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Simple Summary: Long-term studies on insect diversity trends are rare, especially in steppe ecosys-
tems. To gain insights into carabid beetle diversity trends in steppe grasslands, we analyzed data
on carabids from a trapping study that ran for 12 years in the grasslands of northwestern China.
We found that species abundance and richness declined over time. The results of this study suggest
that precipitation may play a role in changing species dynamics. This study emphasizes the urgent
need to protect carabid communities in steppe ecosystems.

Abstract: Ground-dwelling beetles are important functional components in nutrient-poor grasslands
of middle temperate steppe ecosystems in China. Here, we assessed the changes in ground beetle
(Coleoptera: Carabidae) communities in the grasslands of northwestern China over 12 years to
improve the management and conservation of beetles all over the world. The Generalized Additive
Model (GAM) was applied to estimate the changes in carabid beetle communities in two regions: a
desert steppe (Yanchi region), and a typical steppe and meadow steppe (Guyuan region). During
the 12-year investigation, a total of 34 species were captured. We found that species abundance
and richness per survey declined by 0.2 and 11.2%, respectively. Precipitation was the main factor
affecting the distribution of carabid beetles. A distinct decline in carabid beetle species in the Yanchi
region indicated that they may be threatened by less precipitation and loss of habitat, which could be
due to climate change. Overall, species richness was stable in the Guyuan region. It is necessary to
estimate and monitor the changes in carabid beetle communities in a temperate steppe of northern
China and to protect them. Extensive desertification seriously threatens the distribution of carabid
beetles. Future research should develop methods to protect carabid beetle communities in temperate
steppes in China.

Keywords: biodiversity decline; carabid beetles; environmental change; insect conservation; long-
term monitoring; steppe; species richness trends

1. Introduction

It is well known that the loss of insects has a serious impact on ecosystem function [1],
as insects play a central role in ecosystems, in terms of pollination and nutrient cycling [2–5]
and has a significant economic impact [6–8]. For example, 75% of the world’s major food
crops show increased fruit or seed sets with animal pollination [9]. It has been estimated
that ecosystem services provided by insects are worth 57 billion USD annually in the
USA [10]. Therefore, preserving insect abundance and diversity should be a priority for
insect conservation.

Dramatic declines in insect abundance and richness have caused widespread con-
cerns among ecologists and insect scientists. Declines in the number of insects have been
confirmed worldwide [11–14]. These declines can potentially threaten ecological ecosys-
tems [15]. It is still unclear whether the declines are widespread. For example, a reliable
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analysis of changes in the distribution of insect species is still absent. Given the current rate
of global environmental change, quantifying changes in species abundance is critical in
assessing ecosystem impacts. However, long-term monitoring data related to insect popula-
tion trends are scant, especially in grassland ecosystems, because many studies mainly focus
on forest and agricultural ecosystems [16–19]. Therefore, preserving insect abundance and
richness is critical in the development of conservation strategies in grassland ecosystems.

Many studies also have shown substantial declines in some insect groups, suggesting
that insect biodiversity loss is more severe than other estimates [20–22]. For example,
insect abundance decreased by 45% after evaluating two-thirds of the taxa [2], and annual
grasshopper abundance declined by 2.1–2.7% per year in 16 time series from a Kansas
prairie [23]. In addition, the decline in specific insects with different target taxa and habitats
has been reported [20]. Insects play an important role in ecosystems, and their decline is
likely to cause an imbalance in the natural ecosystem [24]. Grassland is one of the natural
and semi-natural environment types with high species abundance. The effect of grasslands
on insect community structure and population changes has become an important issue in
the study of species diversity over the world [25,26]. However, how the insects are reduced
in steppe ecosystems remains unresolved. Long-term species-level statistical data are scant,
and information on species trends for many key insect groups critical to ecosystems is
lacking [27]. Carabid beetles (Coleoptera: Carabidae), one of the largest families of insects,
are well-fitted for such investigations [9]. They can be used as indicators of changes in
habitats and environments and play an important role in assessing environmental impact
and conservation [28–30]. They react more promptly than most long-living animals or
plants due to their relatively short life cycles [7,31]. Carabid beetles live in a wide variety
of biotopes and play a crucial role in functional ecology because many species prey on pest
species and plant seeds [32]. For example, in an agricultural ecosystem, carabid beetles are
important because they are natural enemies to many pests [33]. A decline in the abundance
of carabid beetles causes concerns over food safety. Some believe that it is impossible
to maintain high productivity with decreasing chemical inputs [34]. Consequently, it is
essential to explore carabid beetles for long-term studies, which also can enhance the
understanding of diversity loss.

In all studies, how species respond to environmental change is clarified, but complex
biotic interactions are the most important in understanding diversity loss [35,36]. For ex-
ample, climate and habitats can change species dynamics [12], and habitat loss is most
likely to cause insect extinctions as community structure, the physical environment, and
community stability change [37]. Furthermore, theoretical methods to model large-scale
changes in biodiversity indicate that species response is almost equal in time and space [38].
Indeed, the spatiotemporal dynamics of species richness is important for knowing how
environmental variations impact biodiversity [39,40]. All of these endeavors increase our
understanding of the influence of potential driving factors over habitats and regions [41–43].
Therefore, models used to estimate trends in geographic changes in many species and
their interaction with habitats and regions are needed to increase our understanding of
biodiversity loss.

In China, steppes, which account for 80% of grassland vegetation, have high biodi-
versity and conservation value. However, steppes are being degraded into barren land
and deserts probably due to climate change and human activities [44]. Such habitat degra-
dation has a dramatic impact on steppe biodiversity. Since 2008, carabid beetles along
with many climatic and physiological variables have been monitored within a range of
grassland across northwest China [45–47]. Thus, previous data can be used to learn the
mechanisms that control biodiversity. Although growing evidence of carabids in northwest
China showed that their range of distributions have declined, most of which are believed
to be caused by climate change [42], the shortage of simultaneously collected and quan-
titative data has impeded precise predictions of species trends. Here, we selected sites
with representative steppes and repeated beetle surveys from 2008 to 2019. Those surveys
involved all available natural habitats and regions in the survey area, including desert
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steppes, typical steppes, and meadow steppes. To reveal the effects of climate change and
increased eutrophication due to land-use intensification, we analyzed soil and vegetation
parameters in parallel with our beetle monitoring. We used those data to test hypotheses: (i)
beetle species have gradually disappeared from the Yanchi region (desert steppe) because
of increasing temperature and decreasing precipitation, and (ii) beetle communities of
the Guyuan region (typical and meadow steppes) have remained relatively stable. These
results may promote assessments of population changes and may help understand how
the biodiversity of important functional groups changes over time in regions and habitats
of northwestern China.

2. Materials and Methods
2.1. Study Area

From 2008 to 2019, 135 samples sites were surveyed over ~6000 km2 in two regions
of Ningxia Province in northwestern China: Yanchi region (YC) and Guyuan region (GY).
These regions are temperate steppes between 35◦ N and 37◦ N. The species richness of
carabid beetles in these two regions are the highest compared with other insects (e.g.,
Scarabaeidae and Tenebrionidae) (Figure 1).
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Figure 1. The location of sampling sites and region boundaries within Ningxia Province, northwestern
China (YC, Yanchi region; GY, Guyuan region).

(1) The Yanchi region is dominated by desert steppes, with a dominance of sierozem
soils, semi-arid continental monsoonal climate, and low humidity (annual mean temper-
ature 8.3 ◦C; 200 mm of precipitation annually) [48]. The vegetation in this study area
is characterized by Agropyron mongolicum, Artemisia desertorum, Lespedez adavurica, and
Artemisia blepharolepis.

(2) The Guyuan region is dominated by meadow steppes and typical steppes, with a
dominance of black thorn and brown soils, semi-arid continental monsoonal climate, and
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moderate humidity (annual mean temperature 7 ◦C; 400 mm of precipitation annually) [48].
Some representative vegetation include Stipa bungeana, Artemisia frigida, Potentilla acaulis,
and Stipa grandis.

2.2. Beetle Samples

There were 31 sample sites in the Yanchi region and 104 sample sites in the Guyuan
region. The three steppe types at these sites were sampled in 2008, 2009, 2013, 2017, 2018,
and 2019. From 2008 to 2009, 6 of the 135 samples sites were resampled between six and
eight times, yielding 220 sample events. In 2013, 5 of the 135 samples were resampled
once each, yielding 125 sample events. In 2017, 90 of the 135 samples were resampled
(see Table A1), with a total of 1800 sample events. In 2018 and 2019, 34 of the 135 samples
were resampled, with a total of 1360 sample events.

We used pitfall traps (400 mL capacity and 7.5 cm diameter) placed with the top of the
trap flush with the soil surface to catch carabid beetles. All sites, the number of sampling
rounds, and their dates were synchronized. The surveys were conducted continuously
from May to September of every sampling year since, in this period, they are active.
At each sample site, there were five pitfall traps at 5 m intervals, which were separated
by 200–1400 m from each other to minimize spatial autocorrelation. Traps inducing liquid
were placed with the top of the trap being flush with the soil surface and were collected
three days later. During this time, beetles were stored in 75% ethanol and counted and
identified in the laboratory [49]. Here, we pooled the traps per site in a 20 × 20 m sample
and received 79 effective sample sites. We accounted for the number of beetles once a month
and took the average of five measurements for analysis. Carabid beetles have significant
single, annual activity peaks, and each site includes at least five pitfall traps that can be
used to estimate the abundance of localized carabid beetles. The beetles were collected in a
standard way through traps and were classified by the Chinese Academy of Science.

2.3. Soil and Environment Parameters

The soil and vegetation parameters were determined on each survey date. The soil
temperature was recorded at a depth of 0–10 cm, and the humidity and temperature were
measured using a moisture analyzer (YH-SWP-100, Jiangsu VICTOR Instrument Mete
Company, Taizhou, China). The vegetation parameters were measured within a 1 m2

quadrat frame. The climatic data were extracted from WorldClim (https://www.worldclim.
org, monthly weather data for 1960–2018).

2.4. Data Analysis

Changes in beetle distribution with time were quantified using two measures: species
richness and abundance. The variations in species richness (i.e., number of species) and
abundance are evaluated per trap among 2008 to 2019. The sampling size as a covariable
was included in the models. The abundance was calculated per survey to include a co-
variate as an explanatory variable in the models [50]. Species abundance and richness per
trap and Shannon–Wiener diversity were calculated with iNEXT R package [51].

We used GAM to model beetle richness and abundance with the mgcv package in R
(version 4.0.3) [52]. These models are extensions of the Generalized Linear Model (GLM)
framework [53], and one “best model” is constructed [54]. It is important to avoid using
collinear explanatory variables in GAM. GAM was used to assess nonlinear trends in the
effect response curve. The goodness factor of the competing functions was measured using
an F-ratio with a 5% significance level. For model assessment, the evidence ratio, AIC, and
minimized generalized cross validation (GCV) score were applied [55]. Latitude, elevation,
soil temperature, vegetation cover, plant species, annual mean temperature, and annual
mean precipitation were included in the model. As beetle data are usually distributed
skewedly, its corresponding probability density functions are in lognormal or gamma
distributions, which exclude data points at zero. We used the Tweedie distribution, which
is better suited for data with zero values.

https://www.worldclim.org
https://www.worldclim.org
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Finally, we used Canonical Correspondence Analysis (CCA) to analyze the explana-
tory variables. The soil moisture, soil temperature, vegetation coverage, plant diversity,
mean annual temperature, mean annual precipitation, altitude, and year were regarded
as environmental variables that were selected by a stepwise model selection using the
backstep function.

3. Results
3.1. Beetle Abundance and Species Richness

In total, 16,830 specimens belonging to 34 different species from all sampled sites since
2008 were recorded (see Table A1). Table 1 shows the descriptive statistics of the species
richness and abundance of carabid beetles in the Yanchi and Guyuan regions. The species
richness in the Yanchi and Guyuan regions ranged from 1 to 17 and 6 to 16 per sample,
respectively. The abundance ranged from 2 to 523 and 30 to 268 per sample, respectively.
The Guyuan region had the highest average species richness (9.32) and abundance (92.95),
followed by the Yanchi region (5.26, 62.91) (Tables 1 and A2).

Table 1. The average species richness and abundance of carabid beetle in Yanchi and Guyuan region
(mean number/sample plot, n presents sampling plot).

Value

Study Area

Yanchi Region (n = 31) Guyuan Region (n = 104)

Species Richness
Individuals/Plot Abundance Species Richness Abundance

Average value 5.26 62.91 9.32 92.95
Standard deviation 3.56 103.85 3.03 64.04

Maximum 17 523 16 268
Minimum 1 2 6 30

At all sites combined, the year had an obvious negative influence on species richness
and abundance (Table 2). The species richness and abundance were substantially lower
in later years than in earlier ones. The abundance decreased over time but revealed an
overall decrease, with the strongest declines being from 2008 to 2013 (Figure 2). The species
richness and abundance per survey decreased over time by approximately 0.2% (Figure 2a)
and 11.2% (Figure 2b), respectively.

Table 2. Summary of generalized additive regression for the dependent variables of abundance and
species richness. *** p < 0.001; * p < 0.05.

Term Abbreviation
Species Richness Abundance

Df F p Df F p

Year Year 2.751 9.871 *** 2.760 21.74 ***

Latitude Lat - - - 1.658 5.338 *

Mean annual temperature T - - - - - -

Mean annual precipitation P 7.12 8.729 *** 5.152 19.516 ***

Altitude Alt - - - - - -

Vegetation coverage VC - - - - - -

Plant diversity PD - - - 1.000 6.114 *

Soil moisture SM 1.00 3.458 * - - -

Soil temperature ST - - - 2.269 7.264 ***

Site S - - - - - -

Dashes indicate variables that did not contribute to the models and were thus excluded.
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3.2. Measure Diversity

Species richness, mean abundance, and Shannon diversity were significantly lower
in the Yanchi region than in the Guyuan region (Figure 3). Overall, there were no signifi-
cant temporal trends in Shannon diversity, but individual plots showed signs of decline
in abundance.
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Our model showed the major explanatory descriptors of variation within the pooled
data from the two regions (Figure 4). We recorded 29 species from Guyuan region, 27 species
from Yanchi region, and 22 species from both the Guyuan and Yanchi regions (Table A2).
The year had a significant influence on species richness and abundance. Species richness
also significantly influenced by the soil moisture and precipitation (Table A3, Figure 4a).
Abundance decreased yearly and increased with latitude and precipitation. It was also
significantly influenced by plant diversity and soil temperature (Table A3, Figure 4b).
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3.3. Pattern of Spatial Distribution

The pattern of species distribution differed between the YC and GY region: the
abundance decreased in YC and increased in GY (Figure 5a); the pooled species richness
remained relatively stable from 2008 to 2019 (Figure 5b).

The CCA indicated that all parameters of the variables had a significant effect (Figure 6).
CCA axes 1–4 cumulatively explained 85.50% (31.9, 57.75, 71.64, and 85.5) of the total con-
strained variations (Table A4). The main gradient was defined by altitude, soil temperature,
and precipitation. Year is another main independent parameter, with increasing tempera-
ture being the most closely related one.
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4. Discussion

Consistent with recent long-term studies of insects, we observed a decline in species
richness and abundance, which were in accordance with other studies on insect taxa, such
as moths, butterflies, and bees [24]. These studies showed that insect diversity is declining.
Concerns are exacerbated for carabid beetles because they play an important role within
an ecosystem [32]. Although the decline was lower than with other insects, the species
richness can modulate pest control as a predator [56]. In summary, the insect diversity
being threatened is supported by these data.

For all surveys, year had a significant negative effect on abundance and species
richness. Given that carabid abundance and richness have mostly downward trends, they
can be attributed as being the dominant driver of change. Species losses and decreases
in total abundances cannot be attributed to natural succession. Although grasslands
have high species diversity, it has become a threatened habitat. Our analyses revealed
that the abundance of carabid beetles is declining when compared with other groups of
insects, supporting the evidence that this group of species is severely threatened [23,57–59].
Concerns about carabids were aggravated because they were frequently used to indicate
environmental changes [25,32]. All of those supported the hypothesis that there was a
significant reduction in the abundance of carabid species over time and that those changes
also led to a loss of biodiversity. Therefore, at the regional scale, those rates are lethal
for carabids.

Our results can contribute to understanding biodiversity loss and its management at
the regional level [60]. The easiest way to consider the decline is to attribute it to a dominant
driver of change. However, there were important differences in the responses between
richness and abundance of carabids, suggesting a more complex interaction between species
drivers and the environment. We found wide-scale changes in the carabids in the Yanchi
region because of regional differences caused by climate change. For example, temperature
increase was disproportionately greater in the desert steppe, with concomitant reductions
in precipitation. The decrease in soil moisture and increase in soil temperature adversely
affect the breeding of carabids, resulting in the abundance of the species declining most in
the Yanchi region. Conversely, increasing temperature and abundant precipitation provided
more suitable conditions for the breeding of carabids in the Guyuan region. Species from
the Guyuan region seemed to be less influenced by the destruction of habitats. This means
that the GY region provides more favorable microclimatic conditions for beetles, such
as befitting temperature and humidity, in contrast with the YC region. One important
reason is probably the increased precipitation and temperature in these grasslands in the
second half of the last century [61]. Carabids are intolerant to freezing [62]; therefore, low
temperature and precipitation impede their breeding.

With the desertification of land, the grasslands of northwestern China have seriously
degenerated in the study area, causing a serious decline in biodiversity [25]. For all sur-
veyed regions, the year had a significant negative effect on species richness and abundance.
The trend of beetle decline was in line with other studies [6,63]. The sharp decline in beetles
has been recorded in a similar situation in European countries [64]. Reductions in the
abundance and richness of carabids were partly attributed to natural evolution [65], which
cannot be clearly separated from time-related effects, e.g., structural disturbances [66]. The
observed loss may also be due to decreased plant diversity at the terrestrial landscape level
or due to habitat loss and vegetation. Alternatively, grassland desertification might be
further worsened, caused by climate change, which, as mentioned earlier, had a negative
impact on carabid resources.

Environmental data alone are generally deficient in explaining changes in insect com-
munities [67]. We overcame this problem by linking environmental data to the carabid
beetle survey data and to the data describing vegetation changes [68]. Making the relation-
ship between environmental and vegetation variables, and their effect on carabid beetles
explicit requires careful studies and long-term monitoring. The model revealed that pre-
cipitation had significant effects on species abundance and richness in our dataset. On the
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regional scale, abundance was significantly influenced by precipitation, soil temperature,
plant diversity, and latitude, and the species richness was mainly affected by precipitation,
soil moisture, and latitude. Moisture changes also affected vegetation, which could have
knock-on influences on the micro-climate. The importance of precipitation changes could
be explained by the free-ranging lifestyle of immature larval stages. It is known that an
increase in precipitation can enhance the aboveground vegetation biomass [69]. Vegetation
provides food for herbivorous beetle species and shelters for predatory species and may
facilitate the richness of greater carabid species. We found that soil temperature also had
a significant effect on abundance because some beetles lay eggs in burrows and others
overwinter as larvae or adults in the soil, so a warmer temperature can stimulate the
number of beetles, their range of activity, and therefore, beetle abundance [70,71].

In addition to soil temperature and precipitation, altitude also positively affects the
variation in beetle abundance. Latitude is correlated with variations in temperature, hu-
midity, and precipitation, so it is a measure of environmental heterogeneity [72]. Carabid
beetles show a closer correlation with the latitudinal gradient than other insects. A linear
reduction or hump-shaped distribution of arthropod species richness along an altitudinal
gradient has been reported previously [73]. Studies have suggested that carabid beetles in
Europe have moved tens of meters in elevation in the past 10 to 20 years [74]. In our study,
we found that altitude was an important variable in explaining beetle richness. The increase
in richness with increasing elevation agrees with previous results because more suitable
environmental conditions with appropriate temperature and precipitation ranges for the
beetles of northern China are found at higher altitudes. Beetle species richness tends to
increase with altitude but not with abundance [75]. Therefore, beetles have a complicated
relationship with altitude at the species level, which needs further research. The signifi-
cance of altitude in this study may indicate an important covariation with temperature
and precipitation and may provide a cue for key biological events as temperature and
precipitation control the reproduction of carabid beetles [25].

Declines in the carabid species numbers in both the Yanchi and Guyuan regions may
lead to the homogenization of beetle communities (Figure 5), which agrees with that of
other studies of insects [76]. Our results showed that nutrient-poor grasslands, where many
species have declined, should be protected (e.g., the Yanchi region) [77]. Environmental
changes and environmental function traits are important explanations for carabid species
decline [49,78]. In addition, measures to manage carabid beetles should include protection
of grasslands and appropriate nature management. The strict management of habitats can
maintain the population stability of carabid species.

Species declines in insects have been reported recently in many countries [7,78]. The
decline in carabid beetles was previously strongly related to climate change [72]. Carabid
beetles are closely associated with broad habitat types. Species abundance and richness
decreased in two regions due to habitat loss and climate change, which was consistent with
previous studies [79–81]. After 12 years, GY has a broad distribution of carabid species,
which is more consistent with our conclusions from previous investigations. Our previous
conclusion was that GY undergoes desertification towards becoming a desert steppe with
low species richness and weak functional diversity. Therefore, conservation efforts should
generally include establishing new habitats and restoring natural vegetation, which needs
long-term evolution. An appropriate habitat is crucial for the successful recolonization of
beetles [82].

5. Conclusions

In conclusion, our findings show that the carabid beetle assemblage of YC suffers
serious threats and declines in species and abundance caused by precipitation and soil
temperature. The risk of extinction increasingly forces plant and animal species to move
to more suitable habitats, which can lead to a significantly different distribution pattern
of insect species in the future. It is unclear whether the decline might apply to other
groups and regions; there is a need for long-term datasets to be gathered at a global scale,
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especially in grassland systems. Furthermore, our study is a first attempt at understanding
the main drivers of the spatial pattern of insect species richness in temperate grasslands of
northwestern China. The methods used here can assess other taxa and can assist managers
in planning where conservation efforts need to be focused.
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Appendix A

Table A1. Number of surveys per region and year.

Site/
Quadrat

Latitude/
Longitude 2008 2009 2013 2017 2018 2019 Site Latitude/

Longitude 2008 2009 2013 2017 2018 2019 Site/
Quadrat

Latitude/
Longitude 2008 2009 2013 2017 2018 2019

Yanchi Region Guyuan Region

1 38.0233 0 0 0 5 0 4 46 36.242222 0 0 0 5 4 4 91 36.430833 0 0 1 5 0 0
2 38.021667 0 0 0 5 0 4 47 36.210000 0 0 1 5 4 4 92 36.419444 0 0 0 5 0 0
3 38.019722 0 0 0 5 0 4 48 36.209167 0 0 0 5 4 4 93 36.419722 0 0 0 5 0 0
4 38.021111 0 0 0 5 0 4 49 36.208611 0 0 0 5 4 4 94 36.420278 0 0 0 5 0 0
5 38.022778 0 0 0 5 0 4 50 36.207222 0 0 1 5 4 4 95 36.420833 0 0 0 5 0 0
6 38.024444 0 0 0 5 0 4 51 36.205278 0 0 0 5 4 4 96 36.420833 0 0 1 5 0 0
7 38.022778 0 0 0 5 0 4 52 36.2075 0 0 0 5 4 4 97 36.419444 0 0 0 5 0 0
8 38.020833 0 0 0 5 0 4 53 36.206111 0 0 0 5 4 4 98 36.419444 0 0 0 5 0 0
9 38.022222 0 0 0 5 0 4 54 36.204722 0 0 0 5 4 4 99 36.418889 0 0 0 5 0 0
10 38.024167 0 0 0 5 0 4 55 36.204167 0 0 0 5 4 4 100 36.420833 0 0 0 5 0 0
11 38.025833 0 0 0 5 0 4 56 36.2025 0 0 0 5 4 4 101 36.420556 0 0 0 5 0 0
12 38.024167 0 0 0 5 0 4 57 36.203056 0 0 0 5 4 4 102 36.418056 0 0 1 5 0 0
13 38.022222 0 0 0 5 0 4 58 36.201389 0 0 0 5 4 4 103 36.418056 0 0 0 5 0 0
14 38.023889 0 0 0 5 0 4 59 36.201667 0 0 0 5 4 4 104 36.420000 0 0 0 5 0 0
15 38.025278 0 0 0 5 0 4 60 36.200556 0 0 0 5 4 4 105 36.419444 0 0 0 5 0 0
16 38.025918 0 0 0 0 4 4 61 36.200000 0 0 0 5 4 4 106 36.418611 0 0 0 5 0 0
17 38.024109 0 0 0 0 4 4 62 36.251944 0 0 0 5 4 4 107 36.271611 0 0 0 5 0 0
18 38.014326 0 0 0 0 4 4 63 36.251667 0 0 0 5 4 4 108 36.261023 0 0 1 0 4 4
19 38.008726 0 0 0 0 4 4 64 36.250556 0 0 1 5 4 4 109 36.251991 0 0 0 0 4 4
20 38.003333 0 0 0 0 4 4 65 36.251944 0 0 0 5 4 4 110 36.242936 0 0 1 0 4 4
21 38.008149 0 0 0 0 4 4 66 36.252778 0 0 0 5 4 4 111 36.231224 0 0 1 0 4 4
22 37.996558 0 0 0 0 4 4 67 36.253056 0 0 0 5 4 4 112 36.263662 0 0 0 0 4 4
23 37.979796 0 0 0 0 4 4 68 36.254444 0 0 0 5 0 0 113 36.25482 0 0 0 0 4 4
24 37.987471 0 0 0 0 4 4 69 36.255833 0 0 0 5 0 0 114 36.245969 0 0 0 0 4 4
25 37.978304 0 0 0 0 4 4 70 36.253889 0 0 0 5 0 0 115 36.233981 0 0 3 0 4 4
26 37.890833 8 6 0 0 0 0 71 36.255556 0 0 0 5 0 0 116 36.242716 0 0 0 0 4 4
27 37.819722 8 6 0 0 0 1 72 36.257222 0 0 0 5 0 0 117 36.224906 0 0 0 0 4 4
28 37.796111 8 6 0 0 0 0 73 36.259444 0 0 0 5 0 0 118 36.217012 0 0 0 0 4 4
29 37.992778 8 6 0 0 0 1 74 36.257222 0 0 0 5 0 0 119 36.201447 0 0 0 0 4 4
30 37.961111 8 6 0 0 0 1 75 36.258889 0 0 0 5 0 0 120 36.203179 0 0 0 0 4 4
31 37.844444 8 6 0 0 0 1 76 36.260278 0 0 0 5 0 0 121 36.429613 0 0 0 0 4 4

Guyuan region

32 36.251667 0 0 0 5 0 0 77 36.441111 0 0 0 5 0 0 122 36.438564 0 0 0 0 4 4
33 36.250556 0 0 0 5 0 0 78 36.44 0 0 0 5 0 0 123 36.444252 0 0 2 0 4 4
34 36.250278 0 0 0 5 0 0 79 36.436944 0 0 2 5 0 0 124 36.4505 0 0 0 0 4 4
35 36.248889 0 0 0 5 0 0 80 36.435833 0 0 0 5 0 0 125 36.444761 0 0 0 0 4 4
36 36.256111 0 0 0 5 0 0 81 36.435278 0 0 0 5 0 0 126 36.413512 0 0 0 0 4 4
37 36.255556 0 0 0 5 0 0 82 36.438889 0 0 0 5 0 0 127 36.417967 0 0 0 0 4 4
38 36.252222 0 0 0 5 0 0 83 36.436944 0 0 0 5 0 0 128 36.41978 0 0 0 0 4 4
39 36.250556 0 0 1 5 0 0 84 36.435000 0 0 0 5 0 0 129 36.415722 0 0 0 0 4 4
40 36.248889 0 0 0 5 0 0 85 36.433889 0 0 0 5 0 0 130 36.406674 0 0 0 0 4 4
41 36.240833 0 0 0 5 0 0 86 36.432778 0 0 2 5 0 0 131 36.260947 0 0 9 4 0 0
42 36.25 0 0 0 5 0 0 87 36.433056 0 0 0 5 0 0 132 36.267219 0 0 9 4 0 0
43 36.250278 0 0 0 5 0 0 88 36.431389 0 0 0 5 0 0 133 36.268022 0 0 9 4 0 0
44 36.249444 0 0 1 5 0 0 89 36.432222 0 0 0 5 0 0 134 36.201883 0 0 9 4 0 0
45 36.246944 0 0 0 5 0 0 90 36.431111 0 0 1 5 0 0 135 36.184792 0 0 9 4 0 0
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Table A2. List of captured and analyzed beetle species. The column “Individuals” is the sum of total
catches per year.

Species Species
Abbreviation

Trophic
Level

2008 2009 2013 2017 2018 2019
Region

Individuals

Amara dux Amar.dux herbivores 112 9 3 67 17 15 YC, GY
Amara harpaloides Amar.har herbivores 0 0 0 11 5 12 YC, GY

Amara helva Amar.hel herbivores 0 0 0 9 40 4 YC, GY
Amara sp Amar.sp herbivores 0 0 0 15 16 0 YC, GY

Broscus kozlovi Bros.koz predators 0 0 10 8 3 4 GY
Carabus anchocephalus Cara.anc predators 0 0 0 85 21 0 GY

Carabus brandti Cara.bra predators 0 0 23 0 9 20 YC
Carabus crassesculptus Cara.cra predators 0 0 0 285 198 88 GY

Carabus modestulus Cara.mod predators 0 0 0 84 88 7 GY
Carabus glyptoterus Cara.gly predators 0 0 2055 868 177 130 YC, GY
Carabus gigoloides Cara.gig predators 0 0 0 168 329 192 GY

Carabus sculptipennis Cara.scu predators 0 0 0 377 73 62 GY
Carabus vladimirskyi Cara.vla predators 0 0 2318 1742 316 470 GY

Callsoma anthrax Call.ant predators 0 0 0 41 7 11 GY
Calosoma chinense Calo.chi predators 0 0 1 3 0 0 GY
Calosoma lugens Calo.lug predators 0 0 3 11 0 3 YC, GY
Cymindis daimio Cymi.dai predators 5 2 0 0 2 1 YC, GY
Corsyra fusula Cors.fus herbivores 20 51 0 3 4 3 YC

Cymindis binotata Cymi.bin predators 109 44 0 19 9 12 YC, GY
Dolichus halensis Doli.hal predators 62 62 235 3 0 0 YC

Harpalus amplicollis Harp.amp predators 6 5 0 0 0 0 YC
Harpalus calceatus Harp.cal predators 3 50 0 0 0 0 YC

Harpalus crates Harp.cra predators 26 12 0 0 0 0 YC
Harpalus lumbaris Harp.lum herbivores 0 0 0 11 3 1 YC

Harpalus pallidipennis Harp.pal predators 76 64 4 0 0 0 YC
Harpalus salinus Harp.sal predators 152 210 0 0 0 0 YC
Poecilus gebleri Poec.geb predators 383 436 0 947 158 26 YC, GY

Pseudotaphoxenus
brevipennis Pseu.bre predators 160 106 24 0 0 0 YC, GY

Pseudotaphoxenus
rugipennis Pseu.rug predators 0 0 0 301 62 39 YC, GY

Pseudotaphoxenus
mongolicus Pseu.mon predators 539 260 86 77 14 32 YC, GY

Poecilus fortipes Poec.for herbivores 0 0 0 543 53 82 GY
Reflexisphodrus

reflexipennis Refl.ref predators 0 0 0 368 78 20 GY

Scarites terricola Scar.ter herbivores 5 8 0 0 0 0 YC
Zabrus potanini Zabr.pot herbivores 0 0 0 116 8 9 GY

Table A3. Result of the Generalized Additive Mode (*** p < 0.001).

Term Environmental Factor F Sign Adjusted Fit
Factor (R2)

Generalized Cross
Validation (GCV)

Deviance
Explained (%)

Species richness P + SM + Year 88.16 *** 0.579 0.11 60.1%
Abundance Year + P + Lat + PD + ST 64.55 *** 0.506 0.31 71.9%

Table A4. The result of CCA.

Item CCA1 CCA2 CCA3 CCA4

Eigenvalue 0.6088 0.4060 0.2652 0.1310
Explained variation 31.9 57.75 71.64 85.50

Explained fitted variation 39.41 65.70 82.87 91.35
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