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Abstract: In many clinical applications, the transdermal route is used as an alternative approach
to avoid the significant limitations associated with oral drug delivery. There is a long history
for drug delivery through the skin utilizing transdermal microneedle arrays. Microneedles are
reported to be versatile and very efficient devices. This technique has spurred both industrial and
scientific curiosity, due to its outstanding characteristics such as painless penetration, affordability,
excellent medicinal efficiency, and relative protection. Microneedles possess outstanding properties
for diverse biomedical uses such as the delivery of very large substances with ionic and hydrophilic
physicochemical properties. Importantly, microneedles are applicable in numerous biomedical fields
such as therapy, diagnosis, and vaccine administration. Microneedles are emerging tools that have
shown profound potential for biomedical applications. Transdermal microneedle technologies are
likely to become a preferred route of therapeutic substances administration in the future since they
are effective, painless, and affordable. In this review, we summarize recent advances in microneedles
for therapeutic applications. We explore their constituent materials and fabrication methods that
improve the delivery of critical therapeutic substances through the skin. We further discuss the
practicality of advanced microneedles used as drug delivery tools.

Keywords: microneedle devices; transdermal penetration; drug delivery

1. Introduction

To deliver drugs through the transdermal route, what is commonly used, are topical
creams and hypodermic needles. Nevertheless, the low bioavailability of topical creams
and the pain associated with hypodermic needles, present major challenges in transdermal
drug delivery. Microneedle arrays have been explored to overcome the limitations imposed
by these two classical methods of transdermal drug delivery [1]. Trypanophobia, more
commonly known as needle phobia, is known as the fear of injections or hypodermic
needles. It is estimated that approximately 10% of the adult population suffers from needle
phobia, and it is far more common in adolescents between 5–16 years. In terms of im-
munology, hypodermic needle injections can raise the risk of infection and contamination
in the event of accidental reuse and can cause hypersensitivity, swelling and bleeding at the
site of administration [1]. In past decades, microneedle technologies have attracted much
attention as injection tools that only minimally interfere with an individual’s biochemistry,
during drug delivery applications, interstitial fluid sampling, and diagnostics. Micronee-
dles enable the penetration of only a small area of the skin at a restricted depth, leading to
minor inflammation of the dermal layers associated with discomfort and damage to the
tissues [2]. In particular, microneedle innovations have gained preeminence in healthcare
as they promise to eradicate needle phobia concerns. More importantly, microneedles
counter several safety problems commonly related to the disposal of hypodermic needles.
In this review, we explore the use of different types of microneedles for transdermal drug
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and vaccine delivery for a variety of disease conditions and highlight their advantages
over other routes of therapeutic administration. We also discuss the diversity of materials
used, including innovative methods applied to manufacture several types of microneedles
for different therapeutic applications.

Microneedles are engineered to penetrate the epidermis and convey a drug directly
into the subepidermal vasculature [3]. The explosion in drug discovery and production
has been witnessed in recent decades. Innovation in drug delivery technologies have
not only enabled new pharmaceutics to be successfully adopted but have also allowed
new delivery methods to be developed for existing drugs [4]. The idea of microneedles
was first recognized in 1976. However, they were impractical until the first application of
microelectromechanical systems in 1998 and the American patent on the microneedle for
transdermal delivery was issued synchronously granted [4–6].

The route of administration of a drug should be compatible with its physicochemical
characteristics for enhanced therapeutic effectiveness and biocompatibility. Each form
of administration has benefits and drawbacks, each requiring a particular design of de-
livery vehicles to overcome them [7]. The main routes of drug administration are oral,
intravenous, intramuscular, and transdermal routes [7]. Oral administration is the most
commonly used route for drug delivery since it is both convenient and economical. How-
ever, it is associated with restricted drug absorption caused by drug degradation from the
gastrointestinal tract (GIT) microenvironment influenced by low pH and food. Moreover,
the cytochrome P450 (CYP450) enzyme system’s hepatic first-pass effect greatly decreases
the bioavailability of orally administered medicines [8,9]. The advantages of intravenous
administration include a bypass of absorption barriers. Intravenous and intra-arterial drug
administration normally provides, with minimal delay, high drug bioavailability and also
the rate of administration can be easily managed to achieve a desirable constant plasma
concentration [10]. On the other hand, intravenous and intra-arterial drug administration
is the most hazardous routes of administration. This is because high concentrations of
drugs may be delivered to organs as rapidly without control, thereby eliciting toxic effects
which might be associated with severe pain [11]. An intramuscular injection is a procedure
used to deliver a drug deep into muscles. This helps the drug to be easily absorbed into
the bloodstream. However, injections are invasive, painful, uncomfortable, and risky for
infection. Moreover, uneasiness during or after injection can discourage participation in
occupational health programs if participation is optional [12]. Injection pain is due to the
mechanical trauma caused by a needle puncture injury on nerve fibers [12]. Pain may also
be induced by increased pressure from fluid deposition inside the tissues or sudden tissue
distention from rapid fluid introduction [12].

Transdermal delivery of drugs is a painless strategy drug delivery which entails the
application of a drug formulation to healthy skin. The off-putting factor is that hydrophilic
drugs with higher molecular weights are limited by skin membrane barriers [13]. The
arrival of microneedle-based transdermal delivery overcomes challenges such as patient
compliance, discomfort, infection risk, restricted drug penetration concentration and long-
term care compared to traditional delivery techniques [13]. Rationally, there are many
inherent shortcomings in traditional drug delivery routes that, theoretically, can be solved
by innovative drug delivery methodologies, such as microneedles technology [14]. Mi-
croneedles are designed to solely pierce the cornified layer and the viable epidermis devoid
of reaching nerve endings and blood vessels; hence patients are not likely to feel massive
pain during the procedure [15]. Emerging microneedle delivery systems have transformed
the techniques of drug delivery and show great prospects in clinical applications. Table 1
compares various transdermal drug delivery systems.
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Table 1. Comparative analysis and drug delivery applications of transdermal patches, hypodermic needles, and topical
creams. Adapted from [16].

Topical Cream Transdermal Patch Hypodermic Needle Microneedle

Description Creams and Ointments Cohesive patch placed on
the skin

Sharp tip with a small
opening at the end

Microneedles fixed on the
surface of a small patch

Application Steady Steady Rapid Rapid

Pain Pain-free Pain-free Sore Pain-free

Bioavailability Sparse Sparse Good Good

Patient Compliance Non-compliant Compliant Non-compliant Compliant

Self-administration Yes Yes No Yes

Mechanism Permeation through the
stratum corneum

Permeation through the
stratum corneum

Drug impaled into the
dermis

Drug bypassing the stratum
corneum and directly into

epidermis or dermis

2. Recent Research on Microneedles Arrays

Transdermal drug delivery provides a variety of benefits for patients, not only because
it is non-invasive but also because it is convenient and presents other advantages, such
as eliminating the first-pass metabolism and preventing gastrointestinal deterioration.
Microneedle arrays have been shown to maximize the number of substances capable of
transdermal delivery via breaching the stratum corneum and providing a channel for
effective drug delivery into the epidermis. Microneedle arrays have been widely studied
for the delivery of drugs and vaccines in recent decades, and patient diagnosis and man-
agement [17]. Scopolamine was the first drug delivered using a transdermal microneedle
patch, that was approved in the United States in 1979 [18]. Thereafter, transdermal nico-
tine transdermal popularized the transdermal delivery technology for the general public.
Herewith are the advantages of this technology: [17]

Hypodermic needles are most commonly used for transdermal drug delivery while
topical creams deliver drugs to the skin surface with minimal penetration. However,
hypodermic needles are not widely tolerated due to discomfort. The primary concern
regarding transdermal patches is that certain drug molecules are unable to optimally pen-
etrate the skin. The stratum corneum serves as a significant shield, allowing only some
molecules, such as low molecular mass and lipophilic drugs to penetrate through it [16].
Microneedle arrays are known to be minimally invasive devices that penetrate through
the stratum corneum membrane, thereby accessing the microcirculation of the skin and
achieving systemic transmission through the transdermal pathways. Microneedles are
reported with arrange of 50–900 µm in height, in different shapes and materials such as
polymers, silicon and metals that are made by a technique known as microfabrication [19].
Their height is sufficient to reach the dermis, and minuscule enough to avoid puncturing
dermal vasculature or stimulating dermal nerves [17]. Microneedles are subjected to the
skin surface and painlessly pierce the epidermis, forming small aqueous pores from which
drugs penetrate and spread to the microcirculation of the skin [17]. A microneedle tool is
comprised of micron-sized needles, which are aligned on a small patch, incorporating the
benefits of both the transdermal patch and the hypodermic needle [20]. Researchers have
developed refined microneedle technology allowing hydrophilic and compounds with a
high molecular weight to penetrate through the stratum corneum [20]. These characteristic
aspects of this technology include quicker initiation of action (quicker administration),
improved patient compliance, self-administration, better biodistribution and effective-
ness [20]. To deliver drugs that are impermeable to the skin, microneedles create transient
micropores across the stratum corneum. Micropore closure after microneedle-based drug
administration is another critical aspect by which microneedles are evaluated because it
influences the rate of drug diffusion to the skin microvasculature and interstitial fluid [21].
In a previous study, micro-projected pores were shown to close approximately 25% in
the first 30 min in diameter and nearly entirely close after about 6 h [22]. According to
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Kalluri and Banga (2009), the duration for which the microchannels remain open is also an
important factor which will affect the drug delivery. They further stated that in a hairless
rat model after microporation, skin barrier function recovers within 2–3 h while pores
close within 15 h in vivo [23]. Milewski et al. (2010) reported that the time frame in which
restoration of barrier function occurs and the associated physiological processes are not
well understood [24] and Bal et al. (2010) further confirmed that the pores do, in fact, close
very rapidly after 15 min in most cases [25].

3. Classification and Fabrication

The main objective of microneedles is to pierce the skin using micro-projections,
without aching any nerves or causing injuries, thereby improving patient compliance
and safety. Microneedles are also supported by patches, and they are designed to have
a uniform, pressure-sensitive adhesive coating on one full side of the patch intended for
interaction with the skin. Skin compatible adhesives are used to attach the microneedles
securely on the skin surface to ensure they do not detach easily since the skin is flexible
tissue and the microneedle substrates are rigid [26]. Microneedles can be categorized
into different sorts based on numerous parameters which include drugs or biomolecules
delivery methods, materials, and structural arrangement. Figure 1 illustrates a comparison
of hypodermic needles and microneedles on how they penetrate the skin to deliver drugs.
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Figure 1. Drug dosing utilizing microneedle tools compared with a hypodermic needle.

Several microneedle designs are available in scale, tip shapes, length, diameter, and
materials that contribute to the function of the drug delivery system. While microneedles
can be used to target the skin as an almost painless route of delivery, not many prototypes
display an acceptable degree of technical preparation for clinical applications. Numerous
different prototypes of microneedles have been described in scientific literature, but the
clinical assessment has so far been minimal. To commercialize any of these minimally inva-
sive instruments on the market, an appropriate model must be created that helps clinical
researchers to benchmark new microneedle procedures against traditional hypodermic
needle injections [27]. Compared to other transdermal delivery systems, microneedles
usually produce to a depth of 200 µm without entering the dermis, so there is no discomfort
present [28]. Since 1990, great improvement has been made by the microelectronics indus-
try, which is highly helpful for microneedle micro-manufacturing [6]. There are four types
of microneedles, and they are classified as solid microneedles for the pretreatment of skin,
dissolving and swellable microneedles without residual fragments, coated microneedles
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with water-soluble drug formulations, and hollow microneedles for liquid formulations.
Table 2 shows a series of exemplary microneedle arrays and their functions [6].

Table 2. Microneedle materials employed for current technological application [6].

Type of Microneedle Materials Used Reference

Disposable Carboxy-methyl-cellulose [29]
Multi-round responsive Alginate [30]
Temperature-responsive Vinyl pyrrolidone [31]

Glucose-responsive Hyaluronic acid [32]
pH-responsive Hyaluronic acid [33]

Swelling-shrinking Hydrogel [34]
Water-soluble Dextrin [35]

4. Microneedles-Based Transdermal Drug Delivery Systems
4.1. Solid Microneedles

Solid microneedles puncture the stratum corneum and create microchannels pores.
A drug formulation patch is then added to the skin for the drug to migrate eventually
to the skin through the transient microchannels [36]. Solid microneedles are designed to
deliver medications to the skin based on the “poke-and-patch” technique. In this technique,
drugs in drug-loaded patches can be transported through diffusion or iontophoresis in
case an electric field is applied. An alternative strategy is “coat and poke”, in which
the microneedles are initially drug-coated and applied to the stratum corneum. In this
approach, all the drug to be delivered is located on the surface of the needle as there is no
drug reservoir on the surface of the skin. Another version of the second strategy is “dip
and scrape”, where the microneedles are immersed into a drug or therapeutic substance
solution and then scraped on the skin surface and leave behind the drug or therapeutic
substance within the microchannels produced by the microneedles [37]. Figure 2 illustrates
the functioning of solid microneedles.
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patch application.

In the literature, the first microneedle reported was impressed into a silicon wafer
and formulated for in vitro intracellular delivery [37,38]. It was reported that to enhance
molecular uptake and gene transfection, these microneedles were inserted into nematodes
and cells. Subsequently, microneedles were then fabricated for transdermal drug delivery
applications [38]. Currently, different kinds of solid microneedles have been developed.
Narayanan and Raghavan (2017) developed solid silicon microneedles for optimized
transdermal drug delivery with the following dimensions: an average height: 158 µm; a
base width: 110.5 µm; an aspect ratio: 1.43; a tip angle: 19.4◦; tip diameter: 0.40 µm [39,40].
In a seminal study, Martin et al. (2012) showed that sugar glass microneedles could be
developed using sugar blend solutions in a vacuum at a low temperature. The microneedles
were suitably structurally rigid to puncture human skin efficiently [41]. A previous study by
Cha et al. (2014) reported that a microneedle array of polylactic acid (PLA: a biodegradable
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polymer) was produced by micro-molding polydimethylsiloxane (PDMS) [42]. Another
study presented a microneedle porous titanium array (TPMA) made using a technique
known as modified metal injection molding (MIM). TPMA was formed at 1250 ◦C for a
period of 2 h. The biocompatibility of TPMA could be assured since only titanium and
oxygen were found on the surface of TPMA. It was also emphasized that TPMA can
penetrate through the skin surface without fracture or breakage [43].

The basic fundamental of microneedles involves minimal disruption to the skin
layers, which produces micron-sized pores that aid the delivery of drugs directly to the
epidermis or upper dermis. Drugs can then penetrate subepidermal blood vessels and
enter the systemic circulation without being obstructed by the membrane barrier [16].
Microneedles range between 25 to 2000 µm in height, consisting of various materials and
geometries. A variety of materials, including metals, silicone, glass, non-biodegradable, and
biodegradable polymer materials, have been used to fabricate microneedles for therapeutic
purposes [5]. Materials are the key determinants of the properties of microneedles such
as strength, versatility, and permeability, and should be chosen wisely depending on
the specific application. Microneedle devices can be manufactured by several types of
materials such as ceramics, metals, silicon, glass and carbohydrates. These categories are
summarized as in Table 3.

Table 3. Materials for the fabrication of solid microneedles [39].

Materials Advantages Disadvantages Application

Silicon
Biocompatible, hard,
Mature fabrication

techniques

Sharp waste
Brittle

Solid,
Coated,

Hollow Microneedles

Glass
Chemically inert,

Transparent
and cheap

Cumbersome
Fabrication,

Brittle
Hollow Microneedles

Ceramic materials Natural porous
Long fabrication

Time, significantly
brittle

Hollow, Dissolving
Microneedles

Metals

Biocompatibility,
High conductivity,

have catalytic activity
for some nanometals

High cost for noble
metals,

Allergic risk,

Solid,
Coated,

Hollow Microneedles

Polymers

Biodegradable (some)
or

Swellable,
Easy fabrication

Low mechanical
strength

Solid,
Hollow,
Coated,

Dissolving,
Swellable

Microneedles

Carbohydrates Biodegradable,
Biocompatible

High processing
Temperatures, low

mechanical
strength and

hygroscopicity

Dissolving
Microneedles

Several types of materials with desirable attributes, such as improved biocompatibility
and high mechanical strength, have been explored for the manufacture of microneedles
for transdermal therapeutic delivery. These include metals, silicon, glass, ceramics, and
polymers such as carbohydrates. Metal microneedles display high mechanical strength,
are easy to manufacture, and are produced using FDA-licensed medical devices made of
relatively cheap metals, such as titanium, stainless steel, and nickel. The process of laser cut-
ting, wet etching, metal electroplating and laser removal processes can be used to produce
metal microneedles [26]. Due to its excellent characteristics, silicon is a very commonly
used material for the manufacture of microneedles. Silicon has great mechanical strength
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and biocompatibility as the primary material utilized in micro-electromechanical systems
(MEMS) [44]. The inertness of glass, its low cost and quick production makes glass-based
microneedles good candidates for drug delivery applications [45]. Ceramic materials have
been used for several decades in drug delivery. Porous ceramic microneedles permit the ab-
sorption and diffusion of drugs immediately after interposition in the interconnected pores.
Its intrinsic porosity enables the microneedles to fill drugs without an additional processing
step [44,46]. Micromolding can be used to fabricate microneedles composed of carbohy-
drates such as maltose, chitosan, trehalose, and starch. Carbohydrate-based microneedles
are commonly manufactured using micromolding and drawing lithography [47]. Polymeric
microneedles can be produced at room temperature by various methods, including temper-
ing, micro-injection, or low-energy graph lithography. Polymeric microneedle arrays are
particularly helpful for the administration of proteins, drugs, vaccines, and DNA. Polymer-
based microneedles have swelling and dissolving properties with a polymer crosslinking
network structure and hydrophilic characteristics [44,48,49]. Using the materials discussed
above, microneedles can be fabricated to deliver drugs through various strategies.

4.2. Hollow Microneedles

Hollow microneedles enable the movement of drugs from the patch reservoir to the
microcirculation and can dose up to 200 µL volume [50]. In many ways, this tool mimics
the function of a typical hypodermic syringe [50]. Hollow microneedles have holes at the
tips and space which can be filled with a drug solution. The drug is immediately released
into the epidermis or upper dermal layer when injected into the tissue (Figure 3). Molecules
with a high molecular weight such as oligonucleotides, proteins and vaccines can also
be delivered using hollow microneedles, [51]. The manufacture of hollow microneedles
is considerably complicated and those with a high aspect ratio lack an internal support
system similar to a solid needle, resulting in possible failure if incorrectly inserted. Careless
handling of the patch assembly or unit, both during insertion and removal may result
in stress which can lead to fracturing and failure of the needles [52]. Most microneedle
fabrication approaches strive to decrease microneedle height and provide a more favorable
safety margin [53].
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Hollow microneedles provide a specific channel for the delivery of drugs to the skin
or other tissues. The hollow microneedles, like hypodermic needles, aid in the adjustable,
pressurized delivery of drugs in liquid form. [54]. In general, microneedles can become an
extremely advanced medicine device and monitor for penetration of skin and perforation
of the corneal barrier to the stratum corneum that allows for drug delivery into workable
skin layers and the removal of body fluids. Despite the many years of research and the
various types of MNs, only hollow MNs have reached the medical device market [55].
Over the past decades, advances have been made in the development of porous ceramic
microneedles that can be used to deliver drugs at room temperature conditions [56].
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4.3. Dissolvable and Swellable Microneedles

A recent technique to surface in microneedle fabrication is using swellable or dissolv-
able polymers. The drug to be administered is trapped within the needle at the fabrication
stage. After penetrating the stratum corneum, the polymer forming the needle’s architec-
ture dissolves and thus releases the entrapped drug (Figure 4). The benefit of dissolving
microneedles inside the skin essentially reduces the risk of injuries due to needle-stick
post-application [57].
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Mikszta et al. (2009) stated that swellable microneedles (microneedles that swell after
puncture of the skin) are more refined and seek to overcome the low-yield constraints of the
dissolvable microneedles [58]. Swellable microneedle patches are based on the structure of
a hydrogel, whose hydrophilic nature effectively extracts moisture from surrounding tissue,
resulting in the widening of the microneedle core, forming pores into which the therapeutic
substance can disperse [58]. The main benefit of this strategy is using the baseplate as a drug
reservoir capable of carrying the underlying microcirculation via the swollen microneedle
structure. Some recent advances in dissolving and swelling microneedle tools with a wide
variety of drugs and polymers are illustrated in Table 4. They have a particularly innovative
ability to remove interstitial fluid; it is a highly creative implementation of the swelling
mechanism [58].

Table 4. Dissolvable/swellable microneedle devices. Adapted with permission from [59].

Drugs Polymers Types Reference

Dihydroergotamine mesylate Polyvinylpyrrolidone Dissolving [60]
Thymopentin Polyvinylpyrrolidone Dissolving [61]

Exendin-4 Carboxymethylcellulose Dissolving [62]
Fluorescent Model HA/PVA Dissolving [63]

Sumatriptan succinate Polyvinylpyrrolidone Dissolving [64]
Adenosine Hyaluronic acid Dissolving [65]
Vitamin K Gantrez® S-97 * Dissolving [66]
Lysozyme Polyvinylpyrrolidone Dissolving [67]

Valproic acid Carboxymethylcellulose Dissolving [68]
Besifloxacin Polyvinylpyrrolidone Dissolving [69]

Caffeine/Theophylline Hydrolyzed PEVE-MA
and PEG

Swellable extraction
of fluid [70]

Glucose/Cholesterol Methacrylated HA Swellable extraction
of fluid [71]

FITC-dextran Silk fibroin Swellable [72]

Curcumin Gantrez® S-97 PEVE-MA
and Tween 85

Swellable [73]

PEVE-MA: Poly(methyl vinyl ether-alt-maleic anhydride); PEG: poly(ethyleneglycol); HA: hyaluronic acid,
* Gantr Gantrez® S-97 is a copolymer of maleic acid and methyl vinyl ether.

4.4. Coated Microneedles

A coated microneedle array consists of sharp micrometer-sized needle shafts fixed
to the base substrate and coated with a drug and water-soluble inactive excipients on
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their surfaces. Skin delivery of a variety of active materials, such as peptides, small
molecules viruses and microparticles are constantly being evaluated for delivery using
coated microneedles. The following factors are critical when considering the use of coated
microneedles for drug delivery, quality of coatings, replicability of the coating procedure
and the efficiency of drug delivery. In one study, the coating of an entire microneedles
array plus the base substrate was made possible by immersing the microneedle patches in
a coating solution [74]. Another study reported improved delivery efficiencies and reduced
drug wastage by using specific coating methods to limit coatings to microneedle shafts
only [75]. A coated microneedle is composed of a sharp, insoluble solid microneedle that
is coated with active substances and water-soluble inactive excipients [76]. Utilization of
hydrophobic coating material aids in the microneedle detachments when inserted in the
skin and exposed to interstitial fluids [76]. The interaction with aqueous interstitial fluids
dissolves the excipients in the microneedle coating, then the detachment process occurs on
the microneedle surface. The rate of drug release within the skin relies on the interstitial
solubility of the coating excipients. It is very important to remove the microneedles from
the skin surface when the coating detachment process from the microneedle surface is
complete [76]. Figure 5 illustrates the action of coated microneedles.
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Single patches and arrays or multiple microneedle patches can be coated using a
micron-scale dip-coating method [77]. The microneedle coatings have been developed by
immersing the microneedle array in a coating and withdrawing it at an optimized speed.
The study stated that the withdrawal speed of the microneedles from the coating solution
was sustained manually at approximately 2 mm/s and 0.35 mm/s for film processing
and pocket filling, respectively [78]. The coating uniformity was then evaluated using
fluorescence or bright-field microscopy [26,78]. As mentioned before, although dip-coating
is an old method, it is still important for coating microneedles due to its ease of use.
However, surface tension (which is prevalent on the micron scale) and its effects, capillary
and viscous forces, can affect the microneedle array substrate leading to an uncertain or
diminished amount of drug [79]. In another study, the coating fluid was evenly applied to
the surface of a 10 mm diameter roller to create a thin drug formulation film with a solution
layer of approximately 200 µm. The microneedles were then horizontally connected to the
cut-off device. The height of the tips of the microneedles was 50 µm lower than the top of
the device. The roller was located at the top of the device and rotated at a linear speed of
0.3 cm/s. During the rotating process, the coating fluid was attached to the surface of the
tips of the microneedles. The fabricated microneedles were vacuum dried and frozen [77].

Furthermore, the study reported a dip-coating process with 3D printed fixtures and
microneedle plates. The preferred fixtures and microneedle plate were first drafted in Auto
CAD software (Autodesk, Mill Valley, CA, USA) before being 3Dprinted. A polyformalde-
hyde plate was designed to separate the polylactic acid microneedles and the solution. To
fabricate coated microneedles device, the parts were combined and then the microneedle
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shafts were dipped into the reservoir while being carefully monitored and controlled by
a microscope connected to a computer. In the fabrication process, the portable holder
went down at a pace of 10 mm/min, till it reached a coating solution from a reservoir.
Microneedles were immersed then moved with a steady speed of 10 mm/min. Fixtured
parts were dissembled, and the coated microneedles were observed by the microscope,
vacuum dried and frozen [77].

5. Applications of Microneedles Technologies: Biomedical Applications
5.1. Microneedles Anticancer Agents

In recent years, cancer vaccines (immune- and gene-based therapies) have demon-
strated encouraging anti-cancer effects and gained great interest from the scientific com-
munity [80]. Microneedles can penetrate the stratum corneum of the skin, typically above
200 µm deep, and release their drug contents upon interaction with interstitial fluid. This
makes them important transdermal drug delivery vehicles in cancer therapeutics [81].
The insertion of hypodermic needles into the skin causes pain, irritation and generates
hazardous wastes: side-effects which can almost be eliminated by microneedle-based drug
delivery systems [16]. In addition, microneedles may contain the vaccine as a dried solid,
which enhances its thermal stability and eases its administration to the target site [82].
Figure 6 shows some innovative microneedle-based anticancer therapeutic strategies.

Polymers 2021, 13, x  11 of 24 
 

 

 
Figure 6. (A) Treating superficial tumors synergistically using chemotherapy and photothermal therapy. Dissolvable mi-
croneedles fabricated from hyaluronic acid (HA) were loaded with DOX. The drug-loaded microneedles were then incor-
porated with gold nanocages and exposed to near-infrared light, thereby combining chemotherapy and photothermal 
therapy. Adapted with permission from [83]. Copyright © 2021, American Chemical Society. (B) Microneedle-based mel-
anoma immunotherapy. An anti-PD1 antibody was loaded onto an HA-based microneedle delivery system thereby com-
bining PD1 and 1-MT to impede the enzyme, IDO, as an immunotherapeutic strategy for melanoma. Adapted with per-
mission from (Wang et al., 2016a). Copyright © 2021, American Chemical Society. (C) Dissolvable PVA/PVP containing a 
polycaprolactone formulation was used to fabricate a light-sensitive microneedle patch. The polycaprolactone was com-
posed of a chemotherapeutic drug, DOX, and photothermal nanoparticles which both acted in synergy for the treatment 
of dermal tumors. Upon exposure to near-infrared light, the microneedle patch melted at 50 °C and released DOX for local 
therapy. Reproduced with permission from [84]. Copyright © 2021, American Chemical Society. (D) The treatment of 
cervical cancer by applying a polymeric polyvinylpyrrolidone microneedle patch comprised primarily of the peptide 
RALA and DNA vaccine. Reproduced with permission from [85]. 

5.2. Immune Therapies 
Immune-based vaccines for cancer function by stimulating the host’s systemic im-

mune reaction to eliminate the tumor tissue [86]. Immune-based methods typically inves-
tigate the delivery of vaccines to the skin, the body’s main immunological organ that is 
heavily populated with antigen-presenting cells (APCs), such as dendritic cells, macro-
phages, and Langerhans cells [87]. When activated, these APCs can activate the CD4+ and 
CD8+ T and B cells and hence stimulate a systemic antitumoral immune response [88,89]. 
Kim et al. (2019) fabricated a biodegradable microneedle patch that delivers a conjugate 
of hyaluronic acid (HA) and antigenic peptides for prophylactic cancer immunotherapy. 
HA was conjugated with cytotoxic T-cell epitope peptide (SIINFEKL), which was incor-
porated to a biodegradable HA microneedle patch to effectively deliver the antigen trans-
dermally. The authors found that the HA-SIINFEKL conjugates loaded into microneedles 
were located near the site of administration of the microneedles, showing a long-term res-
idence of above 24 h after delivery. In B16 melanoma model mice, tumor development 
was inhibited significantly through improved cytotoxic T-cell antigen-specific responses 
after only a single transdermal microneedle patch vaccination containing HA-SIINFEKL 
conjugates [90]. Considering recent developments in the treatment of melanoma using 
anti-PD-1 (aPD1) antibodies, there is still a need to enhance the effectiveness of this pro-
cess (Wang et al., 2016a). The above authors reported a revolutionary biodegradable mi-
croneedle patch for the continuous and physiologically controllable distribution of aPD1. 
The microneedles consist of biocompatible HA-containing aPD1-encapsulating pH-sensi-
tive dextran nanoparticles and glucose oxidase (GOx) that transforms blood glucose into 

Figure 6. (A) Treating superficial tumors synergistically using chemotherapy and photothermal therapy. Dissolvable
microneedles fabricated from hyaluronic acid (HA) were loaded with DOX. The drug-loaded microneedles were then
incorporated with gold nanocages and exposed to near-infrared light, thereby combining chemotherapy and photothermal
therapy. Adapted with permission from [83]. Copyright © 2021, American Chemical Society. (B) Microneedle-based
melanoma immunotherapy. An anti-PD1 antibody was loaded onto an HA-based microneedle delivery system thereby
combining PD1 and 1-MT to impede the enzyme, IDO, as an immunotherapeutic strategy for melanoma. Adapted with
permission from (Wang et al., 2016a). Copyright © 2021, American Chemical Society. (C) Dissolvable PVA/PVP containing
a polycaprolactone formulation was used to fabricate a light-sensitive microneedle patch. The polycaprolactone was
composed of a chemotherapeutic drug, DOX, and photothermal nanoparticles which both acted in synergy for the treatment
of dermal tumors. Upon exposure to near-infrared light, the microneedle patch melted at 50 ◦C and released DOX for
local therapy. Reproduced with permission from [84]. Copyright © 2021, American Chemical Society. (D) The treatment of
cervical cancer by applying a polymeric polyvinylpyrrolidone microneedle patch comprised primarily of the peptide RALA
and DNA vaccine. Reproduced with permission from [85].
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5.2. Immune Therapies

Immune-based vaccines for cancer function by stimulating the host’s systemic immune
reaction to eliminate the tumor tissue [86]. Immune-based methods typically investigate
the delivery of vaccines to the skin, the body’s main immunological organ that is heavily
populated with antigen-presenting cells (APCs), such as dendritic cells, macrophages, and
Langerhans cells [87]. When activated, these APCs can activate the CD4+ and CD8+ T
and B cells and hence stimulate a systemic antitumoral immune response [88,89]. Kim
et al. (2019) fabricated a biodegradable microneedle patch that delivers a conjugate of
hyaluronic acid (HA) and antigenic peptides for prophylactic cancer immunotherapy. HA
was conjugated with cytotoxic T-cell epitope peptide (SIINFEKL), which was incorporated
to a biodegradable HA microneedle patch to effectively deliver the antigen transdermally.
The authors found that the HA-SIINFEKL conjugates loaded into microneedles were lo-
cated near the site of administration of the microneedles, showing a long-term residence of
above 24 h after delivery. In B16 melanoma model mice, tumor development was inhibited
significantly through improved cytotoxic T-cell antigen-specific responses after only a sin-
gle transdermal microneedle patch vaccination containing HA-SIINFEKL conjugates [90].
Considering recent developments in the treatment of melanoma using anti-PD-1 (aPD1)
antibodies, there is still a need to enhance the effectiveness of this process (Wang et al.,
2016a). The above authors reported a revolutionary biodegradable microneedle patch
for the continuous and physiologically controllable distribution of aPD1. The micronee-
dles consist of biocompatible HA-containing aPD1-encapsulating pH-sensitive dextran
nanoparticles and glucose oxidase (GOx) that transforms blood glucose into gluconic acid.
The low-pH environment generated facilitates the self-dissociation of nanoparticles and
leads to the significant release of aPD1. Research by Wang et al. (2016a) showed that
administering a single dose of the microneedle patch induced potent immune reactions
in the B16F10 murine melanoma (skin cancer) model. In addition, this administration
technique can be paired with an immunomodulator such as anti-CTLA-4 to improve the
potency of an antitumor agent [91]. Considering the immense potential of DNA-based
cancer vaccines, their successful delivery to antigen-presenting cells (APCs) to trigger the
immune response is still a major obstacle (Irvine et al., 2015). While transfection by electro-
poration has enhanced efficiency, an ideal method for comfortable and painless vaccination
is poorly understood. Irvine et al. (2015) reported a smart, nano-engineered DNA vaccine
microneedle delivery system. The DNA vaccines were loaded onto microneedles coated
with ultra-pH-responsive (polyethylene glycol-polyamino ester urethane ((OSM-(PEG-
PAEU)) and a synthetic double-stranded RNA, poly (inosinic:cytidylic acid) (poly(I:C)),
as an immunostimulatory agent. The study further stated that the engineered use of a
vaccine and an adjuvant such as poly (I: C) in microneedles triggers immunity, which offers
a promising vaccine technology that demonstrates enhanced effectiveness, conformity, and
protection [88].

DNA can be easily transfected to APCs in the skin using dissolvable microneedles [85].
Nevertheless, this technique is characterized by the low transfection efficacy of pDNA and
the small loading capability of microneedle systems. Distribution platforms incorporating
microneedle systems and DNA delivery vectors show improved performance, but the
problem of enhancing load capability persists. The research also stated that lyophilization
was used to enhance the loading of RALA/pDNA nanoparticles in polyvinyl alcohol
microneedles. Microneedle arrays preserve their structural and functional stability during
short-term storage and can induce gene expression both in vivo and in vitro. Lastly, this
innovative therapeutic formulation greatly slowed the development of existing tumors
in a preclinical cervical cancer model and proved to be preferable to the conventional
intramuscular injection [85]. Effective transmission of tumor antigens and immunostimu-
lants to lymph nodes is essential for the maturation and subsequent activation of APCs,
which further activates adaptive antitumor immunity [92]. Dissolving microneedle systems
are considered desirable forms of transdermal immunization because of their excellent
ability to administer vaccines via in a minimally invasive manner via the stratum corneum.
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Nevertheless, it is difficult to produce dissolving microneedles with poorly water-soluble
vaccine components since they are typically formulated using aqueous-soluble polymers
for speedy dissolution in intradermal fluids following administration.

The successful transmission of antigens to APCs, especially dendritic cells (DCs) and
their consequent activation, is still a major difficulty in the production of efficient vaccines.
Moreover, vaccine immunogenicity can be improved by using antigen-loaded microneedle
arrays to target contiguous networks of DCs within the skin [93]. DCs in the skin could de-
liver antigen-loaded poly (D, L-lactide-co-glycolide) (PGLA) nanoparticles to skin-draining
lymph nodes after in situ absorption, where they subsequently activated T cell expansion
in an antigen-specific manner. It was demonstrated that microneedle vaccination of mice
with antigen-loaded nanoparticles stimulated strong antigen-specific cellular immune
responses [93]. Another study explored the in vitro microneedle-mediated transdermal
delivery of human IgG as a model protein to deliver a monoclonal antibody [94]. Using
methylene blue staining, microchannels created by the treatment of maltose microneedles
with complete hairless rat skin thickness was visualized. In vitro penetration experiments
were performed using freshly excreted, full-thickness hairless rat skin and different param-
eters such as needle length, number of needles and donor concentration effect were studied.
Immunohistochemical (IHC) studies have traced the path of IgG transport across the skin.
This study confirmed that the delivery of human IgG increased with the increase in mi-
croneedle arrays, microneedle concentration and length. In addition, maltose microneedles
provided a means for the transdermal delivery of macromolecules [94].

5.3. Anticancer Therapeutic Drugs

Cancer remains a debilitating and deadly global disease against which multifaceted
therapeutic strategies, including the use of microneedle arrays, have been developed. In a
study by Uddin et al. (2020), a 3D-printed polymeric microneedle array was manufactured
for improved delivery of cisplatin to A-431 melanoma tumors for cancer treatment. The
microneedle arrays were produced using stereolithography (SLA), after which cisplatin
formulation was coated on the microneedle surfaces. Optical accuracy tomography ex-
amination of the 3D printed microneedles displayed an impressive penetrating capability
of 80% penetration depth. In addition, rapid rates of cisplatin release of 80–90% were
shown in Franz’s cell diffusion studies in 1 h. Moreover, in vivo Balb/c nude mice were
sufficiently permeated by cisplatin leading to enhanced antitumor activity and tumor
regression. Using 3D-printed microneedle arrays establishes an efficient strategy by which
anticancer drugs can be delivered transdermally, in vivo [95]. In another study, biocompati-
ble and bioresponsive microneedles fabricated using gelatin methacryloyl (GelMA), loaded
with the anticancer drug, doxorubicin (DOX), demonstrated sustained drug release and
efficient transdermal therapeutic delivery [96]. DOX was loaded into GelMA microneedles
using a single molding stage. The effectiveness of the DOX released from the GelMA
microneedles was tested and the efficacy of the released melanoma cell line A375 drugs
against cancer was demonstrated. Since GelMA is a flexible material for engineering tissue
scaffolds and GelMA microneedles could reach the stratum corneum of mouse skin cadaver
effectively, the GelMA microneedles could be used as a tool for the delivery of different
therapeutics [97].

It is well known that even though cisplatin is a first-line chemotherapeutic drug, its
clinical application is heavily limited by its systemic toxicity and adverse effects. A research
study by Lan et al. (2018) showed that lipid-coated cisplatin nanoparticles (LCC-NPs)
could be delivered transdermally using dissolvable microneedles for effective and safe
anticancer therapy. Cisplatin showed a high rate of encapsulation of 80% into tumor-
targeting, pH-responsive lipid nanoparticles. The high encapsulation rate greatly increased
cisplatin solubility and improved its antitumor cytotoxic effect in vitro. The research fur-
ther claimed that the LCC-NPs were trapped in dissolvable microneedles and released after
they had been injected intradermally. This study showed that the cisplatin-nanoparticle
microneedle system exhibits promising anticancer therapeutic properties by increasing
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cytotoxic anticancer effects and decreasing side effects [83]. Surgery and systemic therapy
are common therapeutic interventions for superficial skin tumors (SSTs). However, surgery
is comparatively invasive and systemic chemotherapy can induce several side effects [83].
However, topical treatment is faced with limited transdermal potential due to the barrier
of the stratum corneum. It is therefore important to establish an efficient transdermal
treatment strategy with minimal invasiveness for the treatment of SST. Dong et al. (2018)
created gold nanocages (AuNC)-and DOX-charged hyaluronic acid dissolving microneedle
arrays. In addition to improving the mechanical strength of the microneedles, the loaded
AuNCs are also powerful agents for photothermal therapy against SST. The resulting MNs
easily penetrate tissue, melt the skin, and expel lumps from the tumor location. The pho-
tothermal effect of AuNCs generated by near-infrared laser irradiation combined with the
chemotherapeutic effect of DOX showed enhanced tumor cytotoxicity after four rounds of
therapy on SST murine models. The drug/AuNC-loaded dissolving microneedles system,
therefore, provides a promising forum for effective safe, minimally invasive combination
SST treatment [83]. Frequent and multimodal therapies are required due to aggressiveness
and the recurring existence of cancers. The risk of severe systemic toxicity and debilitating
side effects is present in conventional cancer treatments. It is, therefore, important to create
an alternative modality of anticancer therapy that is effective, shows minimal invasiveness,
and displays low toxicity. Chen et al. (2016a) achieved synergistic anti-cancer cytotoxic
effects on superficial tumors by designing a light-activating microneedle therapeutic de-
vice that can concurrently and repeatedly administer chemotherapy and photothermal
therapy. This device consisted of polycaprolactone microneedles comprising a lanthanum
hexaboride, a photosensitive nanomaterial, doxorubicin (DOX), and a protective collection
patch of dissolvable poly(vinyl alcohol)/polyvinylpyrrolidone. The study proposed that
the embedded microneedle array heats the target tissue equally to cause a massive thermal
ablation region and then melts at 50 ◦C to unleash DOX in a wide area when exposed to
near-infrared radiation, thus killing tumors. This light-induced heating and drug release
activity can be specifically triggered for multiple cycles on- and off-demand [84].

5.4. Diabetes

Research using diabetic rats have shown that the transdermal ingestion of insulin
from microneedles occurs within 1 h of exposure to the skin of rats in vivo after complete
microneedle dissolution. In one study, which aimed at reducing the blood glucose levels in
streptozotocin-induced diabetic rats, arrays of solid, insulin-infused microneedles were
fabricated from a stainless-steel sheet and injected into their skin for the transdermal insulin
delivery. As indicated by radioimmunoassay, the solid metal microneedles increased
transdermal insulin distribution and lowered the levels of blood glucose in diabetic rats by
80% [98]. In another study, a dissolving microneedle patch was fabricated using gelatin and
starch for effective transdermal insulin delivery [99]. Microneedles dissolve completely
after they have been inserted into the skin for about 5 min, rapidly delivering their loaded
contents into the skin. In one study, insulin-loaded microneedles were administered
to diabetic rats to investigate the practicality of dissolvable microneedles in diabetes
management [99]. The pharmacological availability and bioavailability of insulin were
estimated to be 92%, showing that insulin maintains its pharmacological activity after
being released from the dissolving microneedles [99]. Another research investigated skin
perforation by commercially available microneedle rollers for the transdermal delivery of
insulin to diabetic rats in vivo [100]. The research demonstrated that the rapid decrease in
blood glucose levels in 1 h which was also directly associated with recovery, was caused
by an increase in insulin permeability of the skin following the application of microneedle
rollers. According to the study, microneedle rollers with a length of 500 µm or less are
healthy and effective for in vivo transdermal insulin delivery [100].

Transdermal insulin delivery remains a critical problem because of low levels of thera-
peutically beneficial permeation. Research by Chen et al. (2009) reported that nanovesicles
can be guided by iontophoresis to facilitate transdermal insulin delivery through skin
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microchannels created by microneedles. Insulin permeation concentrations from these
nanovesicles powered by iontophoresis by microneedle-induced microchannel skin were
several hundred times higher than those of passive diffusion [101]. In other research, the
authors created new insulin-loaded microneedle arrays fabricated from hyaluronic acid
(HA) for transdermal insulin delivery to rats. After dermal treatment, the insulin encapsu-
lated HA microneedles with self-dissolving properties induce the rapid release of insulin.
Pharmacokinetic and pharmacodynamic findings showed that the insulin delivered by HA
microneedles was efficiently absorbed from the skin into the bloodstream. Moreover, the
hypoglycemic effect induced by insulin-charged microneedles was almost identical to that
of subcutaneous insulin injection. The data suggest that the insulin-charged microneedles
made from HA represent an important alternative strategy of supplying insulin through the
skin to the blood circulation without risking significant skin injury [102]. In an innovative
research study, polymer-based microneedle patches were produced using a 3D printing
process known as stereolithography for transdermal insulin administration [103]. The resin
was photopolymerized to create pyramid and cone microneedle prototypes accompanied
by inkjet printing of insulin formulations. Mannitol, trehalose, and xylitol were used
as drug carriers to maintain the stability and integrity of insulin, while also promoting
rapid release speeds. The insulin carriers retained their native form as shown by circular
dichroism and Raman spectroscopy. Insulin was released easily, independently of the
microneedle configuration, within 30 min. Overall, the data demonstrated that 3D printing
is a successful technique for the manufacture of scalable and biocompatible microneedle
patches [103]. In another study (Tong et al., 2018), a double-responsive insulin delivery
system was developed to combine glucose- and hydrogen peroxide-responsive polymeric
vesicles (PVs) with transdermal microneedle patches that showed excellent biocompatibil-
ity and painless administration. The drug-loaded polymeric vesicles effectively released
insulin in response to hyperglycemia insulin and glucose oxidase (GOx) encapsulation.
The rate of release of insulin reacted rapidly to increased glucose levels could be further
enhanced by GOx, and induced hypoglycemia similar to that of subcutaneous injection
or just insulin-charged microneedles. Hence, microneedle-mediated transdermal insulin
delivery may be of considerable value for diabetic therapy [104].

In another study, calcium ion crosslinked alginate/maltose composite microneedles
were developed by a template process for transdermal insulin administration in diabetic
model rats. The alginate/maltose microneedles displayed a marked hypoglycemic ef-
fect with a higher relative bioavailability and relative pharmacological availability of
93.7 ± 4.7% and 94.1 ± 5.6%, respectively, when compared with the subcutaneous injection
route [105]. Furthermore, in other research, polymer-based insulin-laden microneedle
patches formulated with improved alginate and hyaluronate were produced and tested on
diabetic mice to monitor their glucose levels in vivo using pharmacodynamic tests [106].
The insulin released from microneedle patches had a relative pharmacological availability
and relative bioavailability of 90.5 ± 6.8 and 92.9 ± 7%, respectively. These findings indi-
cate that the microneedles produced in this study have a promising use via transdermal
delivery in diabetes care [106]. Even though proteins are effective biological therapies for
treating different diseases, the transdermal delivery of protein therapeutics faces a major
obstacle because of the low bioavailability and skin permeability. Research by Seong et al.
(2017) introduced a new approach for the transdermal administration of proteins drugs
using a double-layer, bullet-shaped microneedle array of water-swelling tips. Insulin was
administered to the swelling tips utilizing a mild drop/dry process. In vivo, the sustained
release of insulin from swellable microneedle patches led to a gradual decline in blood
glucose levels [107].

In another study, an innovative microneedle drug delivery device which was fab-
ricated by incorporating an insulin-loaded, hydrogen peroxide-responsive mesoporous
silica nanoparticles displayed quick and pain-free delivery [108]. The hypoglycemic effect
detected over time after transdermal injection into diabetic rats compared to subcutaneous
injections revealed that the pre-prepared microneedles systems, H2O2, have promising
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applications in the treatment of diabetes [108]. A phase transition microneedle (PTM) patch
is another innovative microneedle device that takes advantage of the unique virtue of
polyvinyl alcohol (PVA) to form microcrystalline domains as cross-linking junctions. The
PTM patch efficiently delivers insulin transdermally to the skin of pig models [109]. The
study showed that insulin-charged PTM showed a transdermal bioavailability of more
than 20% in the pharmacokinetic and efficacy trials using pig models The PTM patch could
apply to several protein/peptide drugs which require regular dosing by providing painless
management, freedom from refrigeration and limited concerns on safety [109].

5.5. Viral Disease

The administration of long-acting antiretroviral (ARV) medicines for preventing and
treating human immunodeficiency virus (HIV) is one way to tackle its transmission. To
create a discreet autonomous vehicle for delivering these ARV therapeutics, conformity
with everyday oral regimes may be avoided. Developing options, such as intramuscular
(IM) long-acting injections, involve daily access to health care and disposal facilities. This
concept has therefore been established to test the use of the ARV candidate’s nanosuspen-
sion (LA) of rilpivirine dissolving microarray patches (MAPs) (RPV). MAPs are physically
stable and can penetrate the skin, thereby delivering RPV intradermally. MAPs could
enhance patient acceptability and conformity with HIV prevention and regimens. It could
also battle incidents of needle-stick injury and blood-borne diseases transmission with
wide-ranging benefits for those in the developed world in particular [110]. Acyclovir is
commonly used to treat herpes labialis (cold sores), normally caused by Herpes simplex
type 1 viruses (HSV-1). Topical acyclovir, however, is poorly effective as it is poorly perme-
able to the skin. In a research study, Pamornpathomkul et al. (2018) aimed to determine
whether polymer microneedles can be dissolved to boost local acyclovir distribution. They
developed water-soluble Gantrez S-97 mixtures with the dissolving microneedle arrays
filled with acyclovir. After applying 0.089 N per needle force for 30 s, the microneedles
penetrated neonatal porcine tissue, demonstrating adequate mechanical strength to stand
compaction. Moreover, by using the microneedles, acyclovir accumulated at the basal
epidermis, the target site of the herpes simplex virus, at up to 21.5 µg/cm3 in vitro, ap-
proximately five times greater than the 99% viral cytopathic effect inhibition (ID99) needed
for HSV infections. The data demonstrated a promising approach to the successful locally
delivery of acyclovir by acyclovir filled dissolving microneedle arrays [111]. In another
study, a novel lamivudine (LAM) drug delivery system (NDDS) was designed to address
the short-life disadvantages associated with LAM. Polymeric LAM-loaded nanoparticles
were prepared to accomplish this aim and their transdermal delivery was investigated
through passive and microneedle-mediated transport. Herein, nanoparticles were pre-
pared using a double emulsion-solvent evaporation process using polylactic-co-glycolic
acid (PLGA) and bovine serum albumin (BSA) as polymers and stabilizers. To prepare
LAM-loaded nanoparticles, two separate LAM concentrations (10 and 20 mg/mL) were
used (NP10 and NP20, respectively). Ramadan et al. (2016) recorded a steady-state NP20
stream values of 7.49 ± 1.46 µg·cm−2·hr−1 and 15.77 ± 1.5 µg·cm−2·hr−1 for pretreatment
skin and the microneedle-related skin. They stated that the steady-state flow of LAM-
loaded NP20 across the skin treated with microneedles was substantially higher than that
of passive transport across untreated skin [112]. Patches of microneedles are becoming
increasingly relevant as an alternate method for vaccine delivery. From 2007 through
2008, an approved seasonal influenza vaccine was developed using microneedles from
TheraJect (VaxMat). Antigens mixed with trehalose and sodium carboxymethyl cellulose
were embedded in the tips of the microneedles. The patches containing 15 µg per flu
antigen strain were commonly characterized to affirm the stability of the antigen in mi-
croneedles after being produced. It became impossible to classify with the use of standard
radial immuno-diffusion study through the presence of excipient and very low vaccine
concentration on the microneedle plates. Kommareddy et al. further stated that new
strategies such as the capture of antigens in the microneedle-patches, the enzyme-linked
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tests and enzyme digestion, accompanied by mass testing, were used. The in vivo mice
immunogeneity of monovalent H1N1 at doses of 0.1 and 1 µg and trivalent vaccine at dose
1 µg were observed in mice after microneedle administration. The initial results from the
mouse experiments are encouraging and demonstrate that the microneedle technology is
feasible for the delivery of influenza vaccines [113].

5.6. Bacterial Disease

Microneedles are microscale projections used for the transdermal delivery of a vast
variety of drugs, including antimicrobials. Dissolvable polymeric microneedles (DPMNs)
are exciting transdermal drug delivery mechanisms with reduced invasiveness and in-
creased patient compliance. The integration of a small amount of graphene oxide (GO)
into biocompatible polymers for microneedle fabrication results in substantial new DPMN
properties. These properties include significantly enhanced mechanical strength, increased
moisture tolerance, anti-inflammatory and antibacterial properties, self-sterilization, and
near-infrared light-activated controllers. These new properties increase their effectiveness
and ease of use as transdermal products, enhance their ability to monitor drug release,
extend the spectrum of polymers that can be used in the manufacture of DPMN, avoid
microbial contamination during storage and transport, and minimize the risk of infection
in clinical applications [114].

Another study revealed that a patch with the potential to prevent bacterial infections
and facilitate tissue remolding is of great benefit for wound healing [115]. Chitosan, which
is commonly used for wound healing, has many excellent qualities such as an inherent
antibacterial property The authors utilized a chitosan microneedle biomass (CSMNA) to
fabricate a patch with a smart, thermo-responsive drug delivery strategy to facilitate healing
of wounds Chitosan, which is commonly used for wound healing, has many excellent
qualities such as an inherent antibacterial property. The microstructure of microneedles
also allows the efficient supply to this target area of loaded substances and prevents undue
adhesion from the skin to the patch. Moreover, in the CSMNA micropores, the endothelial
vascular growth factor (VEGF) is incorporated in a thermosensitive hydrogel. The smart
release of pharmaceutical agents is thus controllable by a rising temperature triggered by
inflammation at the wound site. It was shown that during wound closure, the CSMNA
patch could facilitate angiogenesis, and tissue regeneration, making it potentially useful
for clinical wound care [115]. Another research study assessed the use of hyaluronic acid
(HA) and green tea extract (GT) antibacterial microneedles, to efficiently deliver green tea
(GT) [116]. The researchers used a mold-based technology to manufacture a transdermal
delivery system for antibacterial therapeutics using GT/HA microneedle patches with a
maximum surface area of approximately 50 mm2. A decline of 95% of the growth of gram-
negative (S. typhimurium) Escherichia coli, and Salmonella typhimurium and gram-positive
bacteria (S. Aureus) and Bacillus subtilis [116].

Owing to its painless, non-invasive, and effective medical distribution methods, mi-
croneedles have become increasingly applied in different medical fields. However, their
low adhesion and slow anti-microbial behavior continue to limit the functional applica-
tions in the various epidermal sites and habitats. In one study, hierarchical microneedles
with multifunctional adhesives and antibacterial capacity were fabricated, based on Paeni-
bacillen’s antibacterial techniques and adhesion mechanisms of mussel byssi and octopus
tentacles [117]. The microneedles can suit the skin well, sustain a tight connection in dry,
damp, or wet conditions, using polydopamine hydrogel as the base and a circle of suction-
cup-built concentric chambers surround each microneedle; and conduct self-reparation
after a break in doubles. As the hydrogel and polydopamine base load polymyxin, the
microneedles have an excellent ability to withstand typical bacteria during storage and use,
and high mechanical resistance. The micro-adhesives demonstrated excellent adherence
and antibacterial function, not only when used in knuckles but also on osteoarthritis rat
models. These findings demonstrate that bio-inspired microneedles break through the
constraint of conventional methods and are perfect candidates for scalable transdermal
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drug systems [117]. As therapeutic agents have recently been reawakened, researchers have
shown interest in the use of bacteriophages, especially for drug delivery, especially par-
enterally. However, phage injection has many drawbacks, such as management necessity
and the risk of cross-contamination of healthcare providers. In this study, the transdermal
administration of E. coli T4 bacteriophages in vitro and in vivo was based on new hollow
microneedle poly(polycarbonate) (PC). Bacteriophage transmission was successful with
microneedle in vitro via the full-skin thickness and dermatome skin. High levels of plaque
formation per mL in the recipient compartment were established when transmitted over
dermatome skin, and when delivered over a full-thickness skin, high concentrations were
found in the receiver compartment. In in vivo experiments, the first microneedle-mediated
phage administration resulted in 4.13 to 103 plaque-forming units/mL being observed in
blood after 30 min. Clearance soon happened, with systemic circulation fully eliminated
within 24 h with phages predicted to occur in the absence of infection. Ryan et al. (2012)
showed here that microneedle-mediated transmission helps systemic phage absorption
to succeed. Thus, bacteriophage treatments now will provide a systematic alternate route
of delivery [118]. A major problem in the healing process is the presence of bacterial
biofilms in wounds. Permana et al. (2020) proposed a hybrid approach to enhancing
biofilm penetration and specifically the distribution of doxycycline (DOX) to the infection
site, using bacteria-sensitive nanoparticles (NPs) made from poly(lactic-co-glycolic acid),
poly(poly-caprolactone) and chitosan to fabricate dissolvable DOX microneedles. With the
integration of these NPs in microneedles the dermatokinetic profiles of DOX were dramati-
cally improved by higher retention times comparison with needle-free patches [119].

5.7. Ocular Microneedle Delivery

Eye disorders and accidents are a major clinical concern worldwide. However, the
safe and efficient delivery of eye medications is difficult due to the existence of eye barriers.
Most eye diseases are treated with the use of eye drops or eye ointments, which have
significant disadvantages such as frequent administration, reduced bioavailability, and
the inability to cross various eye barriers. An alternative novel delivery system such as
microneedles aims to provide treatments with promising health outcomes for diverse
eye diseases. Developments in pharmaceutical technology have resulted in microneedles
providing localized, effective, less invasive, and targeted delivery of drugs to the eye [120].
Figure 7 shows the cross-section of the eye and the region for microneedle application.
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Nevertheless, current microneedle devices have a limited drug-carrying capability owing
to the broad spectrum of sizes that may be needed to deliver therapeutically appropriate
doses. This may restrict their potential for clinical ocular delivery [118]. To overcome this
limitation, titanium deep reactive ion etching (Ti DRIE) was used to generate microneedles
with complex fenestrations or windows, which function as reservoirs for passive drug
delivery. It was demonstrated that the developed microneedles devices showed sufficient
stiffness for reliable insertion into ex-vivo rabbit corneas. In addition, it has been shown
that these tools can increase the drug loading ability of microneedles by up to five times
compared with solid microneedles of similar size, and also increased the drug release in
the sub-surface of the rabbit cornea [121]. The dissolving microneedles used by Thakur
et al. (2016) were found to boost the delivery of ocular macromolecules. Microneedles
were produced using different molecular weights of polyvinylpyrrolidone (PVP) polymer.
Conical PVP microneedle arrays of approximately 800 µm in height with a base diameter
of 300 µm, comprising the drug model, were produced. On average, the microneedle drug
content ranged from 0.96 to 9.91 µg. The study further revealed that the use of microneedles
across corneal and scleral tissues in vitro studies demonstrated substantial increases in
macromolecule permeation compared with aqueous solutions that were topically applied.
As shown by confocal images, the macromolecules developed tissue depots which resulted
in a persistent permeation [122]. Detachable microneedle technology is highly attractive for
the treatment of eye disorders such as keratitis or glaucoma due to its reduced invasiveness
and consistent drug delivery [123]. Shortening the administration time during microneedle
insertion into target tissues, remains an important issue, although different methods have
been attempted using mechanical and chemical separation mechanisms. The researchers
fabricated a quickly detachable microneedle pen (RD-MNP) featuring a porous sacrificial
dissolving coating for instant separation of the tip. Water-soluble polymers are used in
the sacrificial layer: poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP). They
showed that the pore size and distribution of the sacrificial layer were controlled and that
the separation of an RD-MNP with the optimum pore structures is immediate when the
MNP is dipped into a phosphate buffer solution. In addition, gelatin phantom and porcine
eye sclera were used to study the insertion properties of the system. A microneedle tip
is almost instantly removed and embedded into the porcine sclera with the optimized
sacrificial layer with the aid of impact insertion [123]. Enhanced targeting of drug delivery
to the posterior region of the eye is critical for the treatment of several post-segment eye
conditions. Iontophoresis can be employed to transmit negatively charged nanoparticles
to the posterior pole of the eye via the suprachoroidal space (SCS) [124]. The ex vivo
injection of nanoparticles into the rabbit eye SCS without iontophoresis has been reported
to contribute to the distribution of nanoparticles mainly located at the injection site near the
limbus and <15% of the nanoparticles distributed to the most posterior SCS area (>9 mm
from the limbus). However, the iontophoresis increased posterior targeting by >30% when
the novel microneedle-based device was utilized. The study further reported that the
treatment was well tolerated, with only moderate, intermittent tissue effects at the injection
site. Using microneedle iontophoresis in the SCS promises to target the delivery of eye
drugs within the eye, particularly to the posterior pole [124].

In another study, researchers used a technique in which an eye patch was fitted
with detachable microneedle arrays containing micro reservoirs for regulated ocular drug
delivery [125]. The researchers indicated that in a corneal neovascularization disease model,
the transmission of anti-angiogenic monoclonal antibody (DC101) to such an eye patch
induces a reduction of ~90% in the neovascular region. In comparison, the accelerated
release of an anti-inflammatory agent (diclofenac) followed by a prolonged release of
DC101 offers a synergistic clinical effect [125]. The application of an eye patch is simple
and ensures good patient compliance due to its minimal invasiveness. Such an intraocular
drug delivery strategy ensures successful home-based care for many eye disorders [125].
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6. Conclusions and Future Perspectives

The transdermal delivery of a wide variety of molecules has proven to be successful
in a wide range of forms and designs. It is now possible to massively extend the spectrum
of medications for successful transdermal delivery. This will greatly increase the impor-
tance of the transdermal delivery market which will become progressively relevant as the
number of novel drugs continues to rise. Clinical trials on a small scale have highlighted
the attractive attributes of microneedle-based devices, such as little discomfort, minimal
invasiveness, mild inflammation if any and full regeneration of the skin within a few hours.
In the monitoring of non-invasive therapeutic drugs/analytes, the possibilities for closure
delivery systems may become significant. Microneedle technologies may also be used for
further development. Focus group analyses define crucial areas for the advancement of
the technology that must be explored by the Microneedles Ideology. This ensures that
any patient will use reproducible microneedles and that successful insertion is verified. A
substantial number of small and major industry players are currently engaged in clinical
trials to commercializing their respective microneedle-based products. In future research,
possible regulatory issues regarding the usage of microneedle devices will be discussed and
the methods planned and developed to ensure low-cost, reliable means of mass production
of microneedles. Overall, the future of the microneedles market looks to be very promising,
with the rapid growth of the fundamental modern knowledge feed industry. It is hoped,
in due course, that microneedles-based technical developments would contribute to im-
proved disease detection, diagnosis and management, while at the same time enhancing
the health-related quality of life for patients worldwide.
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