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ABSTRACT 
With regard to potential applications of genomic selection in small numbered breeds, we evaluated genomic models and focused on potential 
candidate gene annotations for weight and meat quality traits in the local Rotes Höhenvieh (RHV) breed. Traits included 6,003 birth weights 
(BWT), 5,719 200 d-weights (200dw), 4,594 365 d-weights (365dw), and 547 records for intramuscular fat content (IMF). A total of 581,304 SNP 
from 370 genotyped cattle with phenotypic records were included in genomic analyses. Model evaluations focused on single- and multiple-trait 
models with direct and with direct and maternal genetic effects. Genetic relationship matrices were based on pedigree (A-matrix), SNP markers 
(G-matrix), or both (H-matrix). Genome-wide association studies (GWASs) were carried out using linear mixed models to identify potential candi-
date genes for the traits of interest. De-regressed proofs (DRP) for direct and maternal genetic components were used as pseudo-phenotypes 
in the GWAS. Accuracies of direct breeding values were higher from models based on G or on H compared to A. Highest accuracies (> 0.89) 
were obtained for IMF with multiple-trait models using the G-matrix. Direct heritabilities with maternal genetic effects ranged from 0.62 to 0.66 
for BWT, from 0.45 to 0.55 for 200dW, from 0.40 to 0.44 for 365dW, and from 0.48 to 0.75 for IMF. Maternal heritabilities for BWT, 200dW, and 
365dW were in a narrow range from 0.21 to 0.24, 0.24 to 0.27, and 0.21 to 0.25, respectively, and from 0.25 to 0.65 for IMF. Direct genetic cor-
relations among body weight traits were positive and favorable, and very similar from different models but showed a stronger variation with 0.31 
(A), −0.13 (G), and 0.45 (H) between BWT and IMF. In gene annotations, we identified 6, 3, 1, and 6 potential candidate genes for direct genetic 
effect on BWT, 200dW, 365dW, and IMF traits, respectively. Regarding maternal genetic effects, four (SHROOM3, ZNF609, PECAM1, and TEX2) 
and two (TMEM182 and SEC11A) genes were detected as potential candidate genes for BWT and 365dW, respectively. Potential candidate 
genes for maternal effect on IMF were GRHL2, FGA, FGB, and CTNNA3. As the most important finding from a practical breeding perspective, 
a small number of genotyped RHV cattle enabled accurate breeding values for high heritability IMF.
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INTRODUCTION
“Rotes Höhenvieh” (RHV) is a dual-purpose medium-sized 
cattle breed with a uniform red-brown hair color, originated 
from the Central Uplands of Germany. RHV cattle are mainly 
kept for quality beef production in low input grazing systems, 
and selection has focused on adaptation to harsh environ-
ments (Halli et al., 2020). In comparison to the mainstream 
beef cattle breeds, the small RHV population size implies a 
continuously decreasing selection intensity, with impact on the 
breed competitiveness. Hence, especially for such local endan-
gered breeds, it is imperative to focus on niche markets, e.g., 
markets offering special meat products and aiming on meat 
quality improvements (Biermann et al, 2015). Furthermore, 
in beef breeds with small population size, it is imperative to 
apply all available modern technologies such as reproduction 
techniques or genomic selection to achieve at least moderate 
genetic gain per year (Pimentel and König, 2012).

Incorporation of body weight and meat quality traits into 
a genetic evaluation scheme requires accurate genetic par-
ameter estimates. Moderate to high direct pedigree-based 
heritabilities were reported for body weight traits of sev-
eral beef cattle breeds (Gutiérrez et al., 2007; Regatieri et 
al., 2012; Caetano et al., 2013), indicating the potential for 
genetic improvement. The most studied meat quality traits 
in beef cattle are intramuscular fat content (IMF) and shear 
force. In their review, Utrera and VanVleck (2004) presented 
direct heritabilities for both traits in the range from 0.40 to 
0.50. Even higher heritabilities up to 0.88 for carcass traits 
in American Shorthorn cattle were reported by Pariacote et 
al. (1998). Such moderate to high heritability estimates when 
modeling pedigree relationships (A-matrix) were confirmed 
in more recent studies (MacNeil et al., 2010; Mateescu et al., 
2015). Using commercially available genetic marker panels 
(i.e., two markers per panel), significant associations of the 
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thyroglobulin-, calpastatin-, and the µ-calpain-marker with 
meat quality traits were observed for meat quality traits in 
beef cattle (Van Eenennaam et al., 2007). As shown in deter-
ministic predictions for high heritability traits, training sets 
comprising 700 to 1,000 animals with genomic marker data 
and phenotypes enable precise estimates of genomic breeding 
values (Daetwyler et al., 2008). The very dense 777K SNP 
chip allowed quite accurate estimates for production traits 
in beef cattle, even when considering different breeds in the 
same reference set (Rolf et al., 2010). In a genome-wide as-
sociation study (GWAS), Lu et al. (2013) used a sample size 
including 747 crossbred beef cattle and identified 34 SNP 
markers significantly associated with IMF and meat marb-
ling score.

In addition, especially for weight or weight gain traits in 
ruminants, a strong maternal genetic component has been 
identified, even for traits recorded late in life (Mandal et al., 
2006). Saatci et al. (1999) and Meyer (1992) indicated biased 
estimates when neglecting maternal genetic effects in genetic 
evaluations for sheep and beef cattle, respectively. For weights 
at different ages recorded in Holstein Friesian calves and 
heifers, Yin and König (2019) identified a moderate genetic 
maternal component up to the age of 1 yr. They considered 
4,246 animals with genotypes and inferred a large number 
of SNP markers either contributing to the direct or maternal 
genetic effects on weights at the age of 3 mo.

The combination of pedigree and genomic information in 
so-called single-step approaches (e.g., Aguilar et al., 2010) 
especially offers potential to improve genetic evaluations in 
small-sized breeds with poorly recorded pedigrees. Single-
step methods have been developed for the estimation of gen-
etic parameters and breeding values (Misztal et al., 2018), as 
well as for GWASs (Wang et al., 2012). Recently, Shabalina et 
al. (2021) evaluated genetic parameters from pure genomic, 
pedigree-based, and single-step approaches considering a 
small sample size of only 758 genotyped cows with pheno-
types for low heritability functional traits. Heritabilities 
and genetic variances from the single-step approach were 
in-between the estimates from the pure pedigree and genomic 
models, and associated with small standard errors.

A further modeling question addresses the application 
of single-trait genomic (STGM) or multiple-trait genomic 
models (MTGM), with generally higher accuracies of genetic 
parameter estimates from MTGM (Jia and Jannink, 2012; 
Ismael et al., 2017; Srivastava et al., 2019). In beef cattle, 
body weight and meat quality traits are genetically closely 
correlated (Gordo et al., 2016), and the benefits from a 
MTGM over a STGM may be smaller compared to genetic 
evaluations for low heritability traits (Daetwyler et al., 2012; 
Guo et al., 2014).

In beef cattle, there is a gap of scientific studies comparing 
pedigree-based and genomic models, especially for novel meat 
quality traits from local breeds kept in alternative low input 
production systems. Furthermore, to the best of our know-
ledge, no previous GWAS has been conducted to estimate 
maternal genetic effects on meat quality traits. Consequently, 
the objectives of this study were to 1) estimate direct and 
maternal genetic (co)variance components for body weight 
and IMF traits using pedigree-based, pure genomic, and com-
bined pedigree-genomic models in RHV dual-purpose cattle, 
2) compare estimates from single-trait and multiple-trait 
models with and without maternal genetic effects, and 3) 
perform GWAS in order to identify genomic regions that are 

associated with direct and maternal genetic effects on weight 
traits and on IMF.

MATERIALS AND METHODS
The research did not involve any direct physical contact to 
the animals. No experimental studies were conducted for 
this project. Hence, no additional statement of institutional 
animal care and use committee is required.

Animals and Traits
For weight traits, phenotypic data of 9,184 RHV cattle from 
269 herds were provided by ‘Vereinigte Informationssysteme 
Tierhaltung w. V.’ (VIT) (Verden, Germany), with permis-
sion of all RHV breeder societies involved. All herds reflect a 
pasture-based production system. Data recording for weight 
traits spanned a period of 20 yr (2000 to 2019) and in-
cluded birth weight (BWT), 200 d-weight (200dW), and 365 
d-weight (365dW).

For intra-muscular fat content (IMF) analyses, a subset 
including 33 RHV herds provided meat samples from 547 
RHV animals from the slaughtering years 2018 to 2020. 
The meat samples with a thickness of 3.5  cm were taken 
from the musculus longissimus dorsi between the 12th and 
13th ribs. All samples were temporarily frozen and stored 
until analyses in the meat laboratory at Kassel University. 
IMF was determined by applying near-infrared (NIR) 
spectroscopy.

Records from herds with less than 10 phenotyped cattle 
were excluded. All traits were corrected for outliers by 
excluding values lower or higher the mean ± 3 SD. After data 
editing, the dataset for weight traits included 6,003 obser-
vations for BWT, 5,719 observations for 200dw, 4,594 ob-
servations for 365dw, and 547 records for IMF for ongoing 
genetic-statistical analyses. Means were 36.7 kg (± 5.5 kg) for 
BWT, 231.4 kg (± 60.4 kg) for 200dW, 342.9 kg (± 74.7 kg) 
for 365dW, and 2.45 % (± 2.6 %) for IMF. The pedigree 
dataset included 9,989 animals with 481 sires and 2,910 
dams.

Genomic Data
The genomic dataset consisted of 777,963 SNP markers 
from 380 genotyped animals. SNP genotypes quality con-
trol was performed using the PLINK software (Purcell et 
al., 2007). SNPs with a call rate lower than 0.90 (2,581 
SNPs), a minor allele frequency lower than 0.05 (146,469 
SNPs) and a significant deviation (P-value < 10−6) from 
Hardy–Weinberg equilibrium (4,939 SNPs) were discarded. 
Furthermore, 42,670 SNPs located on the sex chromosomes, 
and 10 cattle due to an individual call rate lower than 0.90, 
were excluded. Finally, 370 genotyped cattle with 581,304 
SNP markers were considered in the ongoing genomic ana-
lyses. All of the genotyped animals were phenotyped for 
weight traits, and a subset of 343 animals had phenotypic 
records for IMF.

Genetic-Statistical Models
The genetic models reflected different genetic relationship 
matrices. The basic model was a single-trait animal model 
using the pedigree relationship matrix (A) with direct genetic 
effects (STPM_d, model 1), which was expanded to a model 
with direct and maternal genetic effects (STPM_dm, model 2). 
The STPM_d and STPM_dm were defined as follows:
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y = Xb+ Zaa+ e (1)

y = Xb+ Zaa+ Zmm+ e (2)

where y is the observation vector for BWT, 200dW, 365dW or 
IMF; b is a vector for fixed effects including herd-year-season, sex, 
and age at recording as a covariate for 200dW, 365dW, or IMF; a is 
a vector for random direct genetic effects; m is a vector for random 
maternal genetic effects; and e is a vector for random residual ef-
fects; X, Za, and Zm are incidence matrices relating the records to 
the fixed, direct genetic, and maternal genetic effects, respectively.

The (co)variance structure for random effects for the 
STPM_dm was (and correspondingly reduced in STPM_d 
without maternal genetic effect)

var
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residual variances, respectively; σam is the covariance between 
direct and maternal genetic effects; A is the numerator rela-
tionship matrix among individuals; and I is an identity matrix 
for residual effects.
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maternal genetic, and phenotypic variances, respectively, and 
σam was the direct-maternal genetic covariance. The phenotypic 
variance was calculated as the sum of the direct genetic vari-
ance, the maternal genetic variance, the residual variance, and 
the covariance between direct and maternal genetic effects.

Multiple-trait pedigree-based models including the 
four traits simultaneously with only direct genetic effects 
(MTPM_d, model 3) and with direct and maternal genetic 
effects (MTPM_dm, model 4) were defined as follows:



y1
...

y4


 =



X1. . .0
...

. . .
...

0 . . .X4






b1
...

b4


+



Za1. . .0
...

. . .
...

0 . . .Za4






a1
...

a4


+



e1
...

e4




 (3)



y1
...

y4


 =



X1. . .0
...

. . .
...

0 . . .X4






b1
...

b4


+



Za1. . .0
...

. . .
...

0 . . .Za4






a1
...

a4


+



Zm1. . .0
...

. . .
...

0 . . .Zm4






m1

...

m4


+



e1
...

e4




 (4)

where subscripts 1 to 4 refer to four traits (i.e., BWT, 200dW, 
365dW, and IMF). The (co)variance structure for the MTPM_
dm was

var
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where σ2
ai and σ2

mi
 are direct and maternal genetic variances, 

respectively, for trait i (i = 1 to 4); σai,mj is the covariance 
between the direct genetic effect for trait i and the maternal 
genetic effect for trait j (j = 1 to 4); σ2

ei and σei,ej are residual 
variances and covariances, respectively; A is the numerator re-
lationship matrix among animals; and I is an identity matrix.

In the multiple-trait analysis, direct genetic correlations be-
tween traits were calculated as rai,j =

σai,j√
σ2
ai× σ2

aj

, where σai,i is 
the direct genetic covariance between traits i and j; σ2

ai and σ2
aj 

are the direct genetic variances for traits i and j, respectively. 
Genetic correlations between direct genetic effect for trait i 
and maternal genetic effect for trait j, or vice versa, were cal-
culated as rai,mj =

σai,mj√
σ2
ai× σ2

mj

, where σai,mj is the covariance 
between direct genetic effects for trait i and maternal gen-
etic effects for trait j; σ2

ai and σ2
mj

 are the direct genetic vari-
ance for trait i and the maternal genetic variance for trait j, 
respectively.

In genomic best linear unbiased predictions (GBLUP), 
matrix A was replaced with the genomic relationship matrix 
(G). In this regard, single- and multiple-trait genomic models 
with direct genetic effects (i.e., STGM_d and MTGM_d, 
respectively), and with both direct and maternal genetic ef-
fects (i.e., STGM_dm and MTGM_dm, respectively), were 
defined. Matrix G was set up for genotyped animals with 
G = MM′

2
m∑
i=1

pi(1−pi)
 as proposed by VanRaden (2008), where m 

denote the number of SNPs, pi is the allele frequency at locus 
i, and M is a centered matrix of SNP genotypes.

In the single-step GBLUP (ssGBLUP) approach as de-
veloped by Aguilar et al. (2010), the combined pedigree-
genomic relationship matrix H was used instead of matrix 
A. Accordingly, single- and multiple-trait models with matrix 
H were fitted (i.e., STHM_d and STHM_dm for single-
trait models, and MTHM_d and MTHM_dm for multiple-
trait models). The inverse of matrix H was defined as 
H−1 = A−1 +

ñ
00
0G−1

w − A−1
22

ô
, where GW = 0.95G + 0.05A22 

and A22 is the submatrix of A for the genotyped animals. The 
matrix GW was constructed as proposed by VanRaden (2008), 
in order to render it invertible.

The analyses were conducted using GIBBS2F90 (Misztal et 
al., 2002). For each analysis, a single chain length of 300,000 
samples was generated. After discarding the first 50,000 sam-
ples as a burn-in period, posterior means and standard devi-
ations were calculated from every 100th samples. Convergence 
of the Gibbs chains was checked by visual inspection of the 
sample trace plots. Furthermore, the lower and upper bounds 
of the 95% highest posterior density (HPD) were obtained 
from the derived marginal densities in order to verify con-
vergence of genetic analyses. Attempts to include maternal 
permanent environmental effects in the multiple-trait ana-
lyses implied convergence problems. Therefore, we focused 
on single- and multiple-trait models without maternal per-
manent environmental effects.

Model Comparisons
For both single- and multiple-trait models, comparisons con-
sidered the three different relationship matrices A, G, and H. 
The deviance information criterion (DIC) was used to assess 
goodness of fit (Spiegelhalter et al., 2002) as DIC = D̄ (θ) + pD, 
where D̄ (θ) is the posterior expectation of Bayesian devi-
ance and pD is the effective number of model parameters. A 
smaller DIC indicates model superiority. For random effects, 
a priori normal distribution was assumed. For covariances, 
we assumed a scaled inverted chi-square distribution for the 
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single-trait models and an inverted Wishart distribution for 
the multiple-trait models.

Additionally, models were evaluated based on the accur-
acies for direct breeding values (dEBV) and maternal breeding 
values (mEBV). For each trait, the accuracy of the breeding 
value of the ith genotyped animal (ri) was

ri =

 
1− PEVi

σ2
g

,

where PEVi is the prediction error variance of the breeding 
value for the ith animal, and σ2

g is the direct or maternal gen-
etic variance from the respective model. The prediction error 
variance for a breeding value was the square of the posterior 
standard deviation of the respective breeding value. The EBV 
from the models based on A-matrix were considered as esti-
mates being close to the true breeding value (Daetwyler et al., 
2013; Badke et al., 2014). Thus, the deviation of regression 
coefficients of EBV on GEBV from 1.0 was a further evalu-
ation criterion for the biasedness of genomic predictions. In 
the results, breeding value accuracies and the biasedness of 
genomic predictions are presented for the genotyped animals 
with phenotypes.

Genome-Wide Associations
De-regressed proofs (DRP) based on pedigree-based EBV 
are commonly used as pseudo-phenotypes in GWASs (Song 
et al., 2018; Yin and König, 2019). According to Garrick 
et al. (2009), the direct or maternal DRP for the ith animal 
was calculated as DRPi = EBVi

r2i
, where EBVi is the pedigree-

based direct or maternal breeding value for the ith genotyped 
animal from the MTPM_dm, and r2i  is the accuracy of the 
respective breeding value. The GWAS was carried out using 
the linear mixed model association method as implemented 
in the GCTA software (Yang et al., 2011). The model 5 was 
defined as follows:

y = 1µ+ xisi + Zu+ e (5)

where y is the vector of direct or maternal DRP for BWT, 
200dW, 365dW, or IMF; 1 is the vector of ones; µ is the 
overall mean effect; xi is the vector of genotypes coded as 
0, 1, or 2; si was the effect of the ith SNP; u ∼ N(0,Gσ2

u) is 
the vector of random polygenic effects, with G representing 
the genomic relationship matrix among animals, and σ2

u is the 
polygenic variance; Z is an incidence matrix for u, and e is the 
residual random effect.

Manhattan plots for the −log10P-values of the tested SNP 
for direct and maternal genetic effects were created using the 
ggplot2 package in R (Wickham, 2009). In order to evaluate 
the model quality, we calculated the genomic inflation factor 
as the median of the observed chi-squared test statistics 
divided by the expected median chi-squared distribution 
(0.4549).

The Wellcome Trust Case Control Consortium (2007) re-
ported that the traditional Bonferroni correction based on the 
total number of SNP tends to produce many false-negative 
results. Consequently, an adjusted Bonferroni correction was 
applied to account for multiple testing considering an ef-
fective number of 127,730 independent SNP. Accordingly, the 
genome-wide significance P-value threshold was set as 0.05/n, 
where n was the effective number of independent SNP. The 

effective number of independent SNP was computed using 
PLINK (Purcell et al., 2007) defining a window size of 50 
SNP, a step of 5 SNP and a linkage disequilibrium threshold 
of 0.5. In addition, a chromosome-wide significance P-value 
threshold was defined as 0.05/nc, where nc was the effective 
number of independent SNP on the respective chromosome. 
Chromosome-wide significance thresholds ranged from 
6.71 × 10−6 for BTA1 to 1.89 × 10−5 for BTA25.

A window frame of ±250 kb around each significant SNP 
(i.e., according to the Bonferroni-corrected thresholds) was 
considered to annotate potential candidate genes. The signifi-
cant SNP were mapped to corresponding genes from the Bos 
taurus ARS-UCD1.2 annotation release 96 assembly from 
the Ensembl database (http://www.ensembl.org/biomart/
martview), using the R package biomaRt (Durinck et al., 
2009).

RESULTS
Model Comparison
The evaluation of DIC indicated superiority of a single-
trait model with direct and maternal genetic effects over a 
respective model ignoring the maternal genetic component 
(Table 1). Accordingly, DIC decreased by 2.63% for BWT, 
0.75% for 200dW, 0.56% for 365dW, and 4.06% for IMF 
when applying STPM_dm instead of STPM_d. The modeling 
superiority when taking maternal genetic effects into account 
was very obvious for the meat quality trait IMF and consid-
eration of SNP marker data. The DIC substantially decreased 
by 45.39% when using STGM_dm instead of STGM_d and 
by 21.37% when using STHM_dm instead of STHM_d. Also 
in single-step multiple-trait analyses (H-matrix), DIC were 
smaller when including the maternal genetic effect. However, 
in multiple-trait analyses based on A- or G-matrices, the sim-
pler models ignoring the maternal genetic component indi-
cated slight superiority according to DIC.

Accuracies of dEBV of genotyped cattle with phenotypes 
from models with only direct genetic effects are presented 
in Figure 1. For all traits, genomic models (i.e., STGM_d 
and MTGM_d) displayed the highest accuracies from 0.84 
for 365dW to 0.95 for IMF. For body weight traits, a slight 
increase in dEBV accuracies was observed when using 
multiple-trait instead of single-trait models. Accuracies of 
dEBV of genotyped cattle from models with direct and ma-
ternal genetic effects are presented in Figure 2A. For body 
weight traits, dEBV accuracies were very similar when com-
paring to the accuracies from the respective model without 
maternal genetic effect as displayed in Figure 1. For IMF, 
dEBV accuracies were lower when using STHM_dm in-
stead of STHM_d (0.63  ±  0.13 vs. 0.77  ±  0.08, respect-
ively). However, with regard to the multiple-trait modeling, 
the MTHM_dm revealed a slightly higher accuracy than 
the MTHM_d (0.75  ±  0.12 vs. 0.73  ±  0.10, respectively). 
For all traits, the highest accuracies of mEBV were obtained 
from the MTGM_dm (Figure 2B). Among all models with 
maternal genetic effects, the accuracy of mEBV was lowest 
(0.26) for the trait 365dW and when considering the 
A-matrix in MTPM_dm.

The biasedness of genomic predictions decreased when con-
sidering maternal genetic effects (Table 2). The regression coef-
ficients of EBV on GEBV from the STHM_dm were 0.97, 0.97, 
1.04, and 0.93 for dEBV of BWT, 200dW, 365dW, and IMF, 
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respectively. The biasedness increased when using the STGM_
dm instead of the STHM_dm. With regard to the STGM_dm, 
regression coefficients were 0.62, 0.68, 0.66, and 1.24 for dEBV 
of BWT, 200dW, 365dW, and IMF, respectively. A significant 
decrease in biasedness was observed for IMF when applying 
multiple-trait models with the G-matrix. For instance, for dEBV 
of IMF, regression coefficients of 1.12 and 1.06 were observed 
when applying MTGM_d and MTGM_dm, respectively.

Genetic Parameters
The estimated variance components and heritabilities for 
weight traits and IMF from single- and multiple-trait models 
with only direct genetic effect are given in Table 3. For all 
traits, larger additive genetic variances were estimated when 
applying models with the pure genomic (G) relationship 
matrix in comparison to the models with pedigree-based (A) 
and with combined pedigree-genomic (H) matrices. Weight 
traits displayed moderate heritabilities in the range from 
0.29 ± 0.03 (for 365dW; MTPM_d) to 0.42 ± 0.03 (for 200dW; 

STGM_d). Heritabilities for weight traits were quite similar 
from the models with the pedigree-based relationship matrix 
(i.e., STPM_d and MTPM_d) and the corresponding models 
with the combined pedigree-genomic relationship matrix (i.e., 
STHM_d and MTHM_d). Due to the increased additive gen-
etic variances, the G-modeling approach via STGM_d and 
MTGM_d displayed the highest heritabilities. Heritabilities 
from the STGM_d were 0.39 ± 0.03 for BWT, 0.42 ± 0.03 
for 200dW and 0.34 ± 0.03 for 365dW. Corresponding es-
timates from the MTGM_d were 0.38  ±  0.03 for BWT, 
0.41 ± 0.04 for 200dW, and 0.32 ± 0.03 for 365dW. For IMF, 
heritabilities ranged from 0.38 ± 0.02 using the MTHM_d to 
0.92 ± 0.05 using the STGM_d. In comparison to the models 
with A- and H-matrices, heritability estimates for IMF from 
the models with G-matrix (STGM_d and MTGM_d) showed 
significantly lower standard deviations and smaller 95% 
HPD intervals.

Variance components and genetic parameters for BWT, 
200dW, 365dW, and IMF estimated from single- and 

Table 1. Deviance information criterion (DIC) for birth weight (BWT), 200 d-weight (200dW), 365 d-weight (365dW), and intra-muscular fat content (IMF) 
traits using single- and multiple-trait models considering different genetic relationship matrices

Model1 Trait

BWT 200dW 365dW IMF 

STPM_d 33550.22 55997.89 48460.38 1764.71

STPM_dm 32668.94 55579.83 48188.37 1693.14

STGM_d 33546.25 55939.54 48455.03 1295.16

STGM_dm 32756.95 55386.76 48141.21 707.25

STHM_d 33532.48 55988.20 48450.43 2143.64

STHM_dm 32637.26 55555.44 48167.01 1685.45

MTPM_d 102071.62

MTPM_dm 180085.57

MTGM_d 39480.21

MTGM_dm 95307.52

MTHM_d 196621.48

MTHM_dm 105188.21

1ST∗M_d and ST∗M_dm denote single-trait models, and MT∗M_d and MT∗M_dm denote multiple-trait models with only direct (d) and with direct and 
maternal genetic (dm) effects, where ∗ refers to the pedigree-based (A), genomic (G), or combined pedigree-genomic (H) relationship matrix.

Figure 1. Accuracy of direct breeding values (dEBV) for birth weight (BWT), 200-d weight (200dW), 365-d weight (365dW), and intra-muscular fat 
content (IMF) traits. ST∗M_d and MT∗M_d denote single trait and multiple trait models with direct genetic effects, respectively, where ∗ refers to 
pedigree-based (A), genomic (G), or combined pedigree-genomic (H) relationship matrices.
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multiple-trait models with direct and maternal genetic effects 
are presented in Table 4. For all traits, generally higher direct 
heritabilities were estimated when fitting the maternal gen-
etic effect in comparison to the respective models ignoring the 
maternal component. The direct heritabilities for weight traits 
from the different models with maternal genetic effects were 
similar and ranged from 0.62 to 0.64 for BWT, from 0.45 to 
0.55 for 200dW, and from 0.40 to 0.44 for 365dW. Again, 
highest heritabilities (0.48 to 0.76) were estimated for IMF, 
but values were generally lower than from models ignoring 
the maternal genetic component. Maternal heritabilities for 
BWT, 200dW, and 365dW from the different models with 

maternal genetic effects were in a narrow range from 0.21 
to 0.24, 0.24 to 0.27, and 0.21 to 0.25, respectively (Table 
4). However, for IMF, a wider range of maternal heritabilities 
was estimated from 0.25 (STGM_dm) to 0.65 (MTPM_dm). 
For IMF, the 95% HPD intervals for direct and maternal gen-
etic variances overlapped when applying single-trait models 
with A- and H-matrices.

Direct Genetic and Maternal Genetic Correlations
Genetic covariances and genetic correlations among BWT, 
200dW, 365dW, and IMF from the multiple-trait models with 
maternal genetic effects and considering the different genetic 

Figure 2. (A) Accuracy of direct breeding values (dEBV) and (B) maternal breeding values (mEBV) for birth weight (BWT), 200-d weight (200dW), 365-d 
weight (365dW), and intra-muscular fat content (IMF) traits. ST∗M_dm and MT∗M_dm denote single trait and multiple trait models with direct and 
maternal genetic effects, respectively, where ∗ refers to pedigree-based (A), genomic (G), or combined pedigree-genomic (H) relationship matrices.

Table 2. Regression coefficients of estimated breeding values (EBV) from models with pedigree-based relationship matrix on EBV from corresponding 
models with genomic (G) or combined pedigree-genomic (H) relationship matrix for birth weight (BWT), 200-d weight (200dW), 365-d weight (365dW), 
and intra-muscular fat content (IMF)

Model1 EBV BWT 200dW 365dW IMF

H G H G H G H G 

STPM_d Direct 1.00 0.66 0.98 0.68 1.01 0.67 0.70 1.11

STPM_dm Direct 0.97 0.62 0.97 0.68 1.04 0.66 0.93 1.24

Maternal 0.97 0.58 1.06 0.60 0.81 0.43 0.95 0.34

MTPM_d Direct 1.02 0.64 0.59 0.51 0.91 0.65 0.38 1.12

MTPM_dm Direct 0.93 0.58 0.60 0.43 0.92 0.66 1.06 1.06

Maternal 0.88 0.53 0.67 0.44 0.85 0.66 0.63 0.30

1STPM_d and STPM_dm denote single-trait pedigree-based models, and MTPM_d and MTPM_dm denote multiple-trait pedigree-based models with only 
direct (d) and with direct and maternal genetic (dm) effects.
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relationship matrices are displayed in Table 5. Estimates were 
quite similar from the different modeling approaches. The 
direct genetic correlations among the body weight traits BWT, 
200dW, and 365dW were throughout positive and favorable. 
In this regard, the lowest direct genetic correlations were esti-
mated between BWT and 365dW (0.16, 0.13, and 0.12 from 
the MTPM_dm, MTGM_dm, and MTHM_dm, respectively). 
The highest direct genetic correlations were estimated between 
200dW and 365dW (0.57, 0.61, and 0.63 from the MTPM_
dm, MTGM_dm, and MTHM_dm, respectively). The direct 
genetic correlations between BWT and IMF showed a stronger 
variation with 0.31, −0.13, and 0.45 from the MTPM_dm, 
MTGM_dm, and MTHM_dm, respectively. Slightly antagon-
istic direct genetic relationships were identified between IMF 
with 200dW and 365dW. The genetic correlations between 
IMF and 200dW were −0.23, −0.15, and −0.02, and between 
IMF and 356dW 0.12, 0.01, and 0.05 (from the MTPM_dm, 
MTGM_dm, and MTHM_dm, respectively).

Low- to moderate-maternal genetic correlations were esti-
mated among the different traits (Table 5). The highest correl-
ations were 0.55 ± 0.07 (MTHM_dm) between 200dW and 
365dW, and 0.45 ± 0.08 (MTPM_dm) between 200dW and 
IMF. The lowest maternal genetic correlations of 0.08 ± 0.11, 
−0.09  ±  0.15, and -0.22  ±  0.17 were estimated between 

365dW and IMF using MTPM_dm, MTGM_dm, and 
MTHM_dm, respectively.

Within the same traits, quite strong negative direct-maternal 
genetic correlations were estimated, ranging from −0.77 to 
−0.82 for BWT, from −0.63 to −0.68 for 200dW, from −0.71 to 
−0.72 for 365dW, and from −0.18 to −0.49 for IMF (Table 5). 
Posterior SD were largest in all analyses including IMF.

Genome-Wide Associations
Manhattan plots from the GWAS for direct and maternal 
genetic effects on BWT, 200dW, 365dW, and IMF are given 
in Figure 3. The genomic inflation factors for additive gen-
etic effects ranged from 0.99 for BWT to 1.01 for 200-dW. 
For maternal genetic effects, the genomic inflation factors 
ranged from 0.98 for BWT to 1.00 for 200-dW. One SNP 
(rs137226468) on BTA2 surpassed the genome-wide sig-
nificance threshold (P = 3.91 × 10−7), which was associated 
with the direct genetic effect on IMF only. According to the 
chromosome-wide significance threshold, 5, 7, 2, and 7 SNP 
were significantly associated with direct genetic effects on 
BWT, 200dW, 365dW, and IMF, respectively. For the same 
significance threshold, 10, 8, 7, and 13 significant SNP were 
significantly associated with maternal genetic effects on BWT, 
200dW, 365dW, and IMF, respectively.

Table 3. Genetic parameters (σ2
p  = phenotypic variance, σ2

a = additive genetic variance, σ2
e = residual variance, h2

d = direct heritability) and the 95% 
highest posterior density interval (95% HPD) for heritability estimates for birth weight (BWT), 200 d-weight (200dW), 365 d-weight (365dW), and 
intra-muscular fat content (IMF) traits estimated via single- and multiple-trait trait models with only direct genetic effects considering different genetic 
relationship matrices

Trait Model1 σ2
p σ2

a σ2
e  h2d 95% HPD 

STPM_d 18.52 (0.39) 6.54 (0.56) 11.68 (0.41) 0.37 (0.03) 0.32−0.42

STGM_d 18.88 (0.41) 7.31 (0.59) 11.57 (0.41) 0.39 (0.03) 0.34−0.44

STHM_d 18.55 (0.39) 6.95 (0.58) 11.57 (0.41) 0.37 (0.03) 0.32−0.43

BWT MTPM_d 18.53 (0.39) 6.73 (0.56) 11.80 (0.42) 0.36 (0.03) 0.31−0.41

MTGM_d 18.92 (0.42) 7.12(0.59) 11.89 (0.44) 0.38 (0.03) 0.33−0.43

MTHM_d 18.62 (0.40) 6.99(0.58) 11.64 (0.41) 0.37 (0.03) 0.32−0.43

STPM_d 1253.70 (33.20) 491.35 (46.40) 762.35 (33.20) 0.39 (0.03) 0.33−0.45

STGM_d 1281.30 (30.25) 539.06 (48.70) 742.25 (33.29) 0.42 (0.03) 0.36−0.48

STHM_d 1256.40 (29.05) 496.37 (47.20) 760.00 (33.50) 0.39 (0.03) 0.33−0.46

200dW MTPM_d 1393.60 (115.54) 529.10 (44.68) 864.53 (109.30) 0.38 (0.04) 0.31−0.43

MTGM_d 1394.00 (94.01) 570.21(51.91) 823.82 (95.87) 0.41 (0.04) 0.33−0.48

MTHM_d 1289.00 (55.07) 506.49(44.81) 782.49 (56.02) 0.39 (0.03) 0.33−0.45

STPM_d 2497.30 (60.24) 780.11 (91.56) 1717.20 (70.23) 0.31 (0.03) 0.25−0.38

STGM_d 2552.60 (63.77) 857.42 (94.01) 1695.20 (69.82) 0.34 (0.03) 0.27−0.40

STHM_d 2500.50 (61.16) 791.07 (90.33) 1709.50 (69.83) 0.32 (0.03) 0.25−0.38

365dW MTPM_d 2625.20 (87.32) 767.50 (84.12) 1857.70 (75.09) 0.29 (0.03) 0.24−0.34

MTGM_d 2802.20 (138.56) 888.98(98.23) 1913.20 (109.34) 0.32 (0.03) 0.26−0.37

MTHM_d 2567.70 (70.69) 759.16(82.39) 1808.50 (69.70) 0.30 (0.03) 0.24−0.35

STPM_d 4.91 (0.41) 3.52 (1.11) 1.38 (0.81) 0.71 (0.18) 0.34−1.05

STGM_d 7.18 (0.69) 6.67 (0.92) 0.51 (0.31) 0.92 (0.05) 0.86−1.01

STHM_d 4.84 (0.44) 2.73 (1.10) 2.10 (0.78) 0.55 (0.18) 0.18−0.92

IMF MTPM_d 5.13 (0.28) 3.15 (0.59) 1.98 (0.49) 0.61 (0.10) 0.47−0.86

MTGM_d 8.20 (0.55) 7.24(0.52) 0.96 (0.03) 0.88 (0.02) 0.85−0.94

MTHM_d 4.82 (0.47) 1.89(1.30) 2.92 (0.96) 0.38 (0.22) 0.11−0.80

Posterior SD of estimates are given in brackets.
1STX∗_d and MT∗M_d denote single-trait and multiple-trait models with direct genetic effect, respectively, where ∗ refers to pedigree-based (A), genomic 
(G), or combined pedigree-genomic (H) relationship matrix.



8 Halli et al.

For the direct genetic effect on BWT, we identi-
fied six potential candidate genes. Two of these genes 
(ENSBTAG00000048983 and FBXW7) are located on 
BTA17 (Table 6). Three genes (NOL10, ODC1, and SMG6) 
and one gene (FRK) were also annotated as potential can-
didate genes for 200dW and for 365-dW, respectively. Six 
potential candidate genes (i.e., ENSBTAG00000052399, 
VWC2L, BMP7, TMEM132D, UBE2Q2, and CHRNB4) 
were annotated for the direct genetic effects on IMF. 
Regarding maternal genetic effects on BWT, four potential 
candidate genes (SHROOM3 on BTA6, ZNF609 on BTA10, 
and PECAM1 and TEX2 on BTA19) were identified. The 
ZNF609 gene included the largest number of significant SNP 
(seven SNP), located within or in close distance. Two genes 
(TMEM182 and SEC11A) and four genes (GRHL2, FGA, 
FGB, and CTNNA3) were inferred as potential candidate 
genes for the maternal genetic effect on 365-dW and on IMF, 
respectively.

DISCUSSION
Direct Heritabilities for Weight and Meat Quality 
Traits
In the present study, direct heritabilities for weight traits 
ranged from 0.41 to 0.66 when applying the enhanced 

models considering the direct and the maternal genetic effect. 
For IMF, heritabilities ranged from 0.48 to 0.76. Generally, 
already published heritabilities for weight and meat quality 
traits as well as the corresponding variance components dis-
play a broad range of estimates (Marshall, 1994; Utrera and 
Van Vleck, 2004). Possible explanations address breed par-
ticularities, applied statistical methods and considered re-
spective model effects, the number of phenotypic records, 
pedigree inconsistencies as well as specific slaughtering effects 
for meat quality traits (Utrera and Van Vleck, 2004). Reported 
heritabilities for BWT were 0.22 (Müllenhoff, 2008), 0.23 
(Brandt et al., 2010), 0.32 (Chud et al., 2014), and 0.61 
(Mackinnon et al., 1991). Heritabilities for weaning weight 
were 0.12 (Brandt et al., 2010), 0.18 to 0.21 (Jeyaruban et al., 
2009), 0.20 (Mackinnon et al., 1991), 0.20 to 0.23 (Meyer, 
1995), 0.21 (Santana et al., 2013), and 0.26 to 0.28 (Williams 
et al., 2012). Heritabilities for yearling weight were 0.26 to 
0.29 (Jeyaruban et al., 2009), 0.25 (Mackinnon et al., 1991), 
0.28 to 0.31 (Meyer, 1995), 0.29 (Zuin et al., 2012), and 
0.38 to 0.64 (Guidolin et al., 2012). Heritabilities for IMF in 
cattle were 0.27 (Torres-Vázquez and Spangler, 2016), 0.31 
(MacNeil et al., 2010), 0.38 (Seroba et al., 2011), 0.47 to 
0.52 (Crews et al., 2003), and 0.93 (Shackelford et al., 1994). 
For marbling score, which is genetically highly correlated 
with IMF (Devitt and Wilton, 2001; MacNeil et al., 2010), 
Srivastava et al. (2019) estimated a heritability of 0.35 and 

Table 4. Genetic parameters (σ2
p  = phenotypic variance, σ2

a = additive genetic variance, σ2
m = maternal genetic variance, σ2

e = residual variance, h2
d = 

direct heritability, h2
m = maternal heritability) and 95% highest posterior density interval (95% HPD) for heritability estimates for birth weight (BWT), 200 

d-weight (200dW), 365 d-weight (365dW), and intra-muscular fat content (IMF) traits estimated via single- and multiple-trait trait models with direct and 
maternal genetic effects considering different genetic relationship matrices

Trait Model1 σ2
p σ2

a σ2
m σ2

e  h2d 95% HPD h2m 95% HPD 

BWT STPM_dm 19.11 (0.45) 12.23 (1.22) 4.09 (0.61) 8.41 (0.66) 0.64 (0.05) 0.53−0.75 0.21 (0.03) 0.15−0.27

STGM_dm 19.41 (0.45) 12.15 (1.16) 4.12 (0.58) 8.61 (0.61) 0.63 (0.05) 0.52−0.72 0.21 (0.03) 0.16−0.27

STHM_dm 19.14 (0.45) 12.33 (1.24) 4.10 (0.58) 8.33 (0.66) 0.64 (0.03) 0.54−0.75 0.21 (0.02) 0.16−0.27

MTPM_dm 19.34 (0.44) 12.70 (1.14) 4.69 (0.44) 8.25 (0.62) 0.66 (0.05) 0.55−0.75 0.24 (0.02) 0.20−0.28

MTGM_dm 19.64 (0.45) 12.31 (1.11) 4.48 (0.56) 8.64 (0.59) 0.62 (0.05) 0.54−0.72 0.23 (0.03) 0.18−0.28

MTHM_dm 19.37 (0.45) 12.32 (1.17) 4.36 (0.58) 8.38 (0.56) 0.63 (0.05) 0.53−0.72 0.23 (0.03) 0.16−0.28

200dW STPM_dm 1276.80 (31.75) 573.32 (82.29) 307.68 (55.90) 651.00 (47.80) 0.45 (0.06) 0.32−0.55 0.24 (0.04) 0.16−0.32

STGM_dm 1314.70 (33.95) 663.41 (86.56) 350.93 (59.91) 604.77 (47.63) 0.50 (0.06) 0.39−0.61 0.27 (0.04) 0.19−0.35

STHM_dm 1279.90 (32.07) 582.45 (82.78) 311.83 (57.22) 644.08 (47.00) 0.45 (0.06) 0.35−0.57 0.24 (0.04) 0.16−0.32

MTPM_dm 1295.09 (26.61) 597.06 (59.02) 335.44 (43.01) 644.47 (35.44) 0.46 (0.04) 0.39−0.55 0.26 (0.03) 0.20−0.32

MTGM_dm 1343.10 (47.73) 740.18 (85.77) 369.45 (52.84) 594.89 (53.56) 0.55 (0.06) 0.44−0.66 0.27 (0.03) 0.21−0.34

MTHM_dm 1326.60 (50.65) 628.63 (89.09) 325.19 (51.83) 657.96 (47.68) 0.47 (0.06) 0.37−0.58 0.24 (0.03) 0.19−0.32

365dW STPM_dm 2523.10 (64.59) 1027.70 (153.02) 523.98 (99.45) 1478.40 (91.12) 0.40 (0.05) 0.30−0.51 0.21 (0.04) 0.14−0.28

STGM_dm 2589.30 (67.13) 1026.30 (159.70) 496.68 (105.22) 1476.21 (90.40) 0.44 (0.06) 0.33−0.54 0.23 (0.04) 0.15−0.29

STHM_dm 2528.90 (64.15) 1052.30 (154.53) 527.30 (99.43) 1463.30 (90.09) 0.41 (0.06) 0.32−0.53 0.21 (0.04) 0.14−0.28

MTPM_dm 2638.10 (64.42) 1155.41 (132.15) 664.34 (103.82) 1451.91 (81.23) 0.44 (0.04) 0.35−0.52 0.25 (0.04) 0.17−0.32

MTGM_dm 2680.10 (69.36) 1192.61 (159.17) 605.22 (78.75) 1491.12 (87.23) 0.44 (0.05) 0.35−0.55 0.23 (0.03) 0.18−0.27

MTHM_dm 2605.70 (60.51) 1065.42 (144.40) 568.90 (80.98) 1532.00 (80.08) 0.41 (0.05) 0.31−0.50 0.22 (0.03) 0.15−0.28

IMF STPM_dm 5.03 (0.40) 2.78 (1.14) 3.26 (1.33) 1.04 (0.63) 0.55 (0.21) 0.13−0.96 0.44 (0.25) 0.12−1.04

STGM_dm 7.23 (0.94) 5.38 (0.90) 1.81 (0.71) 0.22 (0.19) 0.75 (0.11) 0.51−0.98 0.25 (0.10) 0.05−0.45

STHM_dm 5.15 (0.43) 2.64 (1.07) 3.18 (1.36) 1.04 (0.66) 0.51 (0.20) 0.13−0.89 0.61 (0.26) 0.04−0.99

MTPM_dm 7.76 (0.33) 3.71 (0.24) 5.04 (0.40) 1.14 (0.15) 0.48 (0.04) 0.43−0.56 0.65 (0.03) 0.56−0.69

MTGM_dm 9.81 (1.45) 7.49 (1.44) 2.80 (0.49) 0.43 (0.12) 0.76 (0.09) 0.56−0.92 0.29 (0.05) 0.21−0.37

MTHM_dm 6.93 (0.68) 4.04 (0.38) 3.23 (0.48) 0.71 (0.14) 0.59 (0.07) 0.47−0.70 0.47 (0.09) 0.36−0.69

Posterior SD of estimates are given in brackets.
1ST∗M_dm and MT∗M_dm denote single trait and multiple trait models with direct and maternal genetic effects, respectively, where ∗ refers to pedigree-
based (A), genomic (G), or combined pedigree-genomic (H) relationship matrix.
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0.38 in Korean Hanwoo cattle from a single-trait pedigree-
based model and a multiple-trait pedigree-based model, re-
spectively. Hence, heritabilities for weight traits and IMF in 
the dual-purpose RHV population reflect the range of esti-
mates as published for different commercial beef cattle breeds.

In comparison to the models with only direct genetic ef-
fects, the models with both direct and maternal genetic ef-
fects implied higher heritabilities as direct-maternal genetic 
covariances were negative. For body weight traits, quite 
similar heritabilities were estimated when using models 
with different relationship matrices. However, for IMF, we 
estimated larger direct heritabilities and smaller 95% HPD 
intervals when using the models with G-matrix compared to 
the models with A- and H-matrices. Differences in genetic 
parameter estimates might be due to the differences when 
constructing the relationship matrices. In GBLUP, unre-
lated animals are also connected through common genetic 
markers. In our study, only a subset of animals from the 
pedigree-based and the combined pedigree-genomic ana-
lyses were considered when constructing the G-matrix for 
the pure genomic models. Most obvious differences in par-
ameter estimates from the different relationship matrices 
were observed for IMF, especially when considering the large 
95% HPD intervals. Such large 95% HPD intervals for IMF 

reflect the uncertainty of the heritabilities estimates, which 
might be related to the limited number of phenotypic re-
cords. Heritabilities for IMF from single and multiple trait 
models with the same relationship matrices were very similar. 
For instance, direct heritabilities for IMF from both models 
STGM_dm and MTGM_dm were 0.75 and 0.76, respect-
ively. The quite high IMF heritability and genetic variance for 
IMF in the local RHV dual purpose cattle population suggest 
a breeding focus on meat quality and RHV cattle genotyping, 
enabling a leadership in meat quality traits which have been 
neglected in German beef cattle breeding goals during the 
past decades.

Maternal Genetic Impact on Weight and Meat 
Quality Traits
The inclusion of the maternal genetic effect into genetic evalu-
ation models is imperative; otherwise, the direct heritability 
will be overestimated (Meyer, 1992). Recently, even from an 
extended time-lagged and across-generation perspective in 
dairy cattle, consideration of maternal genetic effects improved 
the statistical modeling quality (Kipp et al., 2021). For BWT, 
weaning weight, and yearling weight in beef cattle, the maternal 
effects explained a large percentage of the phenotypic variation 
(Waldron et al., 1993). Accordingly, in our study, maternal 

Table 5. Genetic covariances (above the diagonal) and genetic correlations (below the diagonal) among birth weight (BWT), 200-d weight (200dW), 
365-d weight (365dW), and intra-muscular fat content (IMF) traits estimated via multiple-trait models with direct and maternal genetic effects

Model1 Effect2 Trait d m

BWT 200dW 365dW IMF BWT 200dW 365dW IMF 

d BWT 23.27 (6.78) 19.76 (8.82) 2.16 (0.30) −6.32 (0.59) −2.61 (6.15) −3.19 (7.72) −1.61 (0.44)

200dW 0.27 (0.07) 475.77 (87.07) −10.61 (3.09) −3.17 (3.88) −281.10 (47.72) −150.88 (68.30) −23.64 (3.60)

365dW 0.16 (0.07) 0.57 (0.06) 7.85 (3.19)  −11.56 (5.99) −154.33 (76.06) −633.45 (114.18) 4.84 (5.59)

MTPM_
dm

IMF 0.31 (0.05) −0.23 (0.06) 0.12 (0.05) −2.81 (0.30) 5.26 (2.35) −9.33 (2.59) −2.14 (0.25)

m BWT −0.82 (0.02) −0.06 (0.07) −0.16 (0.08) −0.67 (0.06) 7.37 (3.88) 13.41 (5.09) 1.84 (0.28)

200dW −0.04 (0.09) −0.63 (0.05) −0.25 (0.11) 0.15 (0.06) 0.19 (0.09) 237.09 (58.22) 18.61 (3.43)

365dW −0.04 (0.08) −0.24 (0.10) −0.72 (0.06) −0.19 (0.06) 0.24 (0.09) 0.50 (0.08) 4.54 (6.45)

IMF −0.20 (0.06) −0.43 (0.06) 0.06 (0.07) −0.49 (0.05) 0.38 (0.07) 0.45 (0.08) 0.08 (0.11)

d BWT 24.99 (7.76) 15.80 (9.38) −1.31 (0.81) −5.79 (0.70) −1.39 (5.56) 8.17 (7.58) 0.87 (1.07)

200dW 0.26 (0.07) 572.62 (90.63) 12.01 (9.80) −5.41 (6.00) −361.42 (58.24) −206.35 (65.07) −1.05 (7.82)

365dW 0.13 (0.08) 0.61 (0.07) 1.12 (7.99) −2.65 (7.10) −196.35 (62.73) −608.76 (99.54) −1.73 (12.87)

MTGM_
dm

IMF −0.13 (0.09) −0.15 (0.12) 0.01 (0.09) 0.42 (0.66) −23.89 (5.85) −32.53 (7.03) −0.90 (0.98)

m BWT −0.77 (0.04) −0.10 (0.10) −0.04 (0.09) −0.07 (0.11) 6.44 (3.98) 5.39 (4.80) 0.20 (0.61)

200dW −0.02 (0.08) −0.68 (0.04) −0.29 (0.08) −0.46 (0.09) 0.16 (0.09) 246.42 (54.11) 7.07 (4.67)

365dW 0.10 (0.08) −0.31 (0.08) −0.71 (0.05) −0.48 (0.08) 0.10 (0.08) 0.52 (0.09) 3.72 (6.20)

IMF 0.15 (0.18) −0.03 (0.17) −0.28 (0.22) −0.18 (0.09) 0.05 (0.17) 0.21 (0.13) −0.09 (0.15)

d BWT 17.96 (7.06) 13.52 (9.33) 3.14 (0.52) −5.69 (0.69) 0.59 (5.22) 7.04 (8.74) −0.34 (1.16)

200dW 0.20 (0.07) 512.02 (85.72) −1.10 (5.26) −1.61 (4.66) −285.18 (60.83) −144.01 (61.71) −2.77 (6.73)

365dW 0.12 (0.08) 0.63 (0.05) 3.45 (4.75) −3.25 (6.89) −178.70 (54.32) −560.56 (84.91) 17.94 (10.01)

MTHM_
dm

IMF 0.45 (0.06) −0.02 (0.10) 0.05 (0.07) −1.71 (0.39) −18.13 (3.44) −24.19 (4.50) −1.05 (0.66)

m BWT −0.78 (0.04) −0.03 (0.08) −0.05 (0.10) −0.41 (0.08) 4.70 (3.75) 2.99 (5.72) 0.55 (0.600)

200dW 0.01 (0.08) −0.63 (0.06) −0.30 (0.07) −0.50 (0.07) 0.12 (0.10) 236.27 (47.06) 8.49 (4.82)

365dW 0.08 (0.10) −0.24 (0.10) −0.72 (0.04) −0.50 (0.07) 0.06 (0.11) 0.55 (0.07) −9.60 (7.55)

IMF −0.05 (0.18) −0.06 (0.14) 0.31 (0.16) −0.29 (0.17) 0.15 (0.15) 0.26 (0.13) −0.22 (0.17)

Posterior SD of estimates are given in brackets.
1MT∗M_dm denotes multiple trait models with direct and maternal genetic effect, where ∗ refers to pedigree-based (A), genomic (G), or combined pedigree-
genomic (H) relationship matrices.
2d and m denote estimates for direct and maternal genetic effects, respectively.
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heritabilities were quite high in the range from 0.21 to 0.24 
for BWT, from 0.24 to 0.27 for 200dW, and from 0.21 to 0.25 
for 365dW. These estimates for the maternal genetic compo-
nent in dual-purpose RHV cattle correspond with maternal 
heritabilities for BWT, weaning weight, and yearling weight in 
specialized beef cattle breeds as reported by Brandt et al. (2010), 
Eler et al. (1995), Meyer (1992), Meyer (1994), Robinson 
(1996), and Tosh et al. (1999). Nevertheless, the maternal gen-
etic impact especially for trait recorded late in life was larger 
in the RHV outdoor population than in the commercial beef 
breeds. Accordingly, in the RHV breed, cows and their offspring 
are raised on pasture without feeding supplements. Hence, the 
dam’s milk is the most important energy supply for offspring 
of all ages and explains the respective strong maternal genetic 
component. Dam milk quality may also affect meat quality 
traits recorded in offspring, explaining the quite high maternal 
heritabilities for IMF in the range from 0.29 to 0.65 in the pre-
sent study. In Duroc pigs with a breeding focus on meat quality 
and which are predominantly used in low input systems, Hoque 
et al. (2008) estimated maternal heritabilities between 0.13 and 
0.15 for IMF. In contrast, for meat quality traits of beef cattle 
kept in feedlots, the maternal heritability was close to zero, 
e.g., 0.03 for rib eye area (Abdel-Aziz et al., 2005) and 0.03 for 
marbling score in Japanese Black cattle (Shimada et al., 1998).

Correlations Between Direct and Maternal Genetic 
Effects for Weight and Meat Quality Traits
Correlations between the direct genetic effect and the ma-
ternal genetic effect for weight traits in the RHV breed, 

estimated via multiple-trait models, were unfavorable and 
ranged between −0.77 and −0.82 for BWT, between −0.63 
and −0.68 for 200dW, and between −0.71 and −0.72 for 
365dW. Similarly, pronounced negative direct-maternal cor-
relations for BWT were reported by Müllenhoff (2008) and 
by Eler et al. (1995). Contrarily, Brandt et al. (2010), Meyer 
et al. (1992), Müllenhoff (2008), and Tosh et al. (1999) re-
ported positive direct-maternal correlations for BWT in the 
range from 0.04 to 0.32.

For weight or weight gain traits recorded later in life, 
direct-maternal correlations as estimated in commercial beef 
cattle displayed a huge variation, i.e., from −0.57 to 0.16 for 
weaning weight in the study by Müllenhoff (2008) and in the 
range from −0.13 to −0.32 in the study by Eler et al. (1995). 
For yearling weight, the direct-maternal correlations were 
−0.48 to 0.49 (Meyer et al., 1992), −0.22 (Swalve, 1993), and 
−0.17 (Eler et al., 1995).

The correlations between the direct and the maternal gen-
etic effects for IMF in the present study from the different 
models ranged from −0.18 to −0.49. Accordingly, regarding 
meat quality in beef cattle, Johnson et al. (2002) reported an-
tagonistic relationships between direct and maternal genetic 
effects for rib eye area with a correlation estimate of −0.67. 
As stated by Lee (2001), a clear biological explanation for the 
antagonistic relationships between maternal and direct genetic 
effects for meat quality traits is not available. Nevertheless, 
regarding conservation programs in local small sized popu-
lations, a negative covariance between direct and maternal 
genetic effects might favorably contribute to genetic variation 

Figure 3. Manhattan plots for direct and maternal effects on birth weight (A), 200 d-weight (B), 365 d-weight (C), and intra-muscular fat content (D). 
The red line displays the genome-wide significance threshold according to the adjusted Bonferroni correction. The red and the blue dots represent 
significant SNP according to the genome-wide and the chromosome-wide significance thresholds, respectively. The genome-wide significance 
threshold was 3.91 × 10−7 and the chromosome-wide significance thresholds ranged from 6.71 × 10−6 for BTA1 to 1.89 × 10−5 for BTA25.
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(Maniatis, et al., 2013). Hence, especially in the RHV out-
door system, it may be the challenge to improve the econom-
ically important meat quality trait IMF without neglecting the 
also very important maternal abilities.

Genetic Correlations Among Weight and Meat 
Quality Traits
Genetic correlations between the direct genetic effect among 
BWT and weight traits from later ages (200dW and 365dW) 
from all multiple-trait models were throughout positive. 
Genetic correlations between measurements within a closer 
time interval (i.e., between BWT and 200dW) were slightly 
higher than between BWT and 365dW. Different gene activ-
ities for different body weight traits recorded at birth and re-
corded more than 1 yr later have been reported by Yin and 
König (2019) in cattle and by Aikins-Wilson et al. (2021) in 
pigs. In beef cattle, Brandt et al. (2010) and Eler et al. (1995) 
reported a genetic correlation between BWT and weaning 
weight of 0.20 and of 0.23, respectively, reflecting our esti-
mate between BWT and 200dW. Higher genetic correlations 
between these two traits were estimated by Chud et al. (2014) 
with 0.36, Mackinnon et al. (1991) with 0.57, and by Tosh et 
al. (1999) with 0.73.

In the present study, we found differing genetic correlations 
between IMF and BWT, depending on the considered rela-
tionship matrix. The correlation was 0.31 on the basis of the 
A-matrix (MTPM_dm) and 0.45 on the basis of the H-matrix 
(MTHM_dm), but close to zero with −0.13 when modeling 
the pure genomic G-matrix (MTGM_dm). We assume that 
the small number of genotyped animals explains the similar-
ities of estimates from A- and H-matrices, but differencing 
results with higher accuracies of breeding values (Figure 1) 
from the G-matrix. Such aspects were outlined by Shabalina 
et al. (2021) in the context of genetic evaluations in an or-
ganic dairy cattle production system, including a very small 
number of genotyped cows from organic herds.

In the present study, genetic correlations between IMF and 
200dW were of antagonistic nature (−0.02 to −0.23), but 
slightly positive between IMF and 365dW (0.01 to 0.12). 
However, when taking the posterior SD into account, all cor-
relations were very close to zero, and reflecting estimates from 
the literature between weight at later ages and meat quality 
and carcass traits in cattle. For example, a genetic correlation 
of 0.04 between 210-d weight and back fat thickness, and of 
−0.09 between 210-d weight and rump fat, was reported by 
Zuin et al. (2012). Similar genetic correlations of −0.10 and 

Table 6. Potential candidate genes related to the identified single-nucleotide polymorphisms (SNP) associated with direct (d) and maternal (m) genetic 
effects on birth weight (BWT), 200-d weight (200dW), 365-d weight (365dW), and intra-muscular fat content (IMF) traits

Trait Effect BTA1 Gene name Gene position No. of significant SNP
within/close to gene2 

Most significant SNP

rs number Position in 
gene 

P-value 

BWT d 6 HS3ST1 106504062-106540229 0/2 rs136251364 106314217 No 4.50E-06

15 BBOX1 57758972-57839046 1/0 rs137689845 57781671 Yes 7.08E-06

17 ENSBTAG00000048983 5007893-5022532 0/1 rs109750506 5131401 No 5.58E-06

17 FBXW7 5256463-5351434 0/1 rs109750506 5131401 No 5.58E-06

23 TUBB2A 50525012-50528874 0/1 rs109760348 50501825 No 1.43E-05

23 TUBB2B 50489737-50494257 0/1 rs109760348 50501825 No 1.43E-05

m 6 SHROOM3 91317426-91647743 1/0 rs110666415 91494841 Yes 2.27E-06

10 ZNF609 45385273-45582446 7/0 rs135585847 45410963 Yes 5.94E-06

19 PECAM1 48541625-48619840 1/0 rs41919301 48557862 Yes 4.69E-06

19 TEX2 48368410-48482779 0/1 rs41919273 48538199 No 4.69E-06

200-dW d 11 NOL10 86971480-87061426 0/6 rs110940186 87095463 No 2.69E-06

11 ODC1 87197374-87204771 0/6 rs110940186 87095463 No 2.69E-06

19 SMG6 23080158-23280691 1/0 rs41904211 23107053 Yes 9.76E-06

365-dW d 9 FRK 34593961-34691721 0/2 rs43339651 34929448 No 3.61E-06

m 11 TMEM182 7459624-7502937 0/2 rs43661127 7695135 No 7.48E-06

21 SEC11A 22328984-22362069 2/0 rs134746982 22359151 Yes 7.37E-07

IMF d 2 ENSBTAG00000052399 101838614-102121965 0/1 rs137226468 102157462 No 1.54E-07

2 VWC2L 102407028-102619802 0/1 rs137226468 102157462 No 1.54E-07

13 BMP7 58889622-58975046 0/1 rs108949054 59057952 No 1.07E-05

17 TMEM132D 47426664-48084896 3/0 rs109093435 47665130 Yes 1.29E-06

21 UBE2Q2 31126645-31188035 1/0 rs42815709 31132302 Yes 9.87E-06

21 CHRNB4 30995468-31015323 0/1 rs43136852 31093734 No 1.25E-05

m 14 GRHL2 62721044-62888891 1/0 rs136368193 62727223 Yes 4.01E-06

17 FGA 2859932-2868867 0/1 rs134206866 2888493 No 1.25E-06

17 FGB 2894488-2932611 1/0 rs136514361 2895691 Yes 1.25E-06

28 CTNNA3 22282909-24121400 4/0 rs136938446 22852412 Yes 7.61E-06

1BTA, Bos taurus chromosome.
2Number of SNP that reached the Bonferroni-corrected genome-wide (in bold) or chromosome-wide significance threshold.
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−0.09, respectively, were estimated by Yokoo et al. (2010). 
With regard to 365dW and carcass traits, Yokoo et al. (2010) 
and Zuin et al. (2012) estimated genetic correlations of 0.04 
and 0.15 with back fat thickness, respectively, and of −0.01 and 
0.03 with rump fat thickness, respectively. In Japanese Black 
cattle, the genetic correlation between body weight at the be-
ginning and at the end of the fattening period with marbling 
score was 0.04 and 0.17, respectively (Abdel-Aziz et al., 2005). 
Nephawe et al. (2004) correlated mature weight of steers 
with meat quality traits. The genetic correlation with marb-
ling score was −0.15, and 0.15 with Warner–Bratzler shear 
force. In contrast, a moderate genetic correlation of 0.34 be-
tween body weight and IMF was reported in pigs (Solanes et 
al., 2009), supporting the results of Suzuki et al. (2005) and Lo 
et al. (1992), who also estimated positive genetic correlations 
between daily gain and IMF of 0.23 and 0.27, respectively. A 
possible physiological explanation for the differences between 
the species addresses the growth rate of subcutaneous fat and 
IMF relative to total fat which differs between cattle and pigs 
(Kempster et al., 1976; Kempster and Evans, 1979).

Accuracies of Breeding Values
Cesarani et al. (2019), Lourenco et al. (2015), and Wei et al. 
(2020) suggested genetic-statistical models using the com-
bined H-matrix. Accordingly, in the present study and with 
focus on the enhanced models with direct and maternal 
genetic effects, accuracies of dEBV on the basis of G- or 
H-matrices were higher than from the pure pedigree-based 
approach. However, for the moderate- to high-heritability 
weight traits and IMF, dEBV accuracies from MTPM_dm 
and MTHM_dm only differed slightly, probably due to the 
small number of cattle with genotypes. This was also reflected 
by the regression coefficients of EBV on GEBV close to 1.0. 
In the present study, especially on the basis of pure genomic 
data, STGM_dm and MTGM_dm indicated model super-
iority according to DIC, the quite small 95% HPD intervals 
for direct heritabilities and the highest accuracies of dEBV.

Regarding the most enhanced models with maternal gen-
etic effects, accuracies were lowest when considering only 
the pedigree relationships. In beef cattle, Nwogwugwu et al. 
(2019) reported a strong impact of pedigree errors on EBV 
accuracies, genetic gain, and heritability estimates in classical 
pedigree-based modeling approaches. The problem in this 
regard of missing or wrong pedigree data was carefully out-
lined by Harder et al. (2005). Especially in local small-sized 
beef, dual-purpose, and pig populations in Germany, there is 
often a lack of deep and complete pedigrees, encouraging gen-
etic studies on the basis of animal genotypes (e.g., Biermann et 
al., 2015). Especially for meat quality traits displaying a high 
heritability, consideration of dense SNP markers (Pimentel and 
König, 2012) greatly improved accuracies of overall breeding 
goals. In contrast, for traits displaying low heritabilities such 
as health or female fertility, it is imperative to consider training 
sets with more than 10,000 genotyped animals. However, also 
in such large-scale genomic studies as mostly conducted in dairy 
cattle with Bayesian, machine learning, or GBLUP approaches 
(Naderi et al., 2018; Bohlouli et al, 2019), consideration of gen-
omic marker data contributed to the best prediction accuracies.

Genome-Wide Associations for Weight and Meat 
Quality Traits
The genomic inflation factors for all traits were close to 1.0, 
indicating that there was no need to correction for population 

stratification. Many of the potential candidate genes detected 
in the present study support previous reports for the same or 
correlated traits in beef cattle populations. The gene HS3ST1 
(a potential candidate gene for direct genetic effects on BWT) 
and the genes ZNF609, PECAM1, and TEX2 genes (potential 
candidate genes for maternal genetic effects on BWT) were 
associated with carcass and body weight traits in beef cattle 
(Kim, et al., 2011; Naserkheil et al., 2020; Bruscadin et al., 
2021). In a selection signature segment on BTA10, Boitard 
et al. (2021) also detected ZNF609 as a candidate gene for 
carcass traits in a beef cattle population. SMG6, a potential 
candidate gene for the maternal genetic effect on 200dW, 
was significantly associated with rib eye area in beef cattle 
(Wang et al., 2020). The results from the present study sup-
port the associations reported by Wang et al. (2020), because 
Caetano et al. (2013) estimated a moderate positive correl-
ation between rib eye area and weight gain from 210 to 365 
d. For 365-dW, the FRK and TMEM182 genes were identified 
for direct and maternal genetic effects, respectively. FRK is a 
protein coding gene which is associated with feed efficiency 
and feed intake in beef cattle (Sherman et al., 2010; Higgins 
et al., 2018). The TMEM182 gene is known to be involved in 
the development of muscle tissues (Wu et al., 2008; Freebern 
et al., 2020).

For direct genetic effects on IMF, the most significant 
SNP (rs137226468) is located in close distance to the 
ENSBTAG00000052399 and VWC2L genes on BTA2. 
ENSBTAG00000052399 is a protein coding gene, but the 
function of this gene is unknown. VWC2L and BMP7, an-
other potential candidate gene for direct genetic effects on 
IMF, are reported as candidate genes for feed efficiency in pigs 
(Wang et al., 2015) and in beef cattle (Zhang et al., 2020). The 
VWC2L gene regulates the osteoclast activation and matrix 
mineralization (Ohyama, et al., 2012), and the BMP7 gene is 
a lipid-related candidate gene. In several studies conducted in 
beef cattle (Srikanth et al., 2020; Wang et al., 2020; Zhang 
et al., 2020), BMP7 was also found to be associated with 
carcass traits (e.g., backfat thickness, rib eye area, lean meat 
yield, and carcass marbling score) and average daily gain.

The estimated genetic parameters for weight traits and IMF 
in the local RHV dual-purpose cattle population kept in out-
door production systems indicate trait improvement possibil-
ities via breeding approaches. Especially for the meat quality 
trait IMF, quite high heritabilities were estimated. Especially 
from the background that meat quality traits do not play a 
role in breeding goals for commercial beef cattle breeds in 
Germany, we strongly suggest to develop an RHV breeding 
goal including IMF. Probably due to the intensive calf–cow 
relationship in the outdoor suckler system, we identified a 
quite strong maternal genetic component on weight traits at 
different ages as well as on IMF. Hence, it may be impera-
tive to apply models with maternal genetic effects in genetic 
evaluations. Furthermore, we suggest to focus on RHV cattle 
genotyping, especially when aiming on breeding goal traits 
with high heritabilities. In this regard, a comparatively small 
number including less than 1,000 genotyped animals implied 
reliable genetic parameter estimates with acceptable standard 
errors. Furthermore, on the basis of the G-matrix, we identi-
fied breeding values with highest accuracies.
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