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Abstract

Hypothyroidism is often associated with elevated serum levels of total cholesterol, 
LDL-C and triglycerides. Thyroid hormone (TH) affects the production, clearance and 
transformation of cholesterol, but current research shows that thyroid-stimulating 
hormone (TSH) also participates in lipid metabolism independently of TH. Therefore, 
the mechanism of hypothyroidism-related dyslipidemia is associated with the decrease 
of TH and the increase of TSH levels. Some newly identified regulatory factors, such as 
proprotein convertase subtilisin/kexin type 9, angiogenin-like proteins and fibroblast 
growth factors are the underlying causes of dyslipidemia in hypothyroidism. HDL serum 
concentration changes were not consistent, and its function was reportedly impaired. 
The current review focuses on the updated understanding of the mechanism of 
hypothyroidism-related dyslipidemia.

Introduction

Hypothyroidism, including overt and subclinical 
hypothyroidism is a common disease among people. The 
former is defined as increased serum thyroid-stimulating 
hormone (TSH) levels and reduced free peripheral thyroid 
hormone (TH) concentrations. The latter is characterized 
by normal free peripheral TH concentrations. The 
association between thyroid dysfunction and dyslipidemia 
was first reported in 1930. Since then, it has been gradually 
recognized that hypothyroidism could cause disorders 
of lipid metabolism (1), mainly with increased total 
cholesterol (TC) and LDL-C (2) in blood. Elevated LDL-C can 
lead to progressive lipid accumulation, plaque formation in 
the arteries and increase the risk of cardiovascular disease 
(CVD), the leading cause of death worldwide. Regardless 
of TSH or TC concentration, cholesterol levels will return 
to normal (3, 4) and cardiac function improves (5) after 
T4 replacement treatment. Furthermore, T4 treatment 
has a more significant impact on blood lipid profiles in 
overt than subclinical hypothyroidism (6). Therefore, it is 

exceedingly important to pay attention to the relationship 
between hypothyroidism and lipid metabolism.

Previous observations have found that the prevalence 
of overt hypothyroidism is about 4.3% (7) and of 
subclinical hypothyroidism is about 11.1% (8) among 
hypercholesterolemic patients, both of which are higher 
than that of general people. Overt and subclinical 
hypothyroidism patients with serum TSH >10 mLU/L had 
an increased risk of CVD and mortality (9). These findings 
suggested that TH and TSH are two important risk factors 
for lipid metabolic disorders.

TH is a key regulator of metabolism, development 
and growth, which plays an important role in regulating 
the anabolism and catabolism of lipids. However, the 
deeper mechanism between hypothyroidism and blood 
lipid profile is still not fully understood, like the signaling 
pathway of TSH and other regulatory factors involved in 
lipid disturbance. This review focuses on mechanisms 
of hypothyroidism related to dyslipidemia, including 
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the established mechanisms and the newly identified 
mechanisms.

Dyslipidemia in hypothyroidism

Hypothyroidism has a different impact on blood lipid 
components; generally, it tends to increase levels of 
TC, especially apolipoprotein B (ApoB)-containing 
lipoprotein cholesterols, like LDL-C and triglyceride 
(TG) (1, 10, 11), while its influence on ApoA-containing 
lipoprotein cholesterol, like HDL-C, is uncertain 
(12). However, the ratios of ApoB to ApoA-containing 
lipoprotein cholesterols (LDL-C/HDL-C and TG/HDL-C)  
were consistently higher in hypothyroidism 
than the euthyroid ones (13, 14, 15). In addition, 
hypothyroidism patients are more likely to develop 
postprandial hypertriglyceridemia (16), generally with 
elevated TG, TG-rich lipoproteins (TRLs) and remnant  
lipoprotein (RLP).

Hypothyroidism has a different impact on blood lipid 
profiles. A higher degree of ApoB-containing lipoprotein 
cholesterols is found in patients with TSH >10 mLU/L 
compared to those with TSH 4.0–10.0 mLU/L (17, 18, 19). 
Regardless of the thyroid status, circulating TSH level is 
always positively correlated with levels of ApoB-containing 
lipoprotein cholesterols (20, 21, 22, 23, 24, 25). Hence the 
higher TSH level is, the greater the risks of dyslipidemia 
are (26). If there is no significant impairment of thyroid 
function with a low TSH level, blood lipids even improve 
over time (27). Therefore, we could initially speculate that 
besides TH, TSH also plays an important role in regulating 
lipid metabolism.

The mechanism of dyslipidemia 
in hypothyroidism

Hypothyroidism influences lipid profiles mainly via TH. 
TH could bind to thyroid hormone receptorβ (THRβ), 
mainly expressed in the liver, to regulate the expression of 
downstream target genes (28). The total effect of TSH on 
TC level includes the direct effect and the indirect effect 
(TH) (29, 30). Multiple regression analysis showed that 
the increase of cholesterol levels was closely related to 
declined TH levels after injection of TSH in levothyroxine-
treated thyroidectomized patients (31). TSH alone also 
can increase TC levels in CVD patients independent of TH 
(32). It has been reported that TSH regulates cholesterol 
metabolism through binding to TSH receptors (TSHRs) 

on the surface of hepatocytes (33) and adipocytes (34). 
Therefore, current evidence suggests that both TH and TSH 
affect cholesterol metabolism. Some regulatory factors are 
involved in cholesterol metabolism regulating as following. 
The major effect of TH and TSH on lipid metabolism in 
hypothyroidism has been outlined in Fig. 1.

Hypothyroidism and LDL-C metabolism

Hypothyroidism affects the production and clearance 
of LDL-C
TH has contradictory effects on cholesterol absorption and 
production. TH can directly induce the expression of liver 
HMG-COA reductase (HMGCR), a rate-limiting enzyme in 
cholesterol synthesis (35), achieving greater cholesterol 
synthesis (36). Besides binding to THR, TH could activate 
sterol regulatory element-binding protein 2 (SREBP2) (37), 
a major transcription factor, and SREBP2 can stimulate the 
transcription of HMGCR gene. Hence, hypothyroidism can 
cause reduced cholesterol synthesis by affecting HMGCR. 
But the effect of TH on the Niemann-Pick C1-like 1 protein 
(NPC1L1) in the intestine leads to increased cholesterol 
absorption in hypothyroidism (38). In hypothyroidism, 
free fatty acid (FFA) oxidation is also reduced, leading to 
increased very low-density lipoprotein (VLDL) secretion 
in the liver. TH could enhance β-oxidation of FFA by 
increasing the autophagy of hepatocytes (39). It could 
also stimulate carnitine palmitoyltransferase Iα (CPT1A), 
a rate-limiting β-oxidation enzyme (40). Accordingly, 
CPT1A mRNA and enzyme activity in the hyperthyroidism 
animal livers increase significantly (41); CPT1A is inhibited 
in the hypothyroidism mice (42). TH can also reduce 
the production of ApoB48 and ApoB100, thus reducing 
the production of VLDL and chylomicron (CM) (43, 44). 
Moreover, ApoB48 levels are negatively correlated to TH 
(45). Overall, the reduction of TH inhibits cholesterol 
synthesis via HMGCR but promotes the absorption of 
cholesterol through NPC1L1 and reduces catabolism 
through β-oxidation.

The LDL receptor (LDLR) is a transmembrane 
glycoprotein on the hepatocyte surface that recognizes 
lipoproteins containing ApoB, promoting cholesterol 
clearance. TH can upregulate the expression of LDLR mRNA 
through binding to thyroid-responsive element (TRE) of 
LDLR gene on the hepatocyte surface (46). Meanwhile, 
SREBP2 binds to the sterol regulatory element (SRE) on 
the LDLR promoter, thereby promoting the transcription 
of the LDLR gene (47). Therefore, the number of LDLR 
and LDL-C clearance rates decreased in hypothyroidism. 
The combined impact of TH on cholesterol production 
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and clearance leads to a net accumulation of serum LDL-C  
in hypothyroidism.

On the one hand, TSH can directly affect cholesterol 
synthesis. Mice with liver TSHR knockout had low 
TC levels, especially serum LDL-C (48). The binding 
of TSH to TSHR of hepatocyte membrane upregulates 
the expression and activity of HMGCR through the  
cAMP/PKA/CREB signaling pathway (49). TSH can also 
stimulate the expression of SREBP2 to regulate HMGCR 
(35, 50). In adipocytes, TSHβ elevates HMGCR mRNA 
levels, and TSHβ expression levels in mice’s s.c. adipocytes 
are directly related to circulating cholesterol levels (51). 
TSHβ gene expression is also positively correlated with the 

expression of fatty acid mobilization (CAV1, ENGL1) (52). 
It has been found that TSH increased the phosphorylation 
of perilipin and hormone-sensitive lipase (HSL) to increase 
lipolysis, and circulating FFA increased significantly after 
TSH injection in vitro studies (53). Also, TSH could stimulate 
the increase of ApoB (31, 45). So, we could speculate that 
TSH is capable as a stand-alone hormone to produce a 
physiological response on lipid metabolism and have an 
effect independent of TH.

On the other hand, TSH plays an important part 
in LDL clearance. TSH induces PI3K/AKT/SREBP2 and 
SREBP2/HNF4/ Cholesterol 7α-hydroxylase (CYP7A1) 
signaling pathways to inhibit the synthesis of hepatic bile 

Figure 1
Effect of decreased TH and increased TSH on lipid metabolism in hypothyroidism. The altered functions are labeled in the presence of hypothyroidism. 
Red arrows mark actions of declined TH, and blue arrows mark actions of elevated TSH. TH decreases in hypothyroidism and then de novo lipogenesis 
(DNL) and the activity of HMG-COA reductase (HMGCR) reduce, leading to declined cholesterol production, but free fatty acid (FFA) β-oxidation also 
decreases. TH reduction reduces the activity of cholesterol 7α-hydroxylase (CYP7A1) and ATP-binding cassette transporter G5/8 (ABCG5/8) to reduce 
cholesterol clearance. In general, triglyceride (TG)-rich very low-density lipoprotein (VLDL) level is increased in hypothyroidism, and the elevation of 
Niemann-Pick C1-like 1 protein (NPC1L1) concentration leads to an increase of TG-rich chylomicron (CM). The decrease of TH causes the declined 
function that lipoprotein lipase (LPL) hydrolyzes CM and VLDL, and the clearance of LDL and remnant lipoprotein (RLP) by LDL receptor (LDLR) and LDL 
receptor-related protein 1 (LRP1) decreases too, so TG level increases. However, the net concentration of HDL is not consistent. TSH mainly results in the 
increase of proprotein convertase subtilisin/kexin type 9 (PCSK9), HMGCR and hormone-sensitive lipase (HSL) levels and the decrease of CYP7A1. RLP, 
remnant lipoprotein; ANGPTL3/8, angiogenin-like protein3/8; ApoC3, apolipoprotein C3; CETP, cholesterol transport protein transporter; HL, hepatic 
lipase; PLTP, phospholipid transfer protein; LCAT, lecithin cholesterol acyltransferase; ABCA1, ATP-binding cassette transporter A1; SRB1, scavenger 
receptor b1; FGF19/21, fibroblast growth factors 19/21; HMG-COA, 3-hydroxy-3-methyl glutaryl coenzyme A; ACC, acetyl-CoA carboxylase; FAS, fatty acid 
synthase; CPT1A, carnitine palmitoyltransferase Iα; WAT, white adipose tissue.
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acids through TSHR (54). In patients with hypothyroidism 
and hypercholesterolemia, serum TSH was significantly 
negatively correlated with bile acid levels, independent 
of TH (10). Interestingly, the association between 
TSH and total serum bile acid was stronger in patients  
under 65 (55).

The decrease of TH and increase of TSH share 
similar pathogenic mechanisms of LDL-C accumulation 
in hypothyroidism, both of which could induce the 
cholesterol production and inhibit clearance. The effect 
of TH and TSH on LDL-C in hypothyroidism has been 
outlined in Fig. 2.

Factors involved in hypothyroidism-related 
LDL-C elevation
Fatty acids are obtained from the diet or de novo lipogenesis 
(DNL), where acetyl-CoA carboxylase (ACC) and fatty 
acid synthase (FAS) play catalytic roles in the liver and 
adipose tissue (AT). TH regulates the expression of target 
genes in two different ways: TH could directly upregulate 
ACC/FAS through TRE (the direct mechanism) (56) or 
SREBP1/carbohydrate response element-binding protein 

(ChREBP) (the indirect mechanism). The transcription 
of SREBP1 is negatively regulated via TRE (56, 57), but 
TH can also improve the translation efficiency of SREBP1 
mRNA through non-genomic actions (58). Then SREBP1 
combines with SRE in ACC and FAS genes to stimulate the 
expression (59, 60). Meanwhile, the inhibition of SREBP1C 
expression downregulates the expression of HSL gene, 
thus inhibiting lipid lipolysis (56). It is known that THβ 
influences the expression of ChREBP in hepatocytes (61) 
and ACC/FAS genes are positively regulated by ChREBP 
(62). ChREBP and SREBP1C can regulate each other to 
some extent (63). These new observations suggest that TH 
fine-tunes lipid adipogenesis by regulating the expression 
of SREBP-1C and ChREBP genes respectively.

FGF21is a member of the FGF superfamily. It is 
mainly released from hepatocytes and is considered as 
an important endogenous regulator of glucose–lipid 
metabolism (64), and endogenous FGF21 is mainly released 
from hepatocytes. When treated with recombinant FGF21, 
serum TG, VLDL-C and LDL-C of rodents significantly 
reduced (65, 66). The same situation was observed in 
the human study: LDL-C and TG were lower and HDL-C 
was higher in patients using FGF21 analog (67). Chronic 
treatment with recombinant FGF21 can even reduce 

Figure 2
Effect of decreased TH and Increased TSH on LDL-C metabolism in hypothyroidism. The altered functions are labeled in the presence of hypothyroidism. 
Red arrows mark actions of declined TH, and blue arrows mark actions of elevated TSH. The reduction of TH inhibits cholesterol synthesis via HMGCR, 
but the absorption of cholesterol through NPC1L1 increases; the catabolism through β-oxidation and LDL-C clearance through LDL-R decrease. TSH could 
increase cholesterol synthesis and lipolysis but inhibits the clearance of cholesterol independently. The decrease of TH and increase of TSH induce the 
net production and inhibit the clearance of LDL-C, thus leading to LDL-C accumulation.
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serum and liver TG levels in diet-induced obese mice by 
inhibiting SREBP1 (68). FGF21 reduces circulating FFAs 
by inhibiting lipolysis in white adipose tissue (WAT) (69) 
and stimulating FFAs uptake into WAT, consequently 
decreasing the secretion of VLDL in liver (70). FGF21 could 
also increase TRL disposal in AT (70).

TH increases FGF21 transcription and peptide levels in 
mice’s liver through THRβ binding to TRE in FGF21 intron 
2 (71). TH also induces liver FGF21 gene expression to 
promote β-oxidation by activating AMP-activated protein 
kinase (AMPK) and Sirtuin 1 (SIRT1) in a proliferator-
activated receptor α (PPARα)-dependent manner in mice, 
and the expression of FGF21 reportedly increased in a dose-
dependent manner in mice treated with exogenous TH (72, 
73). ChREBP also regulates plasma TG levels by regulating 
FGF21 (74, 75). In turn, peripheral administration of FGF21 
could decrease TH levels (76).

Studies have found that FGF21 levels were significantly 
lower in hypothyroidism patients (77) and increased or 
did not change in hyperthyroidism patients (78, 79) due 
to the effect of TH. However, another study has found that 
the increase of circulating FGF21 levels in hypothyroidism 
patients is related to serum TSH (80). So, it could be 
speculated that TH and TSH have contradictory effects on 
pathogenetic metabolism. Whether TSH could induce the 
expression of FGF21 needs further exploration.

FGF19, secreted from the ileum after the stimulation 
of bile acid (81), participates in the negative feedback 
regulation of bile acid synthesis by inhibiting liver CYP7A1 
(82). TH has a direct effect on the secretion of FGF19 
(79). Circulating FGF19 levels significantly decrease in 
hypothyroidism patients and are independently correlated 
with TSH levels (83). Further studies have shown that 
SREBP downregulates the transcription and expression of 
FGF19 (84).

TH could regulate cholesterol synthesis via miRNA, a 
kind of small regulatory RNA. TH induces the expression 
of miR-181d in humans, thereby reducing the expression 
of caudal type homeobox 2 (CDX2), a transcription factor 
that activates sterol O-acyl transferase 2 (SOAT2). SOAT2 
is essential for converting cholesterol into cholesterol 
ester (CE), and the latter is the preferred form of LDL (85); 
and TH mediated the reduction of miR-206, so TG and TC 
in HepG2 cells declined (86). Also, TH could positively 
regulate hepatic miR-378, leading to the reduction of serum 
cholesterol levels through promoting bile acid synthetic 
pathways (87). Recently, a regulatory module containing 
three miRNAs (miR-34a-5p, miR-24-3p and miR-130a-3p) 
and four proteins (thioredoxin, selenium-binding protein 

2, elongation factor 1β and prosaposin) about hepatic lipid 
metabolism was identified in subclinical mice (88).

Proprotein convertase subtilisin/kexin type 9 (PCSK9), 
a serine protease, binds to the LDLR on the hepatocyte 
surface, facilitating LDLR degradation in lysosomes and 
reducing its recycling. PCSK9 could also regulate LDL 
receptor-related protein 1 (LRP1), which competes with 
LDLR (89). Studies have shown that TH significantly 
reduces PCSK9 levels (79). Both SREBP1 and SREBP2 can 
affect PCSK9 mRNA (90). Studies have found that SREBP2 
can bind to the SRE1 site on the PCSK9 promoter (47). 
The expression of SREBP1C and FAS in liver is involved in 
circulating PCSK9 and its mRNA levels (91, 92). Combined, 
TH reduces PCSK9 through SREBPs, thereby increasing the 
expression of LDLR, promoting the clearance of cholesterol 
in the plasma and reducing cholesterol levels. Currently, 
studies have found that TSH is significantly positively 
correlated with plasma PCSK9, which partly depends on 
SREBP1C, SREBP2 and HMGCR (93, 94).

Regulatory factories like ACC/FAS of DNL, FGF21 and 
miR-181d/206 could affect the synthesis of LDL-C, while 
factories like FGF19 and PCSK9 influence the degradation 
of LDL-C. The detailed metabolisms are shown in Fig. 3.

Hypothyroidism and hypertriglyceridemia

Hypothyroidism affects TG production 
and transformation
TG comes from circulating exogenous or intracellular 
FFAs produced by glycolysis and fat. TH could reduce 
the production of VLDL-TG in liver (95). When the rate 
of lipolysis remains unchanged, hypothyroidism will 
lead to decreased lipid oxidation rates and elevated TG 
(96). TH could also increase ApoA5 mRNA and protein 
levels in hepatocytes, leading to a decline of TG (97). TH 
mainly upregulates the activity of lipoprotein lipase (LPL), 
which could lead to the lipolysis of TRLs, including CM 
and VLDL; the decrease of TH leads to the attenuation 
of these effects, thus promoting the elevation of serum 
TG in hypothyroidism (98). Studies have shown that 
impaired hepatic lipase (HL) activity in hypothyroidism 
patients may also be related to the accumulation of TRL 
(45). The transfer of TG to HDL is impaired in subclinical 
hypothyroidism patients (99).

Remnant lipoprotein (RLP) is composed of cholesterol, 
CE and ApoE-riched smaller particles. TRL particles 
gradually lose TG, phospholipid, ApoA and ApoC then 
transfers to RLP after being hydrolyzed by LPL. Existing 
studies have shown that hypothyroidism is associated with 
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increased serum RLP levels (100). On the one hand, the 
excess production of TRL particles in the liver can explain 
the elevated RLP levels in hypothyroidism patients. On the 
other hand, LRP1 is expressed on the hepatocyte surface 
and binds to ApoE, internalizing TRL and contributing to 
RLP clearance. TH influences the lipid profile by increasing 
the transcription of LRP1 in mice and humans (101). 
Interestingly, SREBP1 and SREBP2 could downregulate the 
transcription of LRP1 in human vascular smooth muscle 
cells and macrophages through binding to SRE (102, 103). 
Therefore, hypothyroidism can lead to LRP1 reduction and 
RLP clearance through SREBP.

TSH could also promote the synthesis of TG. It 
binds to TSHR to promote TG synthesis in differentiated 
adipocytes via AMPK/PPARγ/GPAT3 axis (104). TSH could 

also significantly increase TG levels in hepatocytes in 
a dose-dependent manner through TSHR/cAMP/PKA/
PPARα and PPARα/AMPK/SREBP1C signaling pathways 
(49, 105). Higher TSH levels in the euthyroid population 
may affect TG-rich metabolism via ApoE (106), which 
could explain increased ApoE levels in hypothyroidism 
patients (107).

Hypothyroidism and newly identified mechanisms 
factors in TG metabolism
ANGPTL1-8 are secretory glycoproteins composed of an 
N-terminal helical domain and a C-terminal fibrinogen-
like domain. Angptl3 is identified for proteolysis at 
positions 221–224 to produce N-terminal domains.  

Figure 3
Regulatory factors involved in hypothyroidism-related dyslipidemia. The altered functions are labeled in the presence of hypothyroidism. Red arrows 
mark actions of declined TH, and blue arrows mark actions of elevated TSH. ACC/FAS, FGF21 and miR-181d/206 could affect the synthesis of LDL-C, while 
factors like FGF19 and PCSK9 influence the degradation of LDL-C. In hypothyroidism, FFA synthesis via DNL decrease, and the indirect mechanisms of TH 
on SREBP1 is stronger than the direct mechanisms through TRE. The oxidation and lipolysis of FFA decreases partly because of hypothyroidism-induced 
decreased FGF-21. FGF-19 inhibits bile acid synthesis and PCSK9 increases the degradation of LDLR, thus inhibiting the clearance of cholesterol in 
hypothyroidism.
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TH could inhibit mRNA of ANGPTL3 TRβ dependently 
(108), and there was a positive correlation between 
ANGPTL3 and TSH in Graves’ disease patients (109). 
Circulating VLDL-TG and LDL-C declined in ANGPTL3 
loss-of-function heterozygotes (110, 111) because some 
studies have shown that ANGPTL3 at high concentration 
could inhibit LPL (112, 113). ANGPTL3 cleaves LPL through 
furin protease (114) and shows reversible inhibition of LPL 
catalytic activity. However, other studies also found that 
ANGPTL3 inactivates LPL by catalyzing the irreversible 
unfolding of its hydrolase domain, which is similar to 
ANGPTL4 (115). Furthermore, ANGPTL3 deficiency could 
lead to declined postprandial lipid levels, possibly due to 
accelerated catabolic metabolism of TRLs and reduced flow 
of fatty acids into liver (116, 117). One study demonstrated 
that ANGPTL3 gene siRNAs induced increased expression 
of LDLR/LRP1 and reduced the secretion of apoB100, 
resulting in increased uptake of LDL/VLDL (118). However, 
in another study, it was reported that the use of ANGPTL3 
MAB, the reduction of LDL-C could be independent 
of the LDLR pathway, and it was speculated that the 
transformation from VLDL to LDL reduced partially 
because of increased ApoB clearance (111). Circulating 
ANGPTL3 levels elevated and were positively correlated 
with HDL-C in hypothyroidism patients (119). ANGPTL 
3 acts as an inhibitor of endothelial lipase, which could 
hydrolyze HDL-phospholipid to reduce plasma HDL levels, 
and ANGPTL 3 is also involved in promoting the elevation 
of plasma HDL-C in humans and rodents (120).

ANGPTL8, known as TD26, re-feeding induced in fat 
and liver, lipasin and betatrophin, is an atypical member of 
ANGPTL family. It is expressed mainly in liver of humans, 
while in AT and liver of mice. The TG clearance rate and LPL 
activity in Angptl8 knockout mice increase significantly, 
thus reducing the plasma TG levels (121, 122). ANGPTL8 
can cooperate with ANGPTL3 to improve the binding of 
ANGPTL3 to LPL and promote LPL lysis to increase the 
plasma TG level in mice (123, 124, 125). ANGPTL3 and 
ANGPTL8 can even promote each other somehow (125). 
Circulating Angptl8 levels increase in hypothyroidism 
patients and positively correlate with TSH, TG and TC (119, 
122, 126, 127, 128). However, ANGPTL8 mRNA in HepG2 
cells is induced by TH (129), and its expression can also be 
specifically activated in the liver of mice through SREBP1a 
and SREBP2 (124). These pieces of evidence could suggest 
that TH and TSH regulate ANGPTL8. TH could also convert 
lipid droplets through the autophagy process activated by 
ANGPTL8 to regulate lipid metabolism (129). In addition, 
the lipid contents in adipocytes significantly reduced 
after the deletion of ANGPTL8 gene (130). ANGPTL8 

protein levels are positively related to TC, LDL-C in 
patients with morbid obesity and type 2 diabetes (131), but 
whether it is related to hypothyroidism or not, the answer  
remains uncertain.

ANGPTL6, also known as AGF, does not bind to 
angiogenin receptors. In patients with hypothyroidism, 
serum ANGPTL6 levels increase and are positively 
correlated with TSH and TC (132). Serum ANGPTL6 levels 
are also an independent predictor of low HDL and high TG 
(133). Studies have found that ANGPTL6 could mediate 
increased expression of PPARα through the extracellular 
regulated protein kinases/mitogen-activated protein kinase  
(ERK/MAPK) signaling pathway, leading to increased 
expression of FGF21, thereby promoting β-oxidation 
(134). It is possible to predict that TSH could induce FGF21 
through ANGPTL6; however, TH has the opposite effect on 
FGF21 from TSH and the effect prevails, so serum FGF21 
level is more prone to decrease in hypothyroidism as 
mentioned above.

The domain of Angptl4 is similar to Angptl3 (135). 
But, TH could not inhibit the expression of Angptl4 mRNA 
(108), and there is no significant change of Angptl4 levels 
in hypothyroidism (119). So, we could speculate that TH 
could not influence lipid metabolism through Angptl4.

Serum ApoC3, another LPL inhibitor, was found 
to decrease in hypothyroidism mice with or without 
pregnancy (42). The suppressed expression of ApoC3 gene 
leads to increased LPL activity and decreased plasma TG 
levels (136). Taken together, ApoC3 decrease leads to LPL 
increase in the presence of hypothyroidism.

Angptl3/6/8 and ApoC3 play important roles in TG 
transformation, especially Angptl3 and Angptl8 make a 
synergic reaction. More basic and epidemiological studies 
are needed to verify the deeper relationship between 
Angptl6/FGF21 and TSH. The detailed effects of TH and 
TSH on TG metabolisms are shown in Fig. 4.

Hypothyroidism and HDL-C metabolism

Thyroid hormone affects HDL levels
HDL synthesis decreases in hypothyroidism. A study has 
documented a positive relationship between FT4 and 
plasma pre-β-HDL formation in type 2 diabetes mellitus 
patients (137). TH strongly induces ApoA1 gene and 
protein expression (138), thereby increasing cholesterol 
efflux from peripheral tissues to HDL in reverse cholesterol 
transport (RCT). Homocysteine levels significantly increase 
in hypothyroidism mice; and homocysteine can reduce 
circulating HDL-C by inhibiting ApoA1 protein synthesis, 
thereby inhibiting RCT (139). However, ApoA1 levels 

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International License.

https://doi.org/10.1530/EC-21-0002
https://ec.bioscientifica.com © 2022 The authors

Published by Bioscientifica Ltd

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1530/EC-21-0002
https://ec.bioscientifica.com


H Liu and D Peng Mechanism of dyslipidemia in 
hypothyroidism

e210002

PB–XX

11:2

increase in hypothyroidism patients after thyroidectomy 
(140, 141). The potential causes of the contradictory result 
are not clear yet. TH could also stimulate cholesterol 
efflux from macrophages to HDL via transporter protein 
ATP-binding cassette transporter A1 (ABCA1) (138). The 
activity of ABCA1 and lecithin cholesterol acyltransferase 
decreases in hypothyroidism, which leads to the 
inhibition of the synthesis and maturation process of HDL  
particles (142).

The HDL clearance and transformation process decrease 
in hypothyroidism. TH stimulates HL, thus promoting 
HDL degradation and changing HDL components (143). 
Plasma cholesterol transport protein transporter (CETP) 
concentrations decrease in hypothyroidism, resulting in 
elevated plasma HDL-C levels (144). TH can increase the 
transcription of CYP7A1, a rate-limiting enzyme in RCT, 
thus promoting the transformation of cholesterol into bile 
acid (145). TH could also stimulate the secretion of bile 
acid in liver and intestine by stimulating the transcription 
of ATP-binding cassette transporter G5/8 (ABCG5/
ABCG8) in rats (138), which is the last step of RCT (146). 
Hypothyroidism could inhibit cholesterol clearance by 
decreasing scavenger receptor b1 (147). These effects of TH 
on HDL synthesis and clearance counteract each other; 
therefore, the HDL-C level is not constant.

Patients with a moderate increase in TSH had reduced 
CETP and phospholipid transfer protein activities, which 
resulted in decreased HDL2 and elevated HDL3 levels (148). 
However, in T2DM patients, there is a positive correlation 
between TSH and CETP, thereby raising the possibility 
that hyperglycemia has strong effects on the ability of 
VLDL to accept cholesteryl esters from HDL (149). Hence, 
HDL-C levels could be affected by numerous conditions. 
The detailed effects of TH and TSH on HDL levels are  
shown in Fig. 5.

Hypothyroidism impairs HDL cholesterol 
efflux capacity
Though HDL levels were not consistent, cholesterol efflux 
capacity (CEC) was impaired in overt hypothyroidism, 
reflecting HDL function losses (107, 141). Paraoxonase-1 
(PON1) is an important anti-oxidative enzyme that resides 
on HDL. Recent reports showed that after thyroidectomy, 
PON1 activity remained unaltered (140) but the  
PON1/ApoA1 ratio decreased (107). Altogether, 
hypothyroidism may affect HDL function through several 
unclear mechanisms.

Even though elevated HDL-C levels could not always 
protect humans from CVD and mortality, CEC is a 

Figure 4
Effect of decreased TH and increased TSH on TG metabolism in hypothyroidism. The altered functions are labeled in the presence of hypothyroidism. 
Red arrows mark actions of declined TH, and blue arrows mark actions of elevated TSH. The increase of Angptl3 in hypothyroidism could inhibit LDL 
degradation via LDL-R and inhibit cholesterol transport via LPL and EL. TSH is related to Angptl6, influencing β-oxidation to some extent.
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biomarker of HDL functionality and is cardioprotective. So 
what we should pay more attention to is HDL CEC (150).

Conclusion

Besides known TH metabolic pathways, TSH is also shown 
to be an important factor influencing lipid metabolism in 
vitro and in vivo. Either the decrease of TH or the increase 
of TSH in hypothyroidism could increase LDL-C and TG. 
HDL levels are not constant because regulating factors 
counteract each other; however, HDL function, a predictor 
of cardiovascular risk independent of HDL-C levels, is 
impaired in hypothyroidism. Hence, we could focus on the 
mechanism of how TH affects HDL function. Even in normal 
thyroid and subclinical hypothyroidism, higher TSH levels 
could affect lipid metabolism through an independent 
TSH signaling pathway. It seems that keeping TSH at a 
low normal level to minimize cholesterol concentrations 
is an important treatment in hypothyroidism from a 
clinical point of view. Significantly, the main hormone 

physiological change of hypothyroidism patients comes 
from TH; and TSH could be influenced by TH negative 
feedback regulation. Combined, whether TSH metabolic 
pathway makes up a large proportion of hypothyroidism 
or not, we need more evidence to figure it out.

Currently, we find that many regulatory factors, 
like SREBPs, ChREBP, ANGPTLs and FGF19/21, are also 
involved in lipid metabolism of hypothyroidism. These 
factors provide potential drug targets for treatments of 
hypothyroidism-related hyperlipidemia, like Angptl3 
inhibitor, Evinacumab. However, the specific mechanism 
of TH or TSH on some factors has not been clarified yet. 
For instance, whether TSH could influence cholesterol 
metabolism through Angptl6 and FGF19 pathways is 
unclear. So, further basic and epidemiological studies are 
required to clarify the contradictory change of lipid levels 
and mechanism of these newly identified factors.
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Figure 5
Effect of decreased TH and increased TSH on HDL metabolism in hypothyroidism. The altered functions are labeled in the presence of hypothyroidism. 
Red arrows mark actions of declined TH, and blue arrows mark actions of elevated TSH. HDL synthesis via LCAT, ABVA1 and apoA1 enhances but HDL 
clearance and transformation process decreases in hypothyroidism because of TH-induced decreased HL, CEPT, CYP7A1, ABCG5/8 and SR-B1. Several 
effects counteract each other; therefore, the HDL-C level is not constant.
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