, central nociceptive pathways from the foot and the
face originate separately from the spinal cord and brain stem,
with different thalamic relays to the cerebral cortex. In spite
of this separation, temporomandibular pain is associated
with enhanced sensitivity to nociceptive stimulation of the
foot [56], and patients with irritable bowel syndrome are
hypersensitive to stimulation of the face [54] (J. Riley,
A. Mauderli, and C. Vierck, unpublished observations).
Thus, a source of facilitation other than direct synaptic
driving by nociceptive input (e.g., temporal summation)
is required to generate widespread cutaneous hyperalgesia
from a regional source of pain. The stress and autonomic
dysregulation that accompany localized chronic pain can
account for widespread hyperalgesia [58, 60–66, 66–68] and

development of FMS pain after onset of a regional pain
condition [50].

2. Status of FMS Muscles

The relationships outlined above indicate that a primary
objective of FMS prevention and therapy should be to
reduce sympathetic vasoconstriction and muscular ischemia,
resulting in a loss or reduction of widespread deep pain
and hyperalgesia. Prevention applies to the development of
FMS in association with chronic stress (e.g., from a regional
pain condition), and reducing stress and increasing blood
supply to peripheral tissues should be therapeutic if FMS
has developed. The need to increase blood flow to peripheral
tissues is strongly supported by demonstrations of muscle
pathophysiology among FMS patients. Microcirculation is
deficient for FMS individuals, as indicated by reductions
in capillary density, capillary permeability, and blood flow,
resulting in low tissue oxygenation [69–73]. The normal
increase in blood flow during dynamic and static exercise
(hyperaemia) is attenuated for FMS subjects [74]. Intramus-
cular concentrations of pyruvate and lactate are increased for
subjects with FMS and are negatively correlated with pressure
pain thresholds (PPTs) for muscle [2]. Expression of genes
that detect muscle metabolites signaling pain and fatigue is
increased following exercise by FMS individuals [75]. The
strength and endurance of FMS subjects is decreased and
is associated with high ratings of exercise induced pain [76,
77]. During and following dynamic exercise, muscle tension
of FMS subjects is increased [76]. Inflammatory activity
is altered toward an overproduction of proinflammatory
cytokines [77–82]. Mitochondrial dysfunction of FMS indi-
viduals has been described, with a CoQ10 deficiency in blood
mononuclear cells, increased oxidative stress, and mitophagy
[83]. Thus, peripheral pathology associated with chronically
reduced blood flow to deep tissues clearly can be a factor in
generation of FMS pain.

3. Exercise Effects on Muscles

Long-term programs of exercise have beneficial effects on
stress and its effects on muscles of individuals with FMS
and other conditions of ischemic muscular pain. Cardio-
vascular consequences of acute stress have been shown to
be attenuated following a bout of exercise [17, 84–88].
For individuals with hypertension, a condition associated
with chronic stress, exercise decreases sympathetic output
to muscles [89] and decreases peripheral vascular resistance
[90]. Thus, sympathetic activation by acute or chronic stress
can be attenuated by exercise. Exercise promotes angiogen-
esis and attenuates symptoms of intermittent claudication
and ischemic muscle pain associated with peripheral artery
disease [91]. Muscular contraction induces secretion of
vascular endothelial growth factor (VEGF), an essential
contributor to capillary growth in skeletal muscles [92].
Accordingly, capillary density is increased by long-term
exercise programs [93, 94]. Exercise increases expression
of genes involved in mitochondrial biogenesis [95]. Also,
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oxygen consumption (VO2) is increased during exercise, to
meet increased energy needs, and it remains elevated for
hours following exercise—particularly when the exercise is
distributed in time [96]. Blood flow to an exercised muscle
is increased [97–100], along with VO2 [101], with little
generalization to uninvolved muscles, avoiding hypotension
[102]. The increase in blood flow in proportion to the relative
activity of different muscle groups is referred to as functional
sympatholysis, which declines with age [103]. Also following
exercise, there is generalized sympathoinhibition [104] and
prevention or reversal of endothelial dysfunction [105, 106].
Important functions of the endothelium that are enhanced
by exercise include vasodilation, regulation of neovascular
growth, and inflammatory control [105, 107].

4. Temperature Regulation and Blood Flow
to Muscles

Control over blood flow to peripheral tissues is a funda-
mental component of temperature regulation. Cold environ-
mental temperatures generate vasoconstriction, and warm
temperatures elicit vasodilation, resulting in heat retention
or loss, respectively [108]. The implications of temperature
regulation for FMS are obvious. Individuals with FMS should
stay warm, and exercise generates body heat. Studies of
sauna heat therapy have revealed significant improvement
in blood flow (endothelium-dependent dilation) [109–111]
and reductions in FMS pain [112, 113]. Exercise in warm
water is an effective therapeutic procedure for FMS [114],
with long-term reductions in pain [115]. Exercise in water is
well tolerated by FMS individuals, as it limits stress on weight
bearing joints and provides resistance in proportion to the
speed of movements.

5. Exercise Therapy for Distress and Depression

In addition to widespread pain and hyperalgesia, FMS is
associated with disrupted control over numerous physiolog-
ical and psychological functions. Accordingly, there has been
a shift in emphasis away from seeing FMS strictly as a pain
disorder toward regarding it as a multisystems disorder [1,
116]. Symptoms frequently associated with FMS pain include
sleep disruption, depression, fatigue, and altered mentation
(fibrofog). Mechanistically, these multiple symptoms of FMS
can be seen as products of FMS pain and the stress inevitably
associated with pain. Sleep disruption, inactivity, and fatigue
are predictable consequences of chronic pain [117] and
stress [118–120]. Similarly, depression [118, 121, 122] and
memory disturbances [123, 124] can result from chronic
stress. Thus, FMS fundamentally is a disorder involving
reciprocal interactions between pain and stress. Pain can
result from or be enhanced by chronic stress [49, 66, 125–
132], and pain produces stress [64, 133–137], which has
widespread influences on biological systems [11, 62].

Mood disorders both elicit stress and are consequences
of stress. Distress, the driving force for chronic psychological
stress with HPA and sympathetic activation, is attenuated by
exercise programs for individuals relatively free of autonomic

dysregulation [138] or with hypertension [139] or chronic
pain [140, 141]. Depression, a mood disorder which often
accompanies chronic pain, including FMS, is associated
with autonomic dysregulation [142] and with cardiovascular
disease [143]. Depression can evolve from chronic stress
[121, 144, 145] and from chronic pain [146, 147], and it is
a risk factor for chronic pain [142, 148, 149]. Stress, chronic
pain and depression frequently coexist and are considered
to be reciprocally related [150], each facilitating the other.
As depression increases, so do pain complaints, and as pain
episodes increase in intensity, frequency, duration, or variety,
depression becomes more likely [151]. Exercise can disrupt
these interactions by reducing pain [114, 140, 141, 152–
156] and depression [114, 140, 141, 152, 153, 156–159].
Conversely, depression occurs more frequently for sedentary
individuals [160] or when a long-term program of exercise is
interrupted for as little as 2 weeks [161].

6. Stress, Exercise, and Mentation

Psychological stress can either facilitate or interfere with
learning and memory, depending upon the timing of HPA
activation relative to the event to be learned or remembered,
and the magnitude and duration of stress are critical
variables [124, 162]. While acute stress can be beneficial,
chronic stress is detrimental to learning and memory.
Activation of the HPA by psychological stress prominently
involves the prefrontal cortex, amygdale, and hippocampus,
with feedback regulation via corticosteroid receptors in
these structures [123]. Chronic activation of corticosteroid
receptors within the prefrontal cortex results in neuronal
damage, impairing learning and memory [163, 164]. The
hippocampus is a component of the cerebral circuitry
mediating psychological stress and is a crucial structure for
memory consolidation. Stress reduces neurogenesis in the
hippocampus [165, 166], impairing memory and contribut-
ing to the pathophysiology of depression [167]. Depression
and cognitive decline are linked phenomena [168].

Beneficial effects of exercise on mentation have been
documented thoroughly [169]. Large surveys have revealed
an inverse relationship between cognitive decline (including
Alzheimer’s dementia) and levels of exercise. Prospective
studies have similarly shown an inverse relationship between
objective fitness measures and cognitive decline. The largest
effect sizes were for executive functions such as planning,
working memory, and multitasking. Investigations of exer-
cise programs for individuals with dementia have revealed
beneficial effects on cognitive tests, increased cerebral blood
flow, and spared brain volume. A dose-response relationship
pertains to exercise duration/intensity and quality of life for
older individuals [170].

Laboratory animal experiments have revealed mecha-
nisms for exercise effects on mentation [168]. In brief,
exercise induces a cascade of growth factor signaling that
enhances cognitive function and attenuates depression by
stimulating neuroplasticity and neurogenesis and improving
blood flow. The growth factors IGF-1, BDNF, and VEGF
are increased peripherally and centrally by exercise. IGF-1
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increases BDNF signaling in response to exercise, enhancing
neurogenesis and synaptic plasticity in the hippocampus and
thereby facilitating learning and memory. Peripheral IGF-
1 and VEGF are necessary for exercise-induced prevention
of peripheral risk factors for cognitive decline, such as
hypertension, hyperglycemia and inflammation.

7. Stress, Exercise, and Sleep

Psychological stress, pain, and sleep disruption are recipro-
cally related. Stress increases pain sensitivity [60, 66, 67, 171]
and disrupts sleep [120, 172]; sleep disruption results in
stress [173] with increased pain sensitivity [117, 174, 175];
pain produces stress [58, 61–64, 66, 68] and sleep disruption
[117, 175–178]. Given the beneficial effects of exercise on
stress and pain, reviewed above, it is not surprising that
exercise has been reported to improve sleep latency, quality,
efficiency, and duration and reduce next day tiredness [178–
184].

8. Methodological Considerations for
Prevention of and Therapy for FMS Pain

Ideally, a preventative/therapeutic regimen would not only
have beneficial effects on stress, autonomic dysregulation,
and pain but would directly or indirectly attenuate the mul-
tisystem aspects of FMS such as sleep disruption, depression,
fatigue, and fibrofog. Exercise has the potential to accomplish
these goals, but it is difficult to convince an FMS patient
that an acutely painful activity will reduce pain in the long
run. FMS pain can be increased during a bout of exercise
[77, 185, 186], and pain sensitivity can be increased at the
conclusion of exercise [77, 187]. Peripheral receptors that
contribute to muscular pain and fatigue [38] are expressed
and detected in leukocytes following exercise by individuals
with FMS [75]. These effects are to be expected during
and after working ischemic muscles. However, despite the
barrier of activity-induced pain, carefully structured exercise
programs can attenuate FMS pain and associated symptoms.
Gradual introduction to an exercise protocol is especially
important for FMS patients with chronic fatigue syndrome
(CFS), for whom exertion can cause postexercise malaise for
several days.

Numerous studies of exercise effects on FMS symptoms
have been summarized in meta-analysis reviews that criti-
cally evaluate the experimental methods and summarize the
results. The benefits of mild to moderate exercise programs
for FMS uniformly include enhanced well being, improved
physical fitness, and reduced disability [140, 141]. Because
deconditioning commonly accompanies FMS [65], a strong
case can be made for exercise as a standard component
of FMS therapy. Furthermore, pain and/or tender point
counts clearly are decreased by most exercise paradigms
[114, 140, 141, 152–156]. The success rate of exercise for
pain is important, relative to therapies that rely exclusively
on pharmacological agents with side effects and inherent
difficulties associated with long-term usage [156]. However,
individual differences in response to exercise result in a

moderate overall (average) effect on FMS pain [141, 154, 156,
188]. Individual variability is considerable with respect to
the severity, duration, and variety of FMS symptoms at the
inception of treatment, and the duration of chronic pain is
an important consideration. Also, the type and frequency of
exercise and long-term compliance of the subjects influence
the benefits of exercise therapy.

Typical experimental protocols for aerobic exercise have
conducted supervised sessions 2 or 3 times per week [153–
155], with varying recommendations for and documentation
of exercise at home. Low to moderate levels of aerobic exer-
cise, as defined by heart rate and blood pressure recordings,
have been recommended [152–155]. Direct comparisons
with strength training or stretching exercises have concluded
that aerobic procedures provide better results [141, 154]. The
reasons for this conclusion are not clear, because assessments
of presumed mechanistic bases for FMS are not included.
For example, what are the relative effects of aerobic and
strength exercises on indices of stress, autonomic regulation,
and peripheral blood flow, and how are these effects
related to reduction of deep muscular pain? In terms of
peripheral mechanisms of FMS such as widespread muscular
ischemia, it seems that an exercise protocol should enhance
peripheral circulation globally, rather than for a specific set
of muscles. This goal may be met by whole body aerobic
exercise or strength training of multiple muscle groups,
but documentation is needed. Also, summaries of exercise
therapy for FMS have strongly recommended tailoring of
parameters of exertion for each patient [153, 154, 156, 188].
More specifically, (1) a level of exercise which is painful for a
subject will discourage participation and may be deleterious
[188]; (2) it is important to have exercise options that are
adaptable to frequent use by individuals with different daily
routines and/or physical limitations; (3) because chronic
stress and autonomic dysregulation are relentless, exercise
routines are likely to be most effective if conducted frequently
so that peripheral blood flow is increased over a significant
portion of each day.

The optimal schedule of exercise likely will depend upon
the duration of increased blood flow that can be expected to
accompany and follow each exercise period. Exercise training
appears not to affect muscle blood flow at rest [189]. Thus,
exercise therapy for FMS is at an important juncture, needing
thorough investigations of long-term effects of different
forms of exercise on blood supply to deep tissues. It is
encouraging that studies involving standardized schedules
of infrequent exercise have revealed attenuation of FMS
symptoms, but there is little to be gained by continued study
of set exercise paradigms with a fixed set of parameters that
are chosen arbitrarily.

The optimum benefits of exercise for FMS surely will
depend upon repeated, daily periods of exertion, but reg-
ularly scheduled laboratory sessions will be necessary to
evaluate and adjust paradigms of exercise. Tolerance for
exercise (exercise induced pain) can be assessed, both to
maximize continued participation and to measure beneficial
effects of exercise. If peripheral blood flow is increased over
time with exercise, the threshold for exercise-induced pain
should increase. Also, there should be a period free of clinical
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pain following each exercise period [186], and charting the
time-course of this effect in relation to changes in blood
flow to deep tissues would be instructive for design and
modification of the exercise protocol. Resting levels of blood
flow to muscles, as well as changes in blood flow in response
to exercise or nociceptive stimulation, are regarded here as
crucial information.

Previous studies have relied upon tender point counts
as a measure of deep pain sensitivity, but a psychophysical
test of pain during and after well-controlled compression of
several muscle groups can provide more useful information
on effects of exercise, over time, on sensitization of noci-
ceptors in deep tissues. Psychophysical tests of sensitivity
to cutaneous stimulation (e.g., temporal summation during
repetitive stimulation) provide information on the central
sensitization that is driven by tonic nociceptive input.
Techniques for detection of biomarkers of gene expression
have been shown to be particularly informative concerning
levels of receptor expression and immune activation that
are associated with muscular fatigue and pain [75, 190].
These means for evaluation of mechanisms have provided
opportunities to approach FMS as a medical condition.
Until recently, there were questions as to whether FMS
is psychosomatic, without an identifiable organic basis, in
contrast to regional pain conditions with histories of injury
to the painful tissues. Ironically, the mechanistic bases of
FMS appear be identifiable and may also be correctable, in
contrast to many regional pain conditions without available
therapies that can silence the source of nociceptive input.

9. Summary and Therapeutic Implications

Fibromyalgia is a multiple-system disorder. FMS patients
complain of chronic pain referred to deep tissues (and
pain from exercise or palpation of muscles) and commonly
present with depression, fibrofog, and sleep disruption.
FMS patients frequently are in a deconditioned state with
fatigue, and the widespread deep pain of FMS often coexists
with one or more regional pain conditions. It is not
feasible to treat each of these disorders separately (e.g.,
with pharmacological agents directed specifically to treat
each disorder). This conundrum forces consideration of
whether there is a fundamental mechanism for the symptoms
that define FMS as a multiple-system disorder. Evidence
summarized here identifies chronic psychological stress with
autonomic dysregulation as the root cause of FMS, providing
opportunities for mechanism-based prevention and therapy
[191]. Pain referred to deep tissues is considered the
primary symptom of FMS. Chronic stress reduces peripheral
blood flow, resulting in widespread muscular ischemia, and
muscular pain is a powerful stressor. Stress, with autonomic
dysregulation and pain, also establishes central influences
that enhance depression, impair mentation and sleep, and
increase pain. Therefore, a therapy that reduces stress and/or
pain could alleviate each of the multiple-system disorders of
FMS. Remarkably, exercise exerts beneficial effects on stress
and pain and the other FMS disorders. Reports documenting
these effects are part of an extensive literature providing

evidence for exercise as an effective therapy for many chronic
diseases of a deconditioned modern society [192].

Investigations typically report moderate overall effects
of exercise on FMS symptoms, attributable to the use of
standardized exercise protocols despite considerable vari-
ability between patients. The use of fixed exercise protocols
appears to suit scientific purposes but conflicts with a
necessity to tailor exercise to each individual for the maximal
therapeutic effect. Thus, it is recommended that different
forms, frequencies, durations, and intensities of exercise be
evaluated in terms of sustained normalization of peripheral
blood flow for FMS individuals. Once an optimal pattern of
exercise is established, it can be utilized with measurements
of peripheral blood flow to guide individual variations in
the exercise protocol over time. It can be expected that
effective exercise protocols for pain reduction will differ
between subjects and over time, as dictated by blood flow to
muscles.

A mechanistic approach to FMS therapy and research
minimizes the importance of a control group for comparison
with treatments such as exercise. The therapeutic goal is
to alleviate FMS, and important scientific goals are to
evaluate relationships between FMS and suspected biological
mechanisms for the FMS symptoms. At this point, these
comparisons can be more instructive than group compar-
isons with and without exercise. For evaluation of FMS pain,
it will be important to evaluate elicited ischemic pain in
addition to standard verbal reports of ongoing pain. Well-
controlled pressure stimulation of muscles with psychophys-
ical evaluation of pain threshold and the suprathreshold
intensity and duration of muscular pain is more informative
than pressure point counts. Measurements of peripheral
blood flow and exercise-induced expression of biomarkers
for receptor expression and immune activation [75] are
informative concerning peripheral effects of exercise. Assess-
ments of distress, depression, sleep quality, and mentation
provide a tracking of central effects of exercise.

Correction of deconditioning with exercise is beneficial
for FMS patients, but available evidence indicates that
psychological stress and peripheral vasoconstriction must be
attenuated to alleviate pain referred to deep tissues. This
paper has not covered techniques to relieve psychological
stress directly, but they can be effective in combination with
exercise, attenuating reciprocal interactions with pain and
each of the multiple-system disorders of FMS.
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Cuadrado, C. López-de-Silanes, and J. A. Pareja, “Bilateral
widespread mechanical pain hypersensitivity as sign of
central sensitization in patients with cluster headache,”
Headache, vol. 51, no. 3, pp. 384–391, 2011.

[49] C. Fernández-Lao, I. Cantarero-Villanueva, C. Fernández-
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[74] A. Elvin, A. K. Siösteen, A. Nilsson, and E. Kosek, “Decreased
muscle blood flow in fibromyalgia patients during stan-
dardised muscle exercise: a contrast media enhanced colour
doppler study,” European Journal of Pain, vol. 10, no. 2, pp.
137–144, 2006.

[75] A. R. Light, A. T. White, R. W. Hughen, and K. C.
Light, “Moderate exercise increases expression for sensory,
adrenergic, and immune genes in chronic fatigue syndrome
patients but not in normal subjects,” The Journal of Pain, vol.
10, no. 10, pp. 1099–1112, 2009.

[76] J. Elert, S. Aspegren Kendall, B. Larsson, B. Månsson, and
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