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Accounting for diverse evolutionary forces reveals
mosaic patterns of selection on human
preterm birth loci
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Louis J. Muglia 4,5,6,7, Patrick Abbot1, Antonis Rokas 1,8✉ & John A. Capra 1,9✉

Currently, there is no comprehensive framework to evaluate the evolutionary forces acting on

genomic regions associated with human complex traits and contextualize the relationship

between evolution and molecular function. Here, we develop an approach to test for sig-

natures of diverse evolutionary forces on trait-associated genomic regions. We apply our

method to regions associated with spontaneous preterm birth (sPTB), a complex disorder of

global health concern. We find that sPTB-associated regions harbor diverse evolutionary

signatures including conservation, excess population differentiation, accelerated evolution,

and balanced polymorphism. Furthermore, we integrate evolutionary context with molecular

evidence to hypothesize how these regions contribute to sPTB risk. Finally, we observe

enrichment in signatures of diverse evolutionary forces in sPTB-associated regions compared

to genomic background. By quantifying multiple evolutionary forces acting on sPTB-

associated regions, our approach improves understanding of both functional roles and the

mosaic of evolutionary forces acting on loci. Our work provides a blueprint for investigating

evolutionary pressures on complex traits.
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Understanding the evolutionary forces that shape variation
in genomic regions that contribute to complex traits is a
fundamental pursuit in biology. The availability of

genome-wide association studies (GWASs) for many different
complex human traits1,2, coupled with advances in measuring
evidence for diverse evolutionary forces—including balancing
selection3, positive selection4, and purifying selection5 from
human population genomic variation data—present the oppor-
tunity to comprehensively investigate how evolution has shaped
genomic regions associated with complex traits6–8. However,
available approaches for quantifying specific evolutionary sig-
natures are based on diverse inputs and assumptions, and they
usually focus on one region at a time. Thus, comprehensively
evaluating and comparing the diverse evolutionary forces that
may have acted on genomic regions associated with complex
traits is challenging.

In this study, we develop a framework to test for signatures of
diverse evolutionary forces on genomic regions associated with
complex genetic traits and illustrate its potential by examining the
evolutionary signatures of genomic regions associated with preterm
birth (PTB), a major disorder of pregnancy. Mammalian pregnancy
requires the coordination of multiple maternal and fetal tissues9,10

and extensive modulation of the maternal immune system so that
the genetically distinct fetus is not immunologically rejected11. The
developmental and immunological complexity of pregnancy, cou-
pled with the extensive morphological diversity of placentas across
mammals, suggest that mammalian pregnancy has been shaped by
diverse evolutionary forces, including natural selection12. In the
human lineage, where pregnancy has evolved in concert with
unique human adaptations, such as bipedality and enlarged brain
size, several evolutionary hypotheses have been proposed to explain
the selective impact of these unique human adaptations on the
timing of human birth13–16. The extensive interest in the evolution
of human pregnancy arises from interest both in understanding the
evolution of the human species and also the existence of disorders
of pregnancy.

One major disorder of pregnancy is preterm birth (PTB), a
complex multifactorial syndrome17 that affects 10% of pregnancies
in the United States and more than 15 million pregnancies
worldwide each year18,19. PTB leads to increased infant mortality
rates and significant short- and long-term morbidity19–21. Risk for
PTB varies substantially with race, environment, comorbidities, and
genetic factors22. PTB is broadly classified into iatrogenic PTB,
when it is associated with medical conditions such as preeclampsia
(PE) or intrauterine growth restriction (IUGR), and spontaneous
PTB (sPTB), which occurs in the absence of preexisting medical
conditions or is initiated by preterm premature rupture of
membranes23,24. The biological pathways contributing to sPTB
remain poorly understood17, but diverse lines of evidence suggest
that maternal genetic variation is an important contributor25–27.

The developmental and immunological complexity of human
pregnancy and its evolution in concert with unique human
adaptations raise the hypothesis that genetic variants associated
with birth timing and sPTB have been shaped by diverse evolu-
tionary forces. Consistent with this hypothesis, several immune
genes involved in pregnancy have signatures of recent purifying
selection28 while others have signatures of balancing
selection28,29. In addition, both birth timing and sPTB risk vary
across human populations30, which suggests that genetic variants
associated with these traits may also exhibit population-specific
differences. Variants at the progesterone receptor locus associated
with sPTB in the East Asian population show evidence of
population-specific differentiation driven by positive and balan-
cing selection6,31. Since progesterone has been extensively
investigated for sPTB prevention32, these evolutionary insights
may have important clinical implications. Although these studies

have considerably advanced our understanding of how evolu-
tionary forces have sculpted specific genes involved in human
birth timing, the evolutionary forces acting on pregnancy across
the human genome have not been systematically evaluated.

The recent availability of sPTB-associated genomic regions
from large genome-wide association studies33 coupled with
advances in measuring evidence for diverse evolutionary forces
from human population genomic variation data present the
opportunity to comprehensively investigate how evolution has
shaped sPTB-associated genomic regions. To achieve this, we
develop an approach that identifies evolutionary forces that have
acted on genomic regions associated with a complex trait and
compares them to appropriately matched control regions. Our
approach innovates on current methods by evaluating the impact
of multiple different evolutionary forces on trait-associated
genomic regions while accounting for genomic architecture-
based differences in the expected distribution for each of the
evolutionary measures. By applying our approach to 215 sPTB-
associated genomic regions, we find significant evidence for at
least one evolutionary force on 120 regions, and illustrate how
this evolutionary information can be integrated into interpreta-
tion of functional links to sPTB. Finally, we find enrichment for
nearly all of the evolutionary metrics in sPTB-associated regions
compared to the genomic background, and for measures of
negative selection compared to the matched regions that take into
account genomic architecture. These results suggest that a mosaic
of evolutionary forces likely influenced human birth timing, and
that evolutionary analysis can assist in interpreting the role of
specific genomic regions in disease phenotypes.

Results
Accounting for genomic architecture in evolutionary measures.
In this study, we compute diverse evolutionary measures on
sPTB-associated genomic regions to infer the action of multiple
evolutionary forces (Table 1). While various methods to detect
signatures of evolutionary forces exist, many of them lack
approaches for determining statistically significant observations
or rely on the genome-wide background distribution as the null
expectation to determine statistical significance (e.g., outlier-
based methods)34,35. Comparison to the genome-wide back-
ground distribution is appropriate in some contexts, but such
outlier-based methods do not account for genomic attributes that
may influence both the identification of variants of interest and
the expected distribution of the evolutionary metrics, leading to
false positives. For example, attributes such as minor allele fre-
quency (MAF) and linkage disequilibrium (LD) influence the
power to detect both evolutionary signatures2,36,37 and GWAS
associations1. Thus, interpretation and comparison of different
evolutionary measures is challenging, especially when the regions
under study do not reflect the genome-wide background.

Here we develop an approach that derives a matched null
distribution accounting for MAF and LD for each evolutionary
measure and set of regions (Fig. 1). We generate 5000 control
region sets, each of which matches the trait-associated regions on
these attributes (Methods). Then, to calculate an empirical p value
and z-score for each evolutionary measure and region of interest,
we compare the median values of the evolutionary measure for
variants in the sPTB-associated genomic region to the same
number of variants in the corresponding matched control regions
(Fig. 1a, Methods). This should reduce the risk for false positives
relative to outlier-based methods and enables the comparison of
individual genomic regions across evolutionary measures. In
addition to examining selection on individual genomic regions,
we can combine these regions into one set and test for the
enrichment of evolutionary signatures on all significant
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sPTB-associated genomic regions. Such enrichment analyses can
further increase confidence that statistically significant individual
regions are not false positives, but rather genuine signatures of
evolutionary forces. However, we note that no approach is
immune to false positives.

In this section, we focus on the evaluation of the significance of
evolutionary signatures on individual sPTB-associated regions; in
a subsequent section, we extend this approach to evaluate whether
the set of sPTB-associated regions as a whole has more evidence
for different evolutionary forces compared to background sets.

To evaluate the evolutionary forces acting on individual
genomic regions associated with sPTB, we identified all variants
nominally associated with sPTB (p < 10E-4) in the largest
available GWAS33 and grouped variants into regions based on
high LD (r2 > 0.9). It is likely that many of these nominally
associated variants affect sPTB risk, but did not reach genome-
wide significance due to factors limiting the statistical power of
the GWAS33. Therefore, we assume that many of the variants
with sPTB-associations below this nominal threshold contribute
to the genetic basis of sPTB. We identified 215 independent
sPTB-associated genomic regions, which we refer to by the lead
variant (SNP or indel with the lowest p value in that region;
Supplementary Data 1).

For each of the 215 sPTB-associated genomic regions, we
generated control regions as described above. The match
quality per genomic region, defined as the fraction of sPTB
variants with a matched variant averaged across all control
regions, is ≥99.6% for all sPTB-associated genomic regions
(Supplementary Fig. 1). The matched null distribution aggre-
gated from the control regions varied substantially between
sPTB-associated genomic regions for each evolutionary mea-
sure and compared to the unmatched genome-wide background
distribution (Fig. 1b, Supplementary Fig. 2). The sets of sPTB-
associated genomic regions that had statistically significant (p <
0.05) median values for evolutionary measures based on
comparison to the unmatched genome-wide distribution were
sometimes different that those obtained based on comparison
to the matched null distribution. We illustrate this using the FST
between East Asians and Europeans (FST-EurEas) for four
example sPTB-associated regions labeled by the variant with
the lowest GWAS p value. Regions rs4460133 and rs148782293
reached statistical significance for FST-EurEas only when
compared to genome-wide or matched distribution respec-
tively, but not both (Fig. 1b, top row). Using either the genome-
wide or matched distribution for comparison of FST-EurEas,

sPTB-associated region rs3897712 reached statistical signifi-
cance while rs4853012 was not statistically significant. The
breakdown by evolutionary measure for the remaining sPTB-
associated regions is provided in Supplementary Fig. 2.

sPTB genomic regions exhibit diverse modes of selection. To
gain insight into the modes of selection that have acted on sPTB-
associated genomic regions, we focused on genomic regions with
extreme evolutionary signatures by selecting the 120 sPTB-
associated regions with at least one extreme z-score (z ≥+/− 1.5)
for an evolutionary metric (Fig. 2; Supplementary Data 2 and 3)
for further analysis. The extreme z-score for each of these 120
sPTB-associated regions suggests that the evolutionary force of
interest has likely influenced this region when compared to the
matched control regions. Notably, each evolutionary measure had
at least one genomic region with an extreme observation (p <
0.05). Hierarchical clustering of the 120 regions revealed 12
clusters of regions with similar evolutionary patterns. We
manually combined the 12 clusters based on their dominant
evolutionary signatures into five major groups with the following
general evolutionary patterns (Fig. 2): conservation/negative
selection (group A: clusters A1-4), excess population differ-
entiation/local adaptation (group B: clusters B1-2), positive
selection (group C: cluster C1), long-term balanced polymorph-
ism/balancing selection (group D: clusters D1-2), and other
diverse evolutionary signatures (group E: clusters E1-4).

Previous literature on complex genetic traits38–40 and preg-
nancy disorders6,28,31,41 supports the finding that multiple modes
of selection have acted on sPTB-associated genomic regions.
Unlike many of these previous studies that tested only a single
mode of selection, our approach tested multiple modes of
selection. Of the 215 genomic regions we tested, 9% had evidence
of conservation, 5% had evidence of excess population differ-
entiation, 4% had evidence of accelerated evolution, 4% had
evidence of long-term balanced polymorphisms, and 34% had
evidence of other combinations. From these data we infer that
negative selection, local adaptation, positive selection, and
balancing selection have all acted on genomic regions associated
with sPTB, highlighting the mosaic nature of the evolutionary
forces that have shaped this trait.

In addition to differences in evolutionary measures, variants in
these groups also exhibited differences in their functional effects,
likelihood of influencing transcriptional regulation, frequency
distribution between populations, and effects on tissue-specific

Table 1 Evolutionary measures used in this study.

Measures Evolutionary signature Evolutionary force Time scale

PhyloP Substitution rate Positive/negative selection Across species
PhastCons Sequence conservation Negative selection Across species
GERP Sequence conservation Negative selection Across species
LINSIGHT Sequence conservation Negative selection Across species and human

populations
FST Population differentiation Local adaptation Human populations
iHS Haplotype homozygosity Positive selection Human populations
XP-EHH Haplotype homozygosity Positive selection Human populations
iES Haplotype homozygosity Positive selection Human populations
Beta Score Balanced polymorphisms Balancing selection Human populations
Allele Age (TMRCA) Ancestral recombination graphs/

Alignments
Evolutionary origin/Negative selection Human populations

Alignment block age Sequence conservation Evolutionary origin/Negative selection Across species

GERP: Genomic evolutionary rate profiling, iHS integrated haplotype score, XP-EHH cross-population extended haplotype homozygosity (EHH), iES integrated site-specific EHH, TMRCA time to most
recent common ancestor derived from ARGweaver.
Alignment block age was calculated using 100-way multiple sequence alignments to determine the oldest most recent common ancestor for each alignment block.
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gene expression (Fig. 3; Supplementary Data 4 and 5). Given that
our starting dataset was identified using GWAS, we do not know
how these loci influence sPTB. Using the current literature to
inform our evolutionary analyses allows us to make hypotheses
about links between these genomic regions and sPTB. In the next
section, we describe each group and give examples of their
members and their potential connection to PTB and pregnancy.

Group A: Sequence conservation/negative selection. Group A
contained 19 genomic regions and 47 variants with higher than
expected values for evolutionary measures of sequence con-
servation and alignment block age (Fig. 2; Fig. 3b), suggesting that
these genomic regions evolved under negative selection. The
action of negative selection is consistent with previous studies of

sPTB-associated genes7. The majority of variants are intronic (37/
47: 79%) but a considerable fraction is intergenic (8/47: 17%;
Fig. 3b).

In this group, the sPTB-associated variant (rs6546891, OR:
1.13; adjusted p value: 5.4 × 10−5)33 is located in the 3’UTR of the
gene TET3. The risk allele (G) originated in the human lineage
(Fig. 4a) and is at lowest frequency in the European population.
Additionally, this variant is an eQTL for 76 gene/tissue pairs and
associated with gene expression in reproductive tissues, such as
expression of NAT8 in the testis. In mice, TET3 had been shown
to affect epigenetic reprogramming, neonatal growth, and
fecundity42,43. In humans, TET3 expression was detected in the
villus cytotrophoblast cells in the first trimester as well as in
maternal decidua of placentas44. TET3 expression has also been

a

b

Fig. 1 Framework for identifying genomic regions that have experienced diverse evolutionary forces. a We compared evolutionary measures for each
sPTB-associated genomic region (n= 215) to ~5000 MAF and LD-matched control regions. The sPTB-associated genomic regions each consisted of a lead
variant (p < 10E-4 association with sPTB) and variants in high LD (r2 > 0.9) with the lead variant. Each control region has an equal number of variants as the
corresponding sPTB-associated genomic region and is matched for MAF and LD (‘Identify matched control regions’). We next obtained the values of an
evolutionary measure for the variants included in the sPTB-associated regions and all control regions (‘Measure selection’). The median value of the
evolutionary measure across variants in the sPTB-associated region and all control regions was used to derive an empirical p value and z-score (‘Compare
to matched distribution’). We repeated these steps for each sPTB-associated region and evolutionary measure and then functionally annotated sPTB-
associated regions with absolute z-scores ≥ 1.5 (‘Functional annotation’). b Representative examples for four sPTB-associated regions highlight differences
in the distribution of genome-wide and matched control regions for an evolutionary measure (FST between Europeans and East Asians). The black and
colored distributions correspond to genome-wide and matched distributions, respectively. The colored triangle denotes the median FST (Eur-Eas) for the
sPTB-associated region. The dashed vertical lines mark the 95th percentile of the genome-wide (black) and matched (colored) distributions. If this value is
greater than the 95th percentile, then it is considered significant (+); if it is lower than the 95th percentile it is considered not-significant (−). The four
examples illustrate the importance of the choice of background in evaluating significance of evolutionary metrics (table to the right).
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detected in pathological placentas45, and has also been linked to
neurodevelopment disorders and preterm birth46. Similarly,
NAT8 is involved in epigenetic changes during pregnancy47.

Group B: Population differentiation/local adaptation. Group B
(clusters B1 and B2) contained variants with a higher than
expected differentiation (FST) between pairs of human popula-
tions (Fig. 2). There were 10 sPTB-associated genomic regions in
this group, which contain 53 variants. The majority of variants
are an eQTL in at least one tissue (29/52; Fig. 3d). The derived
allele frequency in cluster B1 is high in East Asian populations
and very low in African and European populations (Fig. 3c). We
found that 3 of the 10 lead variants have higher risk allele fre-
quencies in African compared to European or East Asian popu-
lations. This is noteworthy because the rate of PTB is twice as
high among black women compared to white women in the
United States48. These three variants are associated with expres-
sion levels of the genes SLC33A1, LOC645355, and GC,
respectively.

The six variants (labeled by the lead variant rs22016), within
the sPTB-associated region near GC, Vitamin D Binding Protein,
are of particular interest. The ancestral allele (G) of rs22201is
found at higher frequency in African populations and is
associated with increased risk of sPTB (European cohort, OR:
1.15; adjusted p value 3.58 × 10−5; Fig. 4b)33. This variant has
been associated with vitamin D levels and several other
disorders49,50. There is evidence that vitamin D levels prior to
delivery are associated with sPTB51, that levels of GC in cervico-
vaginal fluid may help predict sPTB44,52, and that vitamin D
deficiency may contribute to racial disparities in birth out-
comes53. For example, vitamin D deficiency is a potential risk
factor for preeclampsia among Hispanic and African American
women54. The population-specific differentiation associated with

variant rs222016 is consistent with the differential evolution of
the vitamin D system between populations, likely in response to
different environments and associated changes in skin pigmenta-
tion55. Our results add to the evolutionary context of the link
between vitamin D and pregnancy outcomes56 and suggest a role
for variation in the gene GC in the ethnic disparities in pregnancy
outcomes.

Group C: Accelerated substitution rates/positive selection.
Variants in cluster C1 (group C) had lower than expected values
of PhyloP. This group contained nine sPTB-associated genomic
regions and 232 variants. The large number of linked variants is
consistent with the accumulation of polymorphisms in regions
undergoing positive selection. The derived alleles in this group
show no obvious pattern in allele frequency between populations
(Fig. 3c). While most variants are intronic (218/232), there are
missense variants in the genes Protein Tyrosine Phosphatase
Receptor Type F Polypeptide Interacting Protein Alpha 1
(PPFIA1) and Plakophilin 1 (PKP1; Fig. 3a). Additionally, 16
variants are likely to affect transcription factor binding (reg-
ulomeDB score of 1 or 2; Fig. 3b). Consistent with this finding,
167/216 variants tested in GTEx are associated with expression of
at least one gene in one tissue (Fig. 3c).

The lead variant associated with PPFIA1 (rs1061328) is linked
to an additional 156 variants, which are associated with the
expression of a total of 2844 tissue/gene combinations. Two of
these genes are cortactin (CTTN) and PPFIA1, which are both
involved in cell adhesion and migration57,58—critical processes in
the development of the placenta and implantation59,60. Members
of the PPFIA1 liprin family have been linked to maternal-fetal
signaling during placental development61,62, whereas CTTN is
expressed in the decidual cells and spiral arterioles and localizes
to the trophoblast cells during early pregnancy, suggesting a role
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Fig. 2 sPTB-associated genomic regions have experienced diverse evolutionary forces. We tested sPTB-associated genomic regions (x-axis) for diverse
types of selection (y-axis), including FST (population differentiation), XP-EHH (positive selection), Beta Score (balancing selection), allele age (time to most
recent common ancestor, TMRCA, from ARGweaver), alignment block age, phyloP (positive/negative selection), GERP, LINSIGHT, and PhastCons
(negative selection) (Table 1, Fig. 1). The relative strength (size of colored square) and direction (color) of each evolutionary measure for each sPTB-
associated region is summarized as a z-score calculated from that region’s matched background distribution. Only regions with |z |≥ 1.5 for at least one
evolutionary measure before clustering are shown. Statistical significance was assessed by comparing the median value of the evolutionary measure to the
matched background distribution to derive an empirical p value (*p > 0.05). Hierarchical clustering of sPTB-associated genomic regions on their z-scores
identifies distinct groups or clusters associated with different types of evolutionary forces. Specifically, we interpret regions that exhibit higher than
expected values for PhastCons, PhyloP, LINSIGHT, and GERP to have experienced conservation and negative selection (Group A); regions that exhibit
higher than expected pairwise FST values to have experienced population differentiation/local adaptation (Group B); regions that exhibit lower than
expected values for PhyloP to have experienced acceleration/positive selection (Group C); and regions that exhibit higher than expected Beta Score and
older allele ages (TMRCA) to have experienced balancing selection (Group D). The remaining regions exhibit a variety of signatures that are not consistent
with a single evolutionary mode (Group E).
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for CTTN in cytoskeletal remodeling of the maternal-fetal
interface63. There is also is evidence that decreased adherence
of maternal and fetal membrane layers is involved in parturi-
tion64. Accelerated evolution has previously been detected in the
birth timing-associated genes FSHR41 and PLA2G4C65. It has
been hypothesized that human and/or primate-specific adapta-
tions, such as bipedalism, have resulted in the accelerated
evolution of birth-timing phenotypes along these lineages66.
Accelerated evolution has also been implicated in other complex
disorders—especially those like schizophrenia67 and autism68

which affect the brain, another organ that is thought to have
undergone adaptive evolution in the human lineage.

Group D: Balanced polymorphism/balancing selection. Var-
iants in Group D generally had higher than expected values of beta
score or an older than expected allele age, consistent with

evolutionary signatures of balancing selection (Fig. 2). There were
nine genomic regions in group D; three had a significantly higher
than expected beta scores (p < 0.05), three have a significantly older
than expected TMRCA values (p < 0.05), and three have older
TMRCA values but are not significant. The derived alleles have an
average allele frequency across all populations of 0.44 (Fig. 3c).
GTEx analysis supports a regulatory role for many of these var-
iants—266 of 271 variants are an eQTL in at least one tissue
(Fig. 3d).

The genes associated with the variant rs10932774 (OR: 1.11,
adjusted p value 8.85 × 10−5 33; PNKD and ARPC2) show long-
term evolutionary conservation consistent with a signature of
balancing selection and prior research suggests links to pregnancy
through a variety of mechanisms. For example, PNKD is
upregulated in severely preeclamptic placentas69 and in PNKD
patients pregnancy is associated with changes in the frequency or

ba

c d

Fig. 3 Groups of sPTB regions vary in their molecular characteristics and functions. Clusters are ordered as they appear in the z-score heatmap (Fig. 2)
and colored by their major type of selection: Group A: Conservation and negative selection (Purple), Group B: Population differentiation/local adaptation
(Blue), Group C: Acceleration and positive selection (Teal), Group D: Long-term polymorphism/balancing selection (Teal), and Other (Green). All boxplots
show the mean (horizontal line), the first and third quartiles (lower and upper hinges), 1.5 times the interquartile range from each hinge (upper and lower
whiskers), and outlier values greater or lower than the whiskers (individual points). a The proportions of different types of variants (e.g., intronic, intergenic,
etc.) within each cluster (x-axis) based on the Variant Effect Predictor (VEP) analysis. Furthermore, cluster C1 exhibits the widest variety of variant types
and is the only cluster that contains missense variants. Most variants across most clusters are located in introns. b The proportion of each RegulomeDB
score (y-axis) within each cluster (x-axis). Most notably, PTB regions in three clusters (B1, A5, and D4) have variants that are likely to affect transcription
factor binding and linked to expression of a gene target (Score= 1). Almost all clusters contain some variants that are likely to affect transcription factor
binding (Score= 2). c The derived allele frequency (y-axis) for all variants in each cluster (x-axis) for the African (AFR), East Asian (EAS), and European
(EUR) populations. Population frequency of the derived allele varies within populations from 0 to fixation. d The total number of eQTLs (y-axis) obtained
from GTEx for all variants within each cluster (x-axis) All clusters but one (C2 with only one variant) have at least one variant that is associated with the
expression of one or more genes in one or more tissues. Clusters A1, A5, and D4 also have one or more variants associated with expression in the uterus.
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severity of PNKD attacks70. Similarly, the Arp2/3 complex is
important for early embryo development and preimplantation in
pigs and mice71,72, and ARPC2 transcripts are subject to RNA
editing in placentas associated with intrauterine growth restriction/
small for gestational age73. The identification of balancing selection
acting on sPTB-associated genomic regions is consistent with the

critical role of the immune system, which often experiences
balancing selection3,74, in establishing and maintaining preg-
nancy75. Overall, PNKD and ARPC2 show long-term evolutionary
conservation consistent with a signature of balancing selection and
prior research suggests links to pregnancy through a variety of
mechanisms. The identification of balancing selection acting on

a b

c d e

Fig. 4 Functional and evolutionary characterizations of sPTB-associated genomic regions. For each variant we report the protective and risk alleles from
the sPTB GWAS107; the location relative to the nearest gene and linked variants; the alleles at this variant across the great apes and the parsimony
reconstruction of the ancestral allele(s); hypothesized links to pregnancy outcomes or phenotypes; selected significant GTEx hits; and human haplotype(s)
containing each variant in a haplotype map. a Group A (conservation): Human-specific risk allele of rs6546894 is located in the 3’ UTR of TET3. TET3
expression is elevated in preeclamptic and small for gestational age (SGA) placentas46. rs6546894 is also associated with expression of MGC10955 and
NAT8 in the testis (TST), brain (BRN), uterus (UTR), ovaries (OVR), and vagina (VGN). b Group B (population differentiation): rs222016, an intronic
variant in gene GC, has a human-specific protective allele. GC is associated with sPTB44. c Group C (acceleration): rs1061328 is located in a PPFIA1 intron
and is in LD with 156 variants. The protective allele is human-specific. This variant is associated with changes in expression of PPFIA1 and CTTN in adipose
cells (ADP), mammary tissue (MRY), the thyroid (THY), and heart (HRT). CTTN is expressed the placenta63,108. d Group D (long-term polymorphism):
rs10932774 is located in a PNKD intron and is in LD with 27 variants. Alleles of the variant are found throughout the great apes. PNKD is upregulated in
severely preeclamptic placentas69 and ARPC2 has been associated with SGA109. Expression changes associated with this variant include PNKD and ARPC2
in the brain, pituitary gland (PIT), whole blood (WBLD), testis, and thyroid. e Group E (other): rs8126001 is located in the 5’ UTR of OPRL1 and has a
human-specific protective allele. The protein product of the ORPL1 gene is the nociceptin receptor, which is linked to contractions and the presence of
nociception in preterm uterus samples78,79. This variant is associated with expression of OPRL1 and RGS19 in whole blood, the brain, aorta (AORT), heart,
and esophagus (ESO).
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sPTB-associated genomic regions is consistent with the critical role
of the immune system, which often experiences balancing
selection3,74, in establishing and maintaining pregnancy75.

Group E: Varied evolutionary signatures. The final group,
group E, contained the remaining genomic regions in clusters E1,
E2, E3 and E4 and was associated with a broad range of evolu-
tionary signatures (Fig. 2). At least one variant in group E had a
significant p value for every evolutionary measure (except for
alignment block age), 39/73 lead variants had a significant p value
(p < 0.05) for either genomic evolutionary rate profiling (GERP)
or cross-population extended haplotype homozygosity XP-EHH,
and 23/33 genomic regions had high z-scores (|z | >1.5) for
population-specific iHS (Supplementary Data 2). The high fre-
quency of genomic regions with significant XP-EHH or
population-specific iHS values suggests that population-specific
evolutionary forces may be at play in this group and that that
pregnancy phenotypes in individual populations may have
experienced different mosaics of evolutionary forces, consistent
with previous work that sPTB risk varies with genomic
background76,77. Finally, there are 143 variants identified as
eQTLs, including 16 expression changes for genes in the uterus
(all associated with the variant rs12646130; Fig. 4d). Interestingly,
this group contained variants associated with the EEFSEC,
ADCY5, and WNT4 genes, which have been previously associated
with gestational duration or preterm birth33.

The group E variant rs8126001 (effect: 0.896; adjusted p value
4.04 × 10−5)33 is located in the 5’ UTR of the opioid related
nociception receptor 1 or nociception opioid receptor (OPRL1 or
NOP-R) gene which may be involved in myometrial contractions
during delivery78. This variant has signatures of positive selection
as detected by the integrated haplotype score (iHS) within the
African population (Supplementary Data 2) and is associated
with expression of OPRL1 in multiple tissues (Fig. 4e). OPRL1
encodes a receptor for the endogenous peptide nociceptin (N/
OFQ), which is derived from prenociceptin (PNOC). N/OFQ and
PNOC are detected in human pregnant myometrial tissues33 and
PNOC mRNA levels are significantly higher in human preterm
uterine samples and can elicit myometrial relaxation in vitro79. It
is therefore likely that nociceptin and OPRL1 are involved in the
perception of pain during delivery and the initiation of delivery.

sPTB loci are enriched for diverse evolutionary signatures. Our
analyses have so far focused on evaluating the evolutionary forces
acting on individual sPTB-associated regions. To test whether the
entire set of sPTB-associated regions is enriched for specific
evolutionary signatures, we compared the set to the genome-wide
background as well as to matched background sets.

To compare the number of sPTB loci with evidence for each
evolutionary force to the rest of the genome, we computed each
metric on 5000 randomly selected regions and report the number of
the 215 sPTB loci in the top 5th percentile for each evolutionary
measure. If the evolutionary forces acting on the sPTB loci are
similar to those on the genomic background, we would expect 5%
(~11/215) to be in the top tail. Instead, out of 215 sPTB regions
tested, 26 regions on average are in the top 5th percentile across all
evolutionary measures (Fig. 5a). To generate confidence intervals
for these estimates, we repeated this analysis 1000 times and found
that variation is low (S.D. ≤ 1 region). This demonstrates that,
compared to genome-wide distribution, sPTB loci are enriched for
diverse signatures of selection (Fig. 5a).

To compare the number of sPTB loci with extreme evolutionary
signatures to the number expected by chance after matching on
MAF and LD, we generated 215 random regions, compared them to
their MAF and LD-matched distributions, and repeated this process

1000 times for each evolutionary measure. The number regions
expected by chance varied from ~4 to 11 (Fig. 5b). For most
evolutionary measures, the observed number of sPTB regions with
extreme values was within the expected range from the random
regions. However, measures of sequence conservation (LINSIGHT,
GERP, PhastCons) and substitution rate (PhyloP) had more regions
that were significant than expected by chance (top 5th percentile of
the empirical distribution). Thus, sPTB regions are enriched for
these evolutionary signatures compared to LD and MAF-matched
expectation (Fig. 5b).

Discussion
In this study, we developed an approach to test for signatures of
diverse evolutionary forces that explicitly accounts for MAF and
LD in trait-associated genomic regions. Our approach has several
advantages. First, for each genomic region associated with a trait,
our approach evaluates the region’s significance against a dis-
tribution of matched control genomic regions (rather than against
the distribution of all trait-associated region or against a genome-
wide background, which is typical of outlier-based methods),
increasing its sensitivity and specificity. Second, comparing evo-
lutionary measures against a null distribution that accounts for
MAF and LD further increases the sensitivity with which we can
infer the action of evolutionary forces on sets of genomic regions
that differ in their genome architectures. Third, because the lead
SNPs assayed in a GWAS are often not causal variants, by testing
both the lead SNPs and those in LD when evaluating a genomic
region for evolutionary signatures, we are able to better represent
the trait-associated evolutionary signatures compared to other
methods that evaluate only the lead variant7 or all variants,
including those not associated with the trait, in a genomic win-
dow80 (Supplementary Table 1). Fourth, our approach uses an
empirical framework that leverages the strengths of diverse
existing evolutionary measures and that can easily accommodate
the additional of new evolutionary measures. Fifth, our approach
tests whether evolutionary forces have acted (and to what extent)
at two levels; at the level of each genomic region associated with a
particular trait (e.g., is there evidence of balancing selection at a
given region?), as well as at the level of the entire set of regions
associated with the trait (e.g., is there enrichment for regions
showing evidence of balancing selection for a given trait?).
Finally, our approach can be applied to any genetically complex
trait, not just in humans, but in any organism for which genome-
wide association and sequencing data are available.

Although our method can robustly detect diverse evolutionary
forces and be applied flexibly to individual genomic regions or
entire sets of genomic regions, it also has certain technical lim-
itations. The genomic regions evaluated for evolutionary sig-
natures must be relatively small (r2 > 0.9) in order to generate
well-matched control regions on minor allele frequency and
linkage disequilibrium. For regions with complex haplotype
structures, this relatively small region may not tag the true effect-
associated variant. Furthermore, since each genomic region has
its own matched set of control regions, the computation burden
increases with the number of trait-associated regions and the
number of evolutionary measures. For each evolutionary mea-
sure, we must also be able to calculate its value for a large fraction
of the control region variants. Although not all evolutionary
measures can be incorporated into our approach, we demonstrate
this approach on a large number of sPTB-associated regions
across 11 evolutionary measures.

To illustrate our approach’s utility and power, we applied it to
examine the evolutionary forces that have acted on genomic
regions associated with sPTB, a complex disorder of global health
concern with a substantial heritability48. We find evidence of
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evolutionary conservation, excess population differentiation,
accelerated evolution, and balanced polymorphisms in sPTB-
associated genomic regions, suggesting that no single evolu-
tionary force is responsible for shaping the genetic architecture of
sPTB; rather, sPTB has been influenced by a diverse mosaic of
evolutionary forces We hypothesize that the same is likely true of
other complex human traits. While many studies have quantified
the effect of selection on trait-associated regions6–8, there are few
tools available to concurrently evaluate multiple evolutionary
forces as we have done here35,81. Deciphering the mosaic of
evolutionary forces that have acted on human traits not only
more accurately portrays the evolutionary history of the trait, but
is also likely to reveal important functional insights and generate
new biologically relevant hypotheses.

Methods
Deriving sPTB genomic regions from GWAS summary statistics. To evaluate
evolutionary history of sPTB on distinct regions of the human genome, we iden-
tified genomic regions from the GWAS summary statistics. Using PLINK1.9b
(pngu.mgh.harvard.edu/purcell/plink/)82, the top 10,000 variants associated with
sPTB from Zhang et al.31. were clumped based on LD using default settings except
requiring a p value ≤ 10E−4 for lead variants and variants in LD with lead variants.
We used this liberal p value threshold to increase the number of sPTB-associated
variants evaluated. Although this will increase the number of false positive variants
associated with sPTB, we anticipate that these false positive variants will not have
statistically significant evolutionary signals using our approach to detect evolu-
tionary forces. This is because the majority of the genome is neutrally evolving and
our approach aims to detect deviation from this genomic background. Addition-
ally, it is possible that the lead variant (variant with the lowest p value) could tag
the true variant associated with sPTB within an LD block. Therefore, we defined an
independent sPTB-associated genomic region to include the lead and LD (r2 > 0.9,
p value ≤ 10E−4) sPTB variants. This resulted in 215 independent lead variants
within an sPTB-associated genomic region.

Creating matched control regions for sPTB-associated regions. We detected
evolutionary signatures at genomic regions associated with sPTB by comparing

them to matched control sets. Since many evolutionary measures are influenced
by LD and allele frequencies and these also influence power in GWAS, we
generated control regions matched for these attributes for observed sPTB-
associated genomic regions. First, for each lead variant we identified 5000
control variants matched on minor allele frequency (+/−5%), LD (r2 > 0.9,
+/−10% number of LD buddies), gene density (+/− 500%) and distance to
nearest gene (+/−500%) using SNPSNAP83, which derives controls variants
from a quality controlled phase 3 100 Genomes (1KG) data, with default settings
for all other parameters and the hg19/GRCh37 genome assembly. For each
control variant, we randomly selected an equal number of variants in LD (r2 >
0.9) as sPTB-associated variants in LD with the corresponding lead variant. If no
matching control variant existed, we relaxed the LD required to r2= 0.6. If still
no match was found, we treated this as a missing value. For all LD calculations,
control variants and downstream evolutionary measure analyses, the European
super-population from phase 3 1KG84 was used after removing duplicate
variants.

Evolutionary measures. To characterize the evolutionary dynamics at each sPTB-
associated region, we evaluated diverse evolutionary measures for diverse modes of
selection and allele history across each sPTB-associated genomic region. Evolu-
tionary measures were either calculated or pre-calculated values were downloaded
for all control and sPTB-associated variants. Pairwise Weir and Cockerham’s FST
values between European, East Asian, and African super populations from 1KG
were calculated using VCFTools (v0.1.14)84,85. Evolutionary measures of positive
selection, integrated haplotype score (iHS), XP-EHH, and integrated site-specific
EHH (iES), were calculated from the 1KG data using rehh 2.084,86. Beta score, a
measure of balancing selection, was calculated using BetaScan software3,84.
Alignment block age was calculated using 100-way multiple sequence alignment87

to measure the age of alignment blocks defined by the oldest most recent common
ancestor. The remaining measures were downloaded from publicly available
sources: phyloP and phastCons 100 way alignment from UCSC genome brow-
ser;88–90 LINSIGHT;5 GERP;91–94 and allele age (time to most common recent
ancestor from ARGWEAVER)4,95. Due to missing values, the exact number of
control regions varied by sPTB-associated region and evolutionary measure. We
first marked any control set that did not match at least 90% of the required variants
for a given sPTB-associated region, then any sPTB-associated region with ≥60%
marked control regions were removed for that specific evolutionary measure. iHS
was not included in Fig. 2 because of large amounts of missing data for up to 50%
of genomic regions evaluated.

a b

Fig. 5 sPTB is enriched for evolutionary measures even after accounting for MAF and LD. a sPTB regions (red) are enriched for significant evidence of
nearly all evolutionary measures (black stars) compared to the expectation from the genome-wide background (gray). For each evolutionary measure (y-
axis), we evaluated the number of sPTB regions with statistically significant values (p < 0.05) compared to the genome-wide distribution of the metric
based on 5000 randomly selected regions over 1000 iterations. The mean number of significant regions (x-axis) is denoted by the red diamond with the
5th and 95th percentiles flanking. The expected number of significant regions by chance was computed from the binomial distribution (gray hexagons with
95% confidence intervals). b Accounting for MAF and LD revealed enrichment for evolutionary measures of sequence conservation (PhyloP, PhastCons,
LINSIGHT, GERP) among the sPTB-associated genomic regions. In contrast to a, the number of significant regions (among the 215 sPTB-associated
regions) was determined based on 5000 MAF- and LD-matched sets. Similarly, the expected distribution (gray boxes) was determined using 1000
randomly selected region sets of the same size as the sPTB regions with matching MAF and LD values.
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Detecting significant differences in evolutionary measures. For each sPTB-
associated genomic region for a specific evolutionary measure, we took the median
value of the evolutionary measure across all variants in LD in the region and
compared it to the distribution of median values from the corresponding MAF-
and LD-matched control regions described above. Statistical significance for each
sPTB-associated region was evaluated by comparing the median value of the
evolutionary measure to the distribution of median values of the control regions.
To obtain the p value, we calculated the number of control regions with a median
value that are equal to or greater the median value for the PTB region. Since allele
age (time to most recent common ancestor (TMRCA) from ARGweaver), PhyloP,
and alignment block age are bi-directional measures, we calculated two-tailed p
values; all other evolutionary measures used one-tailed p values. To compare
evolutionary measures whose scales differ substantially, we calculated a z-score for
each region per measure. These z-scores were hierarchically clustered across all
regions and measures. Clusters were defined by a branch length cutoff of seven.
These clusters were then grouped and annotated by the dominant evolutionary
measure through manual inspection to highlight the main evolutionary trend(s).

Annotation of variants in sPTB-associated regions. To understand functional
differences between groups and genomic regions we collected annotations for variants
in sPTB-associated regions from publicly available databases. Evidence for regulatory
function for individual variants was obtained from RegulomeDB v1.1 (accessed 1/11/
19)96. From this we extracted the following information: total promotor histone
marks, total enhancer histone marks, total DNase 1 sensitivity, total predicted proteins
bound, total predicted motifs changed, and regulomeDB score. Variants were iden-
tified as expression quantitative trait loci (eQTLs) using the Genotype-Tissue
Expression (GTEx) project data (dbGaP Accession phs000424.v7.p2 accessed 1/15/
19). Variants were mapped to GTEx annotations based on RefSNP (rs) number and
then the GTEx annotations were used to obtain eQTL information. For each locus, we
obtained the tissues in which the locus was an eQTL, the genes for which the locus
affected expression (in any tissue), and the total number times the locus was identified
as an eQTL. Functional variant effects were annotated with the Ensembl Variant
Effect Predictor (VEP; accessed 1/17/19) based on rs number97. Variant to gene
associations were also assessed using GREAT98. Total evidence from all sources—
nearest gene, GTEx,VEP, regulomeDB, GREAT—was used to identify gene-variant
associations. Population-based allele frequencies were obtained from the 1KG phase3
data for the African (excluding related African individuals; Supplementary Table 3),
East Asian, and European populations84.

To infer the history of the alleles at each locus across mammals, we created a
mammalian alignment at each locus and inferred the ancestral states. That
mammalian alignment was built using data from the sPTB GWAS33 (risk variant
identification), the UCSC Table Browser87 (30 way mammalian alignment), the
1KG phase 384 data (human polymorphism data) and the Great Ape Genome
project (great ape polymorphisms)99—which reference different builds of the
human genome. To access data constructed across multiple builds of the human
genome, we used Ensembl biomart release 97100 and the biomaRt R package101,102

to obtain the position of variants in hg38, hg19, and hg18 based on rs number82.
Alignments with more than one gap position were discarded due to uncertainty in
the alignment. All variant data were checked to ensure that each dataset reported
polymorphisms in reference to the same strand. Parsimony reconstruction was
conducted along a phylogenetic tree generated from the TimeTree database103.
Ancestral state reconstruction for each allele was conducted in R using parsimony
estimation in the phangorn package104. Five character-states were used in the
ancestral state reconstruction: one for each base and a fifth for gap. Haplotype
blocks containing the variant of interest were identified using Plink (v1.9b_5.2) to
create blocks from the 1KG phase3 data. Binary haplotypes were then generated for
each of the three populations using the IMPUTE function of vcftools (v0.1.15.)
Median joining networks105 were created using PopART106.

Enrichment of significant evolutionary measures. Considering all sPTB regions,
we evaluated whether sPTB regions overall are enriched for each evolutionary
measure compared to genome-wide and matched control distributions. First, for
the genome-wide comparisons, we counted the number of sPTB regions in the top
5th percentile of genome-wide distribution generated from 5000 random regions
for a given evolutionary measure. We repeated this step 1000 times and computed
the mean number of regions in the top 5th percentile of each iteration. The null
expectation and statistical significance were computed using the Binomial dis-
tribution with a 5% success rate over 215 trials. Second, since many evolutionary
measures are dependent on allele frequency and linkage equilibrium, we also
compared the number of significant regions (over all sPTB regions) for an evo-
lutionary measure to LD- and MAF-matched distributions as described earlier
(Fig. 1, Methods). To generate the null expectation for the number of significant
regions, we randomly generated regions equal to the number of sPTB regions (n=
215) and compared them to their own matched distributions. We repeated this for
1000 sets of 215 random regions to generate the null distribution of the number of
regions in the top 5th percentile for each evolutionary measure when matching for
MAF and LD.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the data used in this study were obtained from the public domain (see the specific
URLs below) or deposited in a figshare repository at https://doi.org/10.6084/m9.figshare.
c.4602905.

Publicly available data was downloaded from the following sources. PhyloP,
PhastCons, 100-way species alignment and GERP data was obtained from the UCSC
genome browser (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phyloP100way/,
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phastCons100way/, http://
hgdownload.cse.ucsc.edu/goldenpath/hg19/multiz100way/, and http://genome.ucsc.edu/
cgi-bin/hgTrackUi?db=hg19&g=allHg19RS_BW. LINSIGHT data was obtained from
https://github.com/CshlSiepelLab/LINSIGHT. Thousand genomes phase 3 data was
obtained from http://www.internationalgenome.org/. TMRCA from ARGWEAVER was
obtained from http://compgen.cshl.edu/ARGweaver/CG_results/download/.

Code availability
All scripts used to measure evolutionary signatures and generate figures are publicly
accessible in a figshare repository at https://doi.org/10.6084/m9.figshare.c.4602905.
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