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Ab initio nonrigid X-ray nanotomography
Michal Odstrcil 1, Mirko Holler 1, Jörg Raabe 1, Alessandro Sepe2,3, Xiaoyuan Sheng3,4, Silvia Vignolini 5,

Christian G. Schroer 6,7 & Manuel Guizar-Sicairos1

Reaching the full potential of X-ray nanotomography, in particular for biological samples, is

limited by many factors, of which one of the most serious is radiation damage. Although

sample deformation caused by radiation damage can be partly mitigated by cryogenic pro-

tection, it is still present in these conditions and, as we exemplify here using a specimen

extracted from scales of the Cyphochilus beetle, it will pose a limit to the achievable imaging

resolution. We demonstrate a generalized tomographic model, which optimally follows the

sample morphological changes and attempts to recover the original sample structure close to

the ideal, damage-free reconstruction. Whereas our demonstration was performed using

ptychographic X-ray tomography, the method can be adopted for any tomographic ima-

ging modality. Our application demonstrates improved reconstruction quality of radiation-

sensitive samples, which will be of increasing relevance with the higher brightness of 4th

generation synchrotron sources.
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Tomographic reconstruction of time-evolving samples is a
challenging but important task that can help to understand
dynamic processes inside a sample in a non-destructive

way. 4D computed tomography (4D-CT) reconstruction meth-
ods1 provide a significant gain in quality for time-evolving sam-
ples compared with simple sequential 3D reconstructions,
however, these methods are often based on restrictive prior
assumptions, such as periodicity of movement1–4 or sparsity of
the sample and its evolution4–7. Using these assumptions, 4D-CT
methods can recover the evolution of a dynamic sample, and have
been used in studies of cardiac and respiratory motion1,3,4,8,9.

The generality of the 4D-CT methods, however, comes for the
price of increased amount of reconstructed information and
therefore needs additional data, such as more tomographic pro-
jections or reconstruction constraints. This is a severe limitation in
many cases, particularly when the dynamic processes in the sample
are not of experimental interest and only lead to deteriorated
reconstruction quality without providing any additional
information.

We demonstrate here an application of nonrigid geometry com-
puted tomography (NCT) with a self-consistent method for motion
estimation directly from the measured data set. Our approach builds
on previous work on 4D-CT imaging but reformulates the optimi-
zation task in order to avoid the significant increase of the degrees of
freedom that would be needed to recover a general 4D-CT time-
evolving reconstruction1,10–12. In addition, our method accounts for
a continuous deformation of the sample structure during data
acquisition, i.e., nonrigid sample changes, as well as rigid sample
motion that is commonly present due to insufficient stability of
nanotomography setups. The goal of our approach is to preserve
reconstruction quality comparable with conventional imaging of a
static sample without the need of extra information or assumptions,
neither about the sample structure nor a particular temporal
dependence of the dynamics, such as linear or periodic changes. Our
self-consistent approach for estimation of the deformation evolution
also removes the requirement of having a high-quality static initial
measurement required by some dynamic CT approaches2,3,10 or
need for reference markers. Our approach allows for 4D imaging of
dynamics that cannot be accurately triggered or started, or to
dynamics in systems that are never in a static state, such as gels.
Instead of imposing additional constraints on the sample recon-
struction, NCT is based on the assumption that the dynamic process
acting upon the sample can be well described as an arbitrary
deformation function that is smooth both temporally and spatially.

Results
Nonrigid geometry computed tomography. In the simplest case,
the inconsistency of the tomographic model can be sufficiently
described by translation of the sample during data acquisition.
This can be caused for example by thermal drifts or imperfection
of the nanopositioning system. In this case, the mutual con-
sistency of the projections can be increased by iterative refine-
ment of the projection geometry13–15 or directly by shifting the
measured projections15–17 in order to minimize the error between
the measured data and the tomographic projections.

Estimation and optimal correction of a nonrigid sample
deformation is a more complex task with two main challenges.
First, since the dynamic process is generally not known a priori,
the evolution needs to be recovered from the measurements. The
second challenge is an optimal use of the reconstructed
deformation field to minimize the amount of required additional
information, i.e., to avoid the need of additional projections or
added constraints on the sample. Since an improved estimate of
the deformation evolution leads to a modified sample reconstruc-
tion and vice versa, the reconstruction of a nonrigid sample can

be seen as a joint optimization problem that is generally
nonlinear, nonconvex, and needs to be solved iteratively.

If the nonrigid deformation processes are sufficiently slow,
periodic or even externally controlled, then it is possible to collect
a reference tomogram9,18, partial tomograms during which the
sample is assumed to stay static2,3,10, or exploit the periodicity of
the deformation process to improve the reconstruction3,4,19.
However, these assumptions can often be too limiting if the
deformation process is fast with respect to the tomogram
acquisition time or if the process is unrepeatable.

Assuming that the dynamic process can be described by a
diffeomorphic deformation, the coarsest deformation model is an
affine transformation1,18,20–22. The affine transformation pro-
vides many advantages, such as exact reconstruction methods20,23

and direct estimation of the deformation field from the measured
projections18. However, affine transformations and other meth-
ods based on straight-ray projections22,23 are not general, and in
some cases can be an inadequate approximation to describe a
realistic deformation processes.

In order to alleviate these limitations, our method is based on
the concept of deformation vector fields (DVF)1. The time-
evolving DVF can more accurately describe the local deformation
of the sample features and thus provide a flexible model that
allows for a locally and temporally varying deformation. Various
DVF-based methods1,10,12,22 were introduced in the last years for
X-ray CT imaging. Here, we extend this concept to samples that
are nonlinearly and rapidly evolving with respect to the
acquisition rate using multiple partial data sets to provide quality
comparable with a motionless sample.

In most experiments, the evolution of the deformation process
is unknown and the optimal DVF needs to be estimated to match
the measured projections. In order to fully characterize a single
time point of the DVF, acquisition of projections from the full
angular range, i.e., a half-turn rotation, is preferable. One option
to gain this information is the acquisition of projections in an
interleaving angular scan protocol, for which the full tomographic
scan is split into several subsets of similar number of projections,
each containing every n-th angle of the full scan24. Here, we refer
to such a sub-unit of the data set as a sub-tomogram. It has been
already demonstrated that such acquisition schemes work for
continuous rotation and help capturing sample time evolution25.

Given these sub-tomograms, the DVF can be estimated directly
from comparison of the partial reconstruction adjacent in time10–12.
Exact validity of this approach is limited only to samples that are
static during acquisition of each sub-tomogram as presented in
ref. 10, in which the sample was only deformed between tomogram
acquisitions. For samples that deform continuously, but with
motion of limited complexity and amplitude, e.g., experiments
presented in Refs. 11,12, the latter approach can still provide a good
approximation of the DVF and the sample reconstruction.
However, in more general cases, in which both the position and
the structure of the sample are nonlinearly evolving during the
acquisition, the DVF and sample reconstruction should be solved as
a joint optimization problem, with an approach that explicitly
accounts for changes in the DVF during acquisition.

This work presents an approach, where the DVF evolution is
iteratively estimated along with mutual displacements of the
measured projections and the sample reconstruction itself. In
other words, the sample reconstruction is updated in each
iteration given the information about projection displacement
and the DVF estimation from the previous iteration. This
bootstrapping iterative approach enables convergence to a
consistent solution satisfying all measured projections. This
approach also enables compensation for the sample deformation
on multiple timescales. The DVF estimation method can account
for rather slow changes on timescale of a single sub-tomogram.
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On the other hand, mutual displacement can be estimated
independently for each acquired projection and thus e.g., rigid
motion of the sample can be recovered with much higher time
resolution.

In order to avoid reconstruction quality deterioration caused
by additional interpolation steps in the reconstruction10,11, our
nonrigid tomography approach was implemented as a transfor-
mation of the original straight lines of sight into generally shaped
curves as shown in Fig. 1. This leads to a new tomographic
geometry that describes the projection measurements by a single
rigid volume instead of a time-evolving sequence. The derivation
details of our method are described in the Methods section.

One example of a complex deformation process is radiation
damage, the changes sustained by the sample when exposed to
ionizing radiation, which is particularly relevant for X-ray
nanotomography due to the high X-ray dose needed for high-
resolution imaging26–28. Severe radiation damage can ultimately
destroy the imaged features, but already a radiation dose
significantly below the maximum tolerable dose leads to
deterioration of the reconstruction quality. In order to distinguish
these two cases, we will be using the term radiation-induced
change (RIC) for the latter case. RIC in a 3D structure can be
approximated to first order as a nonrigid deformation process
that does not depend on the time of the scan but rather on the
total deposited X-ray dose. This means that the problem cannot
be circumvented by faster scanning, since certain X-ray dose is
always needed to reach the targeted resolution26,27,29. RIC is often
neglected at the micro- and mesoscale, but it is a severe limitation
for X-ray imaging at the nanoscale, since the X-ray dose required
to image the sample is inverse proportional to the fourth power of
the aimed resolution26. This is one of the reasons, why dedicated
X-ray nano-CT setups with cryogenic sample protection, which
partially mitigates radiation damage effects, are being devel-
oped30–34. However, cryo nano-CT instruments are not yet
common30, and as discussed in the next section, even
cryogenically protected biological samples can still exhibit mild
RIC leading to deterioration of the reconstruction quality.

Numerical simulation. The reconstruction quality of our NCT
method is first demonstrated on an artificial data set, i.e., the
phantom. The phantom was modeled as a pillar from a porous
material with dimensions of 200 × 200 × 100 pixels shown in
Fig. 2a. During the virtual acquisition, the phantom was con-
tinuously deformed by a deformation field with amplitude pro-
portional to 1� exp �3tð Þ; where t is the normalized time

between 0 and 1. The DVF was simulated as a smooth random
field with maximal displacement of 10 pixels and characteristic
spatial period of 20 pixels. A cut through the DVF model and its
time evolution can be seen in Fig. 2e, f, respectively.

From this model, we generated 320 noiseless projections at
equidistant angles from 0 to 180 degrees. The virtual acquisition
followed an interleaving scanning protocol24 resulting in four
sub-tomograms, each containing every fourth angle. In the
following, we refer to these sets of projections that cover the
whole 180 degree rotation span, but with larger angular step as
sub-tomograms. The volume and DVF reconstruction was
performed by 50 iterations of the joint optimization method
described in the Methods section. We have used an NCT-based
filtered back projection (FBP), described in the Methods section,
to reconstruct the sub-tomograms g(i) and the full tomogram g(F).
Once convergence of the reconstructed DVF was reached, the
final reconstruction was further refined by 50 iterations of the
NCT-based SIRT (Simultaneous Iterative Reconstruction Tech-
nique) method. The DVF estimation by the three-dimensional
optical flow method was regularized by an isotropic Gaussian
kernel with a standard deviation of 30 pixels.

A tomographic cut through a reconstruction of the data set by a
SIRT method based on a static geometry is shown in Fig. 2b, while
the reconstruction of the same data set by the NCT-based SIRT
method with the self-consistently estimated DVF is shown in
Fig. 2c. The original and the reconstructed four-dimensional DVFs
are illustrated by the principal component analysis (PCA).
Horizontal cuts through their first-principal component are shown
in Fig. 2d, e and their time-evolving weights are shown in Fig. 2f.
The reconstructed DVF corresponds well to the original DVF
model shown in Fig. 2e with RMS error of 0.8 pixel, also its time
evolution in Fig. 2f follows closely the model curve. Each of the five
interpolation nodes corresponds to the beginning or end of each
sub-tomogram with a linear interpolation between the nodes.

The reconstruction quality was additionally quantified by two
methods: Fourier shell correlation (FSC)35 and by the reconstruc-
tions gray-scale histograms. The intersection of the FSC curve
with the ½-bit threshold curve35 was used to estimate the average
spatial resolution with respect to the known phantom. The FSC
between the phantom, depicted in Fig. 2a, and the reconstructions
by the conventional and NCT-based methods shown in Fig. 2b, c
indicates a significant increase of similarity over all spatial
frequencies between the NCT-based SIRT and the phantom
compared with the conventional SIRT method. Similarly, the
histogram in Fig. 3b shows a more binary-like distribution for the
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Fig. 1 Representation of sample deformation via curved-lines projections. (top) Illustration of the parallel geometry with straight lines of sight for a
deformed sample compared to equivalent description by a virtual geometry with curved lines of sight for the original, i.e., undeformed, sample (bottom)
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NCT-based reconstruction method that approximates better that
of the original phantom.

Reconstruction of a biological sample. The flexibility of the
NCT-based reconstruction methods with nonlinear time evolu-
tion can be used to improve the reconstruction quality for a more
general class of sample changes. Here, we demonstrate the
potential of the NCT method for nanoscale tomographic imaging
of biological samples obtained by ptychographic X-ray computed
tomography (PXCT)36–38. Ptychography is a scanning-based
coherent diffractive imaging technique that provides high
reconstruction robustness and the ability to relax many experi-
mental constraints39,40. PXCT method provides high-dose effi-
ciency41, since no imaging optics is required after the sample, and
due to its ability to exploit phase contrast, which at high photon
energies provides stronger signal than the absorption contrast.

The imaged biological samples were extracted from scales of
Cyphochilus beetle, an evolutionary optimized biophotonic
material42. Two similar samples were imaged, one at room
temperature and atmospheric pressure and the second

cryogenically protected during the entire PXCT scan. The non-
cryo-protected sample was measured by PXCT with an exposure
of 200 ms per position and a step length of 0.3 μm, resulting in a
total deposited X-ray dose of 3.8 × 108 Gy. The angular projec-
tions were acquired using an interlaced-angle protocol, resulting
in three equally sized sub-tomograms with overall 380 projec-
tions. The cryogenically protected sample was imaged with
shorter exposures of 100 ms and larger scan step of 0.5 μm in
order to reduce the radiation dose to 0.9 × 108 Gy on a total of
500 angular projections distributed in two sub-tomograms, The
data of the cryogenically protected sample are presented in ref. 42.
and permitted detailed analysis of the interaction of this
nanophotonic structure with light. In both measurements, the
complex-valued projections of the samples were reconstructed by
a combination of the difference map43 and maximum-
likelihood39 algorithms to a pixel size of 14.2 nm.

We split the new tomographic reconstruction procedure into
the following steps iteratively executed until convergence:

(1) An initial estimate for the full tomogram, g(F), is
reconstructed from all phase projections, after unwrapping and
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aligning, using the NCT-based FBP method initialized with zero
deformation, i.e., the conventional FBP method.

(2) The estimates of the 4D-DVF, Γ(x,t), are updated using the
optical flow method in Eq. (4)

(3) Relative shifts of the unwrapped projections are refined by a
gradient-descent method44 in order to account for the updated
DVF Γ(x, t).

The third step is important since relative shifts of the
projections ΨΘ are free parameters of ptychography and also
the instrumental stability of the PXCT scanners is not sufficient to
guarantee sub-30 nm precision for the entire data set, projections
for high-resolution PXCT are typically aligned in a postproces-
sing step. The DVF optimization was performed on a data set that
was 4 × 4 binned. This leads to faster and more robust DVF
estimation assuming that the DVF is sufficiently smooth. Once
convergence has been reached, the reconstructed time-evolving
DVF was upscaled and used for the final full-resolution
reconstruction. We used 50 iterations of the described joint
optimization approach, regularized by an isotropic Gaussian
kernel with standard deviation of 30 pixels, as described in the
Methods section. The final full-resolution reconstruction was
refined by 50 iterations of the NCT-based SIRT method without
updating the DVF.

Reconstructions of the non-cryogenically protected sample
obtained by the standard and the NCT-based SIRT methods are
compared in Fig. 4. The radiation induced changes in the sample
result in significant smearing artifacts when the sample is
reconstructed using conventional tomography, shown in Fig. 4a, c,
while the smearing is mostly mitigated in the NCT-based
reconstruction in Fig. 4b, d. Note that the standard reconstruction
method in Fig. 4a, c provides relatively sharp reconstruction of the
center because the self-consistent pre-alignment of the tomographic
projections17 suppresses the rigid-motion artifacts.

The reconstruction quality was further quantified by the
Fourier shell correlation curves shown in Fig. 4f and electron-
density histograms in Fig. 4e. The FSC-based resolution estimated
using the 1/2-bit criterion35 shows an improvement of resolution
from 53 nm to 27 nm. The reduction of the smearing artifacts
with the NCT-based SIRT method results in a more binary-like
histogram, as expected for this one-phase sample. The histogram
of the cryo-protected sample has broader peaks due to lower
signal-to-noise ratio in that measurement.

The first PCA mode of the reconstructed DVF, depicted in
Fig. 5a in the horizontal and in Fig. 5b in the vertical plane,
describes 92% of the total deformation. The reconstructed DVFs
illustrate that the radiation-induced deformation can be neither
well approximated by a simple affine transform nor by a linear
evolution.

Finally, Fig. 6 shows relative shifts of the measured projections
which are an integral part of the nanotomography reconstruction
procedure17,44, where the second row shows additional offsets
with amplitude up to four pixels that were needed to correct for
the imperfect initial guess based on the static tomography model.

Estimation of the DVF for the cryo-protected sample, shown in
Fig. 7b, clearly demonstrates that the RIC in the cryo-protected
sample with average deformation amplitude of 15.4 nm are
significantly lower than under ambient conditions with average
deformation amplitude 61 nm. The FSC estimated resolution in
Fig. 7a was improved from 33 to 30 nm.

Discussion
Although the NCT was demonstrated on radiation
damage induced changes, applications of our method can be
much broader. Since our method is able to account for dynamic
sample deformation during each angular sub-tomogram, it could

relax the stringent requirements on the acquisition speed for in-
vivo imaging and thus allow to use laboratory-based X-ray phase
tomography methods45,46. In addition, the nonrigid tomographic
geometry is able to better describe complex deformation fields
that can originate from internal sample changes11,18,47,48 and that
may not be well described by affine transformations or linear
deformation evolution.

We demonstrate a way to improve resolution for imaging
radiation-sensitive specimens with non-cryo instrumentation,
which are much more widely available in synchrotrons around
the world.

Second, but perhaps more importantly, radiation damage is the
ultimate limit to the resolution and quality of imaging that can be
achieved for any given sample42, as even samples considered to be
radiation hard are reported to suffer from RIC36,37 when aiming
for sub-20-nm resolution. In our work, we provide a path to push
this limit further by computationally compensating for the first-
order deformation that occurs in the sample.

The improved robustness of the NCT-based tomography
methods is gaining even higher importance with the advent of the
fourth-generation synchrotron sources that promise more than
two orders of magnitude higher coherent X-ray flux49,50. In that
case, the radiation dose will become the major bottleneck in
reaching the full potential of the additional flux for nanoimaging.
Our approach will thus result in increasing of the reachable
spatial resolution. This is possible because the reconstruction of
the initial sample state, g(F), incorporates information from the
whole dynamic data set acquired during the deformation.

Finally, tomography in the curved lines-of-sight geometry can
be implemented using graphical processing units (GPUs) in a
computationally efficient way51. This fast implementation
enabled us to use the NCT approach for reconstruction of general
samples with 3D deformation field using iterative methods, such
as NCT-SIRT.

Methods
Tomography in curved geometry. A tomography reconstruction can be seen as a
numerical task that optimizes values of volume g so that the constraints given by
the measured data are well satisfied. For M measurements and N reconstruction
pixels, this leads to a system of M linear equations52

pj ¼
XN
1

aijgi þ ϵj for j ¼ 1; ¼ ;M ð1Þ

where pj denotes the measured projection data, aij are contributions of the ith voxel
of the reconstructed volume gi to the j-th measurement pj forms that form a sparse
matrix A : RN ! R

M and ϵj is the associated noise. The conventional algebraic
tomography reconstruction methods solve the system of Eq. (1) iteratively so that a
norm of a difference between the measured data and the reconstructed projections
is minimized

mingkAg� pk ð2Þ
If the norm is quadratic, the gradient of the cost function with respect to the

reconstructed volume g can be expressed as AT Ag� pð Þ and the task can be solved
by gradient-based solvers.

However, if the object g is being deformed during the acquisition, the original
straight lines of sight cannot describe well the measured data by a unique solution.
Instead, the NCT method assumes that the sample changes can be well approximated
by an elastic deformation with a smooth time evolution given by a DVF Γ(x, t). Γ(x, t)
is defined as a bijective mappingR3 ! R

3 from each time frame t of the object g(x, t)
to a reference time t0. In that case, each line of sight (LoS) l̂j can be associated with a

virtual curved path l̂j through a single shared object g(F), as shown in Fig. 1, resulting
in a new non-Euclidean acquisition geometry described by a sparse matrix AN,

AN Γ x; tð Þð Þg ¼
X

âijgi ð3aÞ

where âij are contributions of the voxels gi along the virtual path l̂j ¼ lj þ Γ lj; t
� �

:

The transposed operator AT
N that is needed to calculate a gradient-based update could

be either directly calculated as transposition of the virtual geometry matrix AN,
however, since the geometry matrix cannot be usually directly expressed due to its
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size, an alternative option is to express it as,

AT
N Γ x; tð Þð Þp ¼

X
j

âTji pj ð3bÞ

where âTji denotes contribution of the j-th measured pixel to the ith voxel along the

virtual path l̂j ¼ lj þ Γ�1 lj; t
� �

: Assuming that the DVF and its inversion are locally

and temporally sufficiently smooth, the inverse DVF Γ−1(lj, t) can be approximated
either as −Γ(lj, t), or more precisely solved via a simple fixed-iteration scheme53.

An advantage of the virtual geometry approach is that the optimization task in
Eq. (3a) is formally identical to the classical straight-LoS tomography and thus any
common algebraic method such as SIRT, SART, or CLGS can be used as long as
changes in the sample density resulting from the deformation process can be
neglected. This also means our approach can be easily combined with common
regularization methods, such as total variation54.

Because the curved geometry can generally differ for each projection, the NCT-
based methods enable reconstruction of samples evolving faster than the
acquisition time of a single sub-tomogram if the corresponding DVF evolution is
available.

Estimation of deformation vector fields. Since the improved estimate of DVF Γ
(x, t) affects both the reconstruction g(F) and also the partial reconstructions g(i) of
each sub-tomogram, reconstruction of the volume g(F) and DVF Γ(x, t) is generally
nonlinear and nonconvex. This means that the estimation of the optimal DVF
leads to iterative joint optimization problem when the DVF and the volume are
simultaneously reconstructed in order to satisfy all provided constraints.

The continuous time-evolving DVF Γ(x, t) is calculated from the discretized
deformation vector fields Γ(i)(x), which describe an average deformation in the ith
sub-tomogram with respect to the reference state. The discretized DVF Γ(i)(x) is
estimated so that differences between the full reconstruction g(F) and the
reconstructed sub-tomograms g(i) are minimized. Both g(i) and g(F) are already
reconstructed using the previous estimate of the time-evolving DVF, Γ(x, t).

Given the current estimate of the full tomogram g(F) and a sub-tomogram g(i), a

gradient-descent update of the j-th axis component of the DVF, Γ ið Þ
j , in the ith sub-

tomogram can be estimated using an in-house implementation of the three-

dimensional optical-flow method55 with smoothing weights in the following form

~Γ
ðiÞ
j ¼ Γ ið Þ

j þ λ
g Fð Þ � g ið Þ� �

∇jg
Fð Þ

h i
� k

∇jg Fð Þ
� �2

� k þ α
ð4Þ

where 0 < λ < 2 is a relaxation constant, k denotes a positive convolution kernel,
∇jg is the spatial gradient of the full reconstruction g(F) along the j-th axis, and α is
a small constant to avoid amplification of noise in very smooth regions of the
reconstruction. The updated DVF can be directly used to refine the estimate of the
tomograms. However, due to the block discretisation of the sub-tomograms, this
will unavoidably lead to temporal smearing over the duration of a single sub-
tomogram, resulting in underestimation of the actual deformation, and to
undesired discontinuities between each of the DVF blocks. Therefore, the time
evolution of the DVF Γ(x, t) was deconvolved by the Tikhonov method56 with a
regularization term O(Γ(x, t)) enforcing smoothness, resulting in the following
optimization task:

kS Γ x; tð Þ � Γ ið Þ xð Þk þ λO Γ x; tð Þð Þ ð5Þ

where the first term enforces minimal distance between the ith discretized DVF Γ(i)

and the deconvolved DVF Γ(x, t) is averaged over the ith sub-tomogram by the
block-diagonal sparse matrix S. Since estimation of deconvolved Γ(x, t) is generally
an ill-posed task, the smoothing functional O(Γ(x, t)) aids the reconstruction by
providing regularization. In order to avoid the need of calculating Γ(x, t) for every
tomographic projection, Γ(x, t) is sampled only at the beginning and the end of
each sub-tomogram and linearly interpolated in between.

The simultaneous reconstruction of the DVF and tomogram unavoidably
results in additional degrees of freedom, for example scaling and rigid shift of the
tomogram in the used parallel tomography geometry. Therefore, we define time
t ¼ 0 as beginning of the deformation, i.e., Γ x; 0ð Þ ¼ 0 and use it as a boundary
condition. This effectively means that the reconstructed volume g(F) will be close to
a reconstruction at t ¼ 0.

We have observed that for a reasonably small deformation, the convergence of
this alternating optimization is rather fast and is usually reached in tens of
iterations. The presented algorithms were implemented in Matlab using the parallel
computing toolbox for graphics-processing unit (GPU) calculations and a modified
ASTRA toolkit13,57 for calculations of the standard and NCT-based projectors.
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Projection alignment. The measured projections were aligned simultaneously with
the DVF estimation. We have used a projection-matching method, which estimates
vertical and horizontal shifts of the measured projection with respect to the pro-
jections of the reconstructed volume using the known tomography model. The
displacements between these reprojections and the measured projections were
estimated by the 2D optical flow method and iteratively corrected for by shifting
the measured projections.

Sample preparation. A single beetle wing scale was coated with a gold layer of 150
nm. The beetle scales were milled into circular rods with diameter of 10 μm with a
focused ion beam (FIB) milling (FEI Philips Dualbeam Quanta 3D), and attached
on nanotomography pin-holders58.

Experiments. The PXCT scans were performed using 6.2 keV photon energy
coherent X-ray beam at the cSAXS beamline, Paul Scherrer Institut, Switzerland.
The samples were scanned across an X-ray probe with a diameter of 3 μm. The
sample imaged at ambient conditions was measured in the flOMNI—flexible
tOMography Nano Imaging end-station37. The second sample was imaged using
the OMNY—A tOMography Nano crYo end-station30 and it was kept at tem-
perature 90 K during entire measurement.

Data availability
The measured data sets in this study are available in a public repository (https://doi.org/
10.5281/zenodo.2578796)51.

Code availability
The developed algorithms are available in a public repository (https://doi.org/10.5281/
zenodo.2578796)51.
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