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Decoding material-specific memory
reprocessing during sleep in humans
M. Schönauer1,2,3,*, S. Alizadeh1,2,*, H. Jamalabadi1,2, A. Abraham3, A. Pawlizki3 & S. Gais1,2,3

Neuronal learning activity is reactivated during sleep but the dynamics of this reactivation in

humans are still poorly understood. Here we use multivariate pattern classification to decode

electrical brain activity during sleep and determine what type of images participants had

viewed in a preceding learning session. We find significant patterns of learning-related

processing during rapid eye movement (REM) and non-REM (NREM) sleep, which are

generalizable across subjects. This processing occurs in a cyclic fashion during time windows

congruous to critical periods of synaptic plasticity. Its spatial distribution over the scalp and

relevant frequencies differ between NREM and REM sleep. Moreover, only the strength

of reprocessing in slow-wave sleep influenced later memory performance, speaking for at

least two distinct underlying mechanisms between these states. We thus show that memory

reprocessing occurs in both NREM and REM sleep in humans and that it pertains to different

aspects of the consolidation process.
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S
leep helps us retain new memories1,2. A reactivation of
newly encoded memory traces in the sleeping brain is
thought to underlie this effect. Replay of learning-related

neuronal firing patterns has been observed in single-cell
recordings of the hippocampus and neocortex in animals3–6.
Importantly, this sleep-dependent activation of neurons has
recently been shown to promote synaptic plasticity7. Reactivation
of neuronal ensembles involved in motor learning is associated
with changes in the task-related spiking behaviour of these
neurons in the rodent brain8. Furthermore, oscillation related
to memory replay during sleep have been linked to greater
memory strength and precision in rats9. The dynamics of this
memory trace reactivation in humans, however, are still poorly
understood. When memory content was associated with auditory
or olfactory cues during learning, a re-exposure to these cues
during sleep can improve later recall performance10,11. Moreover,
activity on the level of brain areas suggests reactivation during
sleep12,13. It is unclear whether this re-expression of learning-
related activity reflects the specific content of a previous learning
task. Recent advances in multivariate pattern classification
(MVPC) methods have made it possible to investigate covert
cognitive processes in continuous brain activity. Using such
methods on brain activity measured with functional magnetic
resonance imaging (fMRI), Horikawa et al.14 have recently shown
that it is possible to decode the content of visual imagery
occurring at sleep onset. In the present study, we used MVPC
to test whether the human sleep electroencephalogram (EEG)
contains information about what has previously been learned and
thus indicates reprocessing of memory content.

In our experiment, participants learned pictures of either faces
or houses before sleeping in the laboratory for a whole night.
During this time, brain activity was recorded using high-density
EEG. We then employed MVPC methods to detect information
about the previously learned material in electrical brain activity
during sleep (Fig. 1, also see Methods section). We investigated
continuous sleep EEG instead of evoked activity, because we were
specifically interested in spontaneous information processing in
sleep. Cued reactivation, which has already been demonstrated in
humans with fMRI, shows that stimulus processing in sleep can
lead to memory improvement. Previous studies, however, have
not shown that such activity actually occurs spontaneously in
humans. After demonstrating the existence of such an activity, we
were also interested in the time course of memory reprocessing
across the night and in sleep-stage-specific activity. It has been
discussed previously whether such reactivation occurs during
NREM or REM sleep, and both have been implicated in memory
reactivation and consolidation12,13,15,16. Furthermore, activity
that is present only at specific times during the night indicates
that the underlying process is related to discrete periods of
reprocessing rather than prolonged ongoing activity.

Results
Detecting memory reprocessing using MVPC. We tested whe-
ther MVPC can decode from the sleeping brain’s activity what
has been learned beforehand. Instead of looking for a single
feature that can distinguish between conditions, MVPC methods
take into account and compare the whole temporospatial pattern
of activity. Given their multivariate nature, they are more suitable
to deal with this kind of high-dimensional problem than is
classical statistics, which usually relies on multiple univariate
testing. Because EEG activity differs greatly between sleep stages
and even more so between sleep and wakefulness, activity cannot
be compared directly between these states. We therefore used
between-subject analyses to compare recordings from the same
sleep state, that is, the classifier was trained and tested on sleep

data. If MVPC can determine from the sleep recording which
type of visual stimulus a subject has learned before sleep, this
implies that stimulus-specific reprocessing of the learned material
occurs during sleep.

Our results show that human sleep EEG contains information
about which kind of visual stimuli was learned before sleep
(Fig. 2a). Classification accuracies for this distinction exceed
classification rates expected from chance guessing of the classifier,
as determined by randomization statistics, during two of the four
90-min segments (Fig. 2b). Thus the sleep EEG reflects previous
learning during these intervals. Moreover, both NREM and REM
sleep contain relevant information (Fig. 2a–c).

We used two different approaches to ensure that findings are
significant and generalizable. First, we generated randomly
labelled data, which, per se, cannot contain any information,
and compared the performance of the classifier on these
random data with its performance on the original observed data
(see Supplementary Fig. 1). This test allows to determine the
probability of an outcome by chance given that the data contain
no actual information and thus provides exact significance
values. Because this process, which repeats the whole analysis
for each random iteration, is computationally intensive, we could
complete only 1,001 repetitions, which allows significance testing
with a lower limit of precision of P¼ 0.001. In the case of REM
sleep of the second 90-min sleep segment, none of these 1,001
random iterations produced higher classification rates than the
real data, thus allowing the conclusion of Po0.001.

The second approach to ensure generalizability was to compare
classification accuracies of training and validation sets. If accuracy
is higher during training than during validation testing, the
classifier was overfitted to the training data set and uses random
feature characteristics that allow separating classes only in the
training data, which are not predictive for new data, and thus
cannot be generalized. Ideally, classification rates for the
validation data should resemble those for the training data. This
shows that the classifier can extract meaningful information from
the training set and that the learned pattern can be generalized to
new data. It can be seen in Fig. 2b that for data from the first
(triangles) and third (squares) 90-min sleep segment training
accuracy was low (o0.625), but classification accuracy for the
validation set was still worse. Thus EEG from these periods does
not seem to contain information pertaining to previous learning
experience. On the other hand, EEG from the second (circles) and
fourth (stars) 90-min sleep segment consistently shows higher
training and validation accuracies and, in some cases, shows
nearly perfect generalization between training and validation.

Relating reprocessing to behavioural memory performance.
Participants showed good recognition performance in both the
face and house learning conditions (see Supplementary Table 1).
We did not observe forgetting across the night. This result is in
line with other studies on declarative memory consolidation that
have shown stable maintenance of memory performance over
sleep but significant decline of memory performance after sleep
deprivation or daytime wakefulness17,18. Memory consolidation,
that is, the overnight change in performance, was positively
correlated with time spent in sleep stage S4 (r64¼ 0.254,
P¼ 0.043; Supplementary Table 2), confirming that sleep was
related to the consolidation of this task. We also tested
the relation of memory consolidation with the strength of
memory reprocessing, which was inferred from the classification
probability estimates provided by the classifier. We find that
memory reprocessing during slow-wave sleep (SWS) shows a
positive relation with memory consolidation (r64¼ 0.329,
P¼ 0.008; Supplementary Table 3 and Fig. 3). This correlation
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remained significant after removing the three most influential
values determined by leverage statistics (r61¼ 0.28, P¼ 0.030).
Memory reprocessing during sleep stage S2 and REM sleep were
not related to memory performance (S2: r64¼ 0.099, P¼ 0.436;
REM: r56¼ � 0.199, P¼ 0.142). A regression model including
strength of reprocessing in S2, SWS and REM sleep as predictors
for memory consolidation found that only reprocessing
during SWS correlated significantly with memory consolidation
(b¼ 0.339, P¼ 0.020, explaining 9.7% of the variance),
reprocessing in S2 and REM sleep was no significant predictor
(S2: b¼ � 0.064, P¼ 0.656, explaining 0.3% of the variance;
REM: b¼ � 0.112, P¼ 0.436, explaining 1% of the variance).
Slopes differed significantly between SWS and REM sleep
(strength of reprocessing� sleep stage interaction: P¼ 0.008),
indicating that memory reprocessing in these sleep stages is
differentially related to memory consolidation and could thus
have different functions.

We then controlled whether general sleep features such as time
spent in deep sleep could possibly account for an increase in both
behavioural performance as well as classifiability of the data.
Entering strength of reprocessing in SWS and time spent in this
sleep stage in a regression model, we found that only strength of
reprocessing in SWS was a significant predictor of memory
consolidation and explained a larger part of the variance
(b¼ 0.335, P¼ 0.006, explaining 11.2% of the variance), whereas
duration of SWS was only marginally significant (b¼ 0.214,
P¼ 0.074, explaining 5.2% of the variance). Strength of
reprocessing in SWS was independent of time spent in that sleep
stage (r64¼ � 0.025, P¼ 0.423) and the partial correlations
support the view that strength of reprocessing in SWS and
duration of SWS are independent predictors of overnight
memory consolidation (partial correlation with strength of

reprocessing during SWS controlling for the duration:
r64¼ 0.342, P¼ 0.006; partial correlation with duration of SWS
controlling for strength of reprocessing: r64¼ 0.226, P¼ 0.074).
Analogous regression analyses for strength of reprocessing and
time spent in S2 and REM sleep yielded no significant results, as
could be expected from the general lack of association with
overnight memory consolidation (all P40.143).

While the proportion of variance in overnight memory
consolidation that is explained by memory reprocessing during
SWS is low in absolute terms, it should be noted that factors such
as alertness or individual differences can introduce considerable
variance in memory performance. Classifier performance simi-
larly provides a measure of reprocessing strength that is affected
by many sources of between-subject variance as it is estimated
based on other participants’ sleep EEG characteristics. Despite
these difficulties, we demonstrate that memory reprocessing
during SWS is significantly related to overnight memory
retention, suggesting a robust underlying effect.

Temporal dynamics of reprocessing. We detected processing of
learning material during sleep in the second and fourth 90-min
segment of the night (Fig. 2). To investigate this pattern on a
more fine-grained scale, we split the night into smaller intervals
and analysed the time course of classification accuracy across the
night with a resolution of 4.5 min, using the same procedure as
above. Again, we find two periods of the night during which brain
processing seems to be more strongly related to previous learning,
congruent with the time windows reported above. During other
periods, no learning-related information was detected (Fig. 4).

Spatial characteristics of reprocessing and frequency contributions.
Brain activity in REM and NREM sleep is not alike. It is thus
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Figure 1 | Data preprocessing and MVPC analysis. (a) After artefact rejection, data from the remaining 4-s trials of 128-channel sleep EEG data was

frequency transformed. To reduce the dimensionality of the data and to increase the signal-to-noise ratio, spectra were averaged over trials and

neighbouring channels. Next, spectra of all channels were normalized separately to make them comparable, and a spectral sharpening filter was applied to

remove the baseline spectrum and enhance differences between neighbouring frequency bins. (b) Training data were strictly separated from validation data

in all MVPC analyses. Dimensionality of the data was further reduced in a two-step training procedure. Individual channel performance was determined

using separate single-channel classifiers. An average of data from all channels weighted by their standalone performance was then used to train a classifier

to distinguish between face and house stimulus conditions. Finally, classification was tested on independent validation data.
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reasonable to also assume that information processing in these
states will take different forms. To investigate this, the relative
contribution of each frequency band to classification can be
assessed in terms of classification weights and compared between
sleep stages (Fig. 5). Our results show that the frequencies that are
important for identifying previous learning content differ between
sleep stages. Activity in the range of sleep spindles (11–16 Hz) can
distinguish previous learning conditions only in NREM sleep
(Fig. 5a). Theta-band activity (4–8 Hz), on the other hand, has
higher discriminative power in REM sleep. Slow frequencies
o4 Hz were informative in both NREM and REM sleep, but their
topographies differ (Fig. 5b). Although there is some resemblance
between the feature weight plots and power spectra of sleep, it has
to be noted that the feature weights do not follow the typical 1/f
logarithmic decrease of EEG power spectra but remain essentially
constant after a linear decrease in delta frequencies. Moreover,
actual classifier input was not the power spectra but the pre-
processed data seen in the lower panel of Fig. 1a.

Discussion
We show that memory processing of a single memory task occurs
during all stages of sleep. Reprocessing in REM and NREM sleep,
however, has different effects on later memory performance.

Although a large number of studies in rodents have observed the
occurrence of spontaneous memory reactivation during NREM
sleep4–6,19,20, linking this reactivation with improvements in
behavioural performance has remained a challenge. Contrary to
rodents, task difficulty and training time can be easily adjusted
in studies on humans, giving greater power to analyses on
behavioural effects. It has early been suggested that memory
reactivation during sleep has functional significance for
strengthening new memories21. Indirect evidence for this
assumption has accumulated over the past years10,11,22–24.
A recent study in rats found that sleep-dependent reactivation
of neurons involved in a simple motor learning task is associated
with changes in the task-related spiking behaviour of the same
neurons8. In this way, reactivation may be related to later
improvements in performance. We now show that content-
related reprocessing of declarative learning material during
NREM sleep influences later memory strength in humans.
Conversely, memory reprocessing during REM sleep does not
show this graded relation with overnight memory retention.

A number of animal studies detected reactivation of learning
activity also in REM sleep25,26, yet empirical evidence for this has
remained ambiguous. We find that memory content is reprocessed
during both NREM and REM sleep. The differential significance of
memory reprocessing for behavioural performance between these
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Figure 2 | Classification results. (a) The content of a previous learning experience can be determined from sleep EEG during the second and fourth 90-

min segment of the night. At these times, classification accuracy for all sleep stages is significant or approaches significance. The hatched area shows the

95% confidence interval. Classification accuracies for S4 sleep as well as REM sleep in the second sleep segment remain significant after Bonferroni–Holm

correction considering all tests (S4: P¼0.048, REM: P¼0.014). (b) Significance was assessed using permutation tests to ensure that classification rates

are higher than can be expected from data sets with random labelling of the data, that is, not containing any information. To estimate the displayed null-

distribution from which exact significance levels of classification results can be determined, the MVPC analysis was repeated 1,001 times on the actual data

with randomly shuffled condition labels. Dark grey areas show those randomizations during which classification accuracy on randomly labelled data

exceeded accuracy obtained on correctly labelled data. (c) If classification accuracies are similar between the training and validation sets, generalizable

information could be extracted and the classifier was not overfitted on the training data set. This was the case for all analyses that were significant, that is,

for data from the second (circles) and fourth (stars) 90-min segments of the night. Here patterns detected in one set of subjects during classifier training

can be generalized to data from a new set of subjects. Data from the first (triangles) and third (squares) 90-min segments show low training accuracy and

low accuracy on validation data, indicating that the classifier could not extract information about previous learning content from these periods of the night.

*Po0.05, **Po0.01, ***Po0.001.
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states points towards at least two different mechanisms underlying
memory reprocessing during sleep.

Already early on, it has been suggested that memory is formed
in a two-stage process. Labile memory traces are formed during
exploratory behaviour, when theta power is high. Later, during
rest or sleep, long-lasting traces are formed9,21. Similarly, it has
been proposed that, during sleep, slow-wave-related NREM

activity and theta-related REM activity have complementary,
mutually dependent functions27. We find that reprocessing
occurs in both NREM and REM sleep. Interestingly, we can
demonstrate a correlation between reprocessing and later
memory performance only for NREM sleep. This supports the
view that reprocessing during REM sleep and NREM sleep
serves distinct functions. Our finding is in line with previous
studies, which show no behavioural benefit of reactivating
memories by cueing during REM sleep10. Interestingly, memory
replay observed during REM sleep has also been shown to have
different characteristics than that in NREM sleep, including a
smaller time-compression factor, which is less suited for the
induction of long-term potentiation20,25.

A number of recent studies stress the importance of light
NREM sleep, SWS or REM sleep for memory consolidation,
respectively2,27,28. Based on these findings, theoretical accounts
have suggested that NREM and REM sleep may interact during
memory consolidation, emphasizing different aspects of this
process. The sequential hypothesis of sleep stresses that different
sleep stages have to occur in succession to effectively influence
memory function. It assigns specific and substantially different
but interdependent roles to NREM and REM sleep regarding
the processing of memories29. Other accounts suggest that the
different processes contributing to memory processing during
NREM and REM sleep are separate and independent. Thus the
function of NREM and REM sleep in consolidation is assumed to
pertain to different aspects or forms of memory30. We find that
relevant activity occurs in close temporal proximity over different
stages and that a single memory task triggers learning-related
activity in both NREM and REM sleep EEG. It therefore seems
possible that both sleep stages cooperate in the processing of
memories. The differential function of NREM and REM sleep
stages is still controversial7,16,31. One recent hypothesis is that
cortical activity and long-range connectivity differs between sleep
stages, allowing local memory reactivation and potentiation in
SWS, and network-wide information integration in REM
sleep32,33. This view fits with our findings.

Our data indicate that memory processing in sleep is cyclic in
nature and its occurrence might depend more strongly on timing
than on the stage of sleep. Instead of occurring in SWS
throughout the whole night, reprocessing was detected in S2
and S4 as well as REM sleep in the second 90-min period but not
in the first or third. Whether this consolidation window depends
on time after learning, time after sleep onset or circadian rhythm
cannot be determined in the present study, because these were
not varied independently.

Because reprocessing peaks during distinct times of the night, it
is unlikely that the detected activity simply reflects ongoing
reverberation of learning-related activity or selective fatigue in the
involved brain areas. Instead, it must reveal a process that is
selectively initiated at specific points during sleep. The finding
that reprocessing is the strongest around 3 and 6 h after learning
fits well with experiments that found critical periods during
memory consolidation, during which memory is particularly
sensitive to disruption34. Thus inhibiting protein synthesis 15 min
and 3 h after learning, but not 1 h after learning, impairs
hippocampal one-trial avoidance learning35. Similarly, in
Drosophila, different behavioural memories and corresponding
neuronal traces develop during different time windows over
several hours after conditioning36, a process that has been linked
to systems memory consolidation in humans37.

Moreover, our finding of discrete periods for memory
reprocessing is reminiscent of previously reported ‘sleep
windows’, that is, times during which sleep has to occur after
learning to strengthen memory38,39. Along the same lines,
Stickgold et al.40 have found that, for consolidation of a visual
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discrimination task, mainly duration of SWS and REM sleep in
the first and the last quartile of the night, respectively, are most
critical parts of the night. Although that task presumably does not
rely on hippocampal memory reactivation and might therefore
follow a different temporal trajectory, the similarities suggest
the possibility of a common mechanism. Further behavioural,
electrophysiological and molecular investigations are required to
elucidate this underlying mechanism. Moreover, it has still to be
ascertained whether the other periods of the night have memory-
related functions that cannot be detected by our method.

Because the amount of signal related to memory reprocessing
across the whole night is very small compared to the unrelated
noise, we used MVPA, which is a very sensitive method to detect
systematic differences between large sets of data. However,
multivariate approaches are not better suited to supply informa-
tion about univariate hypotheses than classical tests. Using feature
weights and individual channel accuracies (Fig. 5) can, to some
extent, illustrate the features that are carrying relevant informa-
tion. However, these features must be seen within the entire
pattern. The following discussion of individual physiologic
features should therefore be seen as a starting point for studies
focussing on a smaller feature search space.

When looking at the frequencies contributing to correct
classification, we find that spindle activity during NREM sleep
contributes to the distinction of previous learning conditions.
This is consistent with the fact that sleep spindles increases
after learning41 and correlate with performance42. Parietal
sleep spindles accompany task-specific reactivation seen in
fMRI43. Moreover, frontal slow waves, as they appear in our
analysis for NREM sleep, have previously been shown to correlate
with performance gains observed after memory reactivation
induced by cueing during sleep44.

Apart from confirming that learning-related information
resides in frequency bands that have previously been implicated
in memory consolidation, such as NREM spindles and slow
oscillations, our results hint at promising objects for future study.
We suggest that particular attention should be given to the
function of REM sleep theta. Frontal theta power increases during
successful memory encoding and retrieval, and theta is also
involved in memory processing during wakefulness, such as in
controlling, maintaining and storing memory content45. Theta
has been linked to memory and sleep for a long time, but has only

recently received renewed attention16,46. For instance, theta band
activity during sleep has been shown to support formation of
imprinting memory in chicks47. In humans, another recent study
found increased frontal theta power after presentation of cues
related to a verbal learning task during sleep44,48. Moreover,
frontal theta in REM sleep is predictive of successful dream
recall49. These findings stress the active role of theta activity in
memory reprocessing during sleep.

It is difficult to demonstrate reactivation directly in humans.
Electroencephalographic activity during sleep differs greatly from
that during wakefulness in both the time and the frequency
domains. Thus amplitude changes over time, as well as power
spectral density, cannot be compared between these states. This
is owing to different modes of generation and transmission of
electrical activity during sleep50,51. Previous data have shown that
reactivation can be both time compressed as well as changing in
location (for example, neocortical replay following hippocampal
activity)19,52. Markers reflecting reactivation of neuronal firing
patterns observed during learning can thus be altered by a
large number of operations, which renders the search space
virtually infinite. Because this makes wake-to-sleep classification
problematic, and a within-subject design would have to rely on
between-session classification that is confounded by various
session differences (for example, recording artefacts), we instead
opted for a between-subject classification approach. This allowed
us to detect information pertaining to a previous learning
experience in data recorded in the same state of consciousness.
Previous attempts to observe memory reactivation during off-line
periods succeeded in showing memory reprocessing during
wakefulness but not during sleep53–55. Using an approach that
trains and tests the classifier in the same state of consciousness
made it possible for us to observe material-specific memory
reprocessing during sleep and study its dynamics and relation to
later behavioural performance.

We used MVPC to decode the content of a previous learning
experience from electrical brain activity during sleep. By linking
brain activity during sleep with the content of previous learning,
our findings bridge studies from multicell recordings in animals,
which show learning-related reactivation, to human imaging
studies, which show reactivation of brain regions during sleep.
Pattern classification methods are powerful tools for investigating
the covert mechanisms that link electrical brain activity and
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behaviour and can thus contribute to our understanding of these
complexities.

Methods
Subjects. In this study, we recorded EEG data from 32 healthy subjects with no
history of neurological or psychiatric disorders. All participants were students,
between 18 and 30 years, native German speakers and non-smokers. They were
right handed as measured by Edinburgh Handedness Inventory test56. Chronotype
was assessed via the Munich Chronotype Questionnaire57 and experimental timing
was adjusted to participants’ usual sleep times (sleep midpoint 03:56 h±01:33 h
(mean±s.d.)). Subjects were regular sleepers with a habitual sleep duration of
6–9 h. They did not report any chronic or acute sleep-related problems in an initial
interview. Moreover, they did no shift work and did not change time zones in the
6 weeks leading up to the experiment. Participants were told to refrain from
drinking alcohol, coffee and tea on the days of the experiment and did not take
any drugs that affect the central nervous system. All experimental procedures
were approved by the local ethics committee (Department of Psychology,
Ludwig-Maximilians-Universität München). Informed consent was obtained
from all subjects.

Experimental design. Participants slept in our laboratory on three different
nights. The first of these served as an adaption night, to accustom subjects to the
environment and to sleeping under the experimental conditions (for example,
wearing an EEG cap). In the subsequent two experimental nights, subjects
completed an intensive image learning task, during which they studied pictures of
either faces or houses. For an exemplary subject, learning took place from 2030 to
2200 hours after the EEG electrodes had been attached, and memory was tested
immediately afterwards. The subject then went to bed at 2300 hours for an 8-h
sleep period. Memory was tested once more in the morning. The times of the
experiment were advanced or delayed such that time to bed corresponded to the
individual habitual bedtime of the participants. All subjects participated in two
experimental nights, each time learning only one type of images, in a counter-
balanced fashion. The two nights were spaced at least 5 days apart. Sleepiness was
tested with a visual analogue scale in the evening and after sleep in the morning
(Supplementary Table 4).

Learning task. Subjects studied a set of 100 images of faces or houses in
30 repetitions. Pictures were shown in random order and individual images were
always presented in one of the four quadrants of the screen. Participants had to
remember the individual pictures and learn to associate the images with the
quadrant in which it was presented. Participants were tested once immediately after
learning and again in the next morning after a full night of sleep. During both
immediate and delayed testing, 100 learned images were presented together with a
set of 50 new images in random order. Participants first had to indicate via key-
press whether they had seen the image before (with left hand on main keyboard:
1—sure, 2—probably, 3—probably not, and 4—surely not. Responses 1 and 2 were
counted as a ‘yes’ response, responses 3 and 4 were counted as a ‘no’ response).
For ‘yes’ responses, also the quadrant in which the image had been presented was
probed (with right hand on numerical pad: 1—lower left, 3—lower right, 7—upper
left, and 9—upper right). Image material was derived from two different sources:
300 pictures of houses were taken from German online real estate sites,
300 pictures of neutral faces were taken from Minear and Park58.

This task was chosen because it is a declarative task that is supposed to involve
the hippocampus, and sleep-related reactivation has mainly been shown in the
hippocampus10,19. Face and house processing are clearly different in event-related
EEG potentials and fMRI59. Face processing activates the mid-fusiform gyrus
(fusiform face area) and the occipital face area in the occipito-temporal cortex as
well as other temporal areas60, whereas processing of houses activates the
parahippocampal place area and the lateral occipital gyrus61,62.

EEG recording. Sleep EEG was recorded using an active 128 channel Ag/AgCl-
electrode system (ActiCap, Brain products, Gilching, Germany) with 1 kHz sam-
pling frequency and a high-pass filter of 0.1 Hz. Electrodes were positioned
according to the extended international 10–20 electrode system. For sleep scoring,
recordings were split into 30-s epochs and sleep stages were determined on elec-
trodes C3/C4 according to standard rules by two independent raters63. Average
sleep durations are reported in Supplementary Table 5.

Methodological considerations. One of the challenges in sleep research is the
difficulty of recording large sample sizes and the large amount of data that is
recorded. The goal of classical analyses, which use multiple univariate comparisons
(for example, classical fMRI analysis), is to find single features that are strong
enough independently to distinguish between conditions. Such features are unlikely
to exist in high-density all-night EEG recordings, which thus present a problem
better addressed by a multivariate approach. In multivariate analyses, it is of
interest whether the overall pattern of data contains information that is relevant to
distinguish conditions. A prominent method that can deal with large numbers of
data dimensions is MVPC. However, high-dimensional, low-sample-size data, such

as EEG recordings, pose specific problems for classical statistical testing as well as
for MVPC64,65. For this kind of data, it is important to minimize the number of
features. If the signal across features is highly correlated, as in EEG data, this can be
achieved by averaging, which reduces dimensionality of the data and at the same
time increases signal-to-noise ratio. We developed a two-step procedure that uses
spatial averaging and a channel-based weighted average to improve classifiability of
our data (Fig. 1). These steps are described in detail in the sections ‘Data
preparation’ and ‘Multivariate pattern classification’ below.

Data preparation. For artefact rejection and further analysis, EEG data were split
into 4-s trials. Artefact rejection was done in a semiautomatic process using custom
MATLAB scripts. Based on the distributions of different parameters of the raw data
and power spectrum, rejection thresholds were chosen for each recording indivi-
dually to make sure that only a minimal number of artefacts remained in the data.
We tested for disconnected electrodes (outliers in overall spectral power), sudden
jumps of the signal (outliers in amplitude changes) and muscle artefacts (outliers in
spectral power between 110 and 140 Hz). Outlier thresholds were automatically
suggested based on the variance of the data and manually confirmed upon visual
inspection of parameter distributions and of the raw data. Trials containing arte-
facts were removed from the data set; channels that contained too many trials with
artefacts were removed entirely and interpolated using routines provided by
EEGLAB66. Whether individual epochs or channels were to be removed was
determined automatically so that data loss was kept minimal. Artefact-free trials
were then transformed into the frequency domain using Fourier transformation.
To obtain smooth spectra, Welch’s method was used for this, averaging over
10 Hamming windows of 2-s length with 95% overlap, resulting in a final data
resolution of 0.5 Hz. Data were used up to a maximum frequency of 30 Hz.

The subsequent steps for data preparation were implemented to (1) increase
signal-to-noise ratio, (2) reduce dimensionality of the data and (3) adapt the signal
for between-subject classification. First, we averaged power spectra across electrodes
within a radius of approximately 3 cm around the 32 evenly spread locations of the
extended 10–20-system to decrease the number of redundant features and increase
signal-to-noise ratio as well as spatial similarity between subjects. We then
separately averaged over all artefact-free trials available for each 90-min segment
and sleep stage, to obtain a reliable estimate of spectral properties. This also ensures
that an equal number of epochs per subject enters analysis, which is important for
classification to remain unbiased. To remove amplitude differences between
channels, which are caused by the distance of each channel to the reference
electrode, spectra of all channels were separately normalized between zero and one.
This also removed between-subject variability in general spectral power.

Because baseline EEG power spectra are highly similar and differences between
conditions can be expected to be of smaller magnitude, these differences need to be
enhanced within the spectra. We thus applied a spectral sharpening filter, which
removes the baseline spectrum and emphasizes differences between neighbouring
frequencies in a final preparation step. To achieve this, we subtracted a moving
average of six neighbouring frequency bins (window size: 3 Hz) from the signal.
This accentuates the smaller differences in power between frequencies within the
spectrum. This is a valid procedure because neighbouring data points in the power
spectrum represent neighbouring frequencies from the same signal and are
therefore strongly correlated.

Subjects were only included in the analysis if they had at least 40 artefact-free
trials within the respective sleep stage and segment (that is, 160 s of data). Only
segments and stages with at least 11 subjects were analysed. The number of subjects
and trials available for each 90-min segment and sleep stage can be found in
Supplementary Table 6. As can be seen from that table, the amount of data
available was unrelated to classifier performance.

Multivariate pattern classification. In the present study, we tested whether
electrical brain activity during sleep holds information about the content of pre-
viously learned visual stimuli. Instead of the typically used multiple univariate tests,
we employed a multivariate classification approach, which can detect information
contained in the overall pattern of brain activity, but is not distinguishable from
single features.

Sleep EEG recordings from 64 nights (32 subjects, two conditions each)
were analysed using a classification algorithm developed on the basis of linear
support vector machines (SVM). The aim was to detect material-specific
information in the data. Please note that, whereas the experiment followed a
within-subject design, classification was done between subjects, with both nights of
each participant (face and house conditions) assigned either to the training, test or
validation set. All analyses were done with the Matlab implementation of libsvm
3.1 (http://www.csie.ntu.edu.tw/Bcjlin/libsvm). EEG recordings pose problems
typical of high-dimensional, low-sample-size data (potential feature space of
128 channels times 60 frequency bins). We thus preprocessed the data to
reduce the number of features and increase signal-to-noise ratio (see Fig. 1 and
‘Data preparation’ section), averaging over neighbouring channels to lower the
number of channels to 32. To further enhance relevant features, we used a stepwise
procedure for classification, which first regarded every channel as an independent
classifier and then combined outcomes of this first step for the final analysis.

We split data into independent training and validation sets. In a first step, one
linear SVM was trained for each of the 32 averaged EEG channels on all but one
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subject of the training set to see how much each channel contributes to
distinguishing the content of learning conditions (‘face’ learning or ‘house’
learning). This channel-based classification was cross-validated in a leave-one-out
procedure on each subject, and the obtained classification accuracies were averaged
over all cross-validation runs. In the second step, this average classification
accuracy from each channel was used as a weight to obtain a weighted average of
the 32 channels. The main SVM was then trained on this weighted training set and
classification accuracy was tested on the independent validation set. The main
reason for weighted averaging of channels was to reduce feature space
dimensionality, because feature weights cannot be reliably determined if sample
size is much smaller than the number of features67. Apart from this, weighted
averaging can amplify relevant information in the data. This two-step classification
process was cross-validated on independent data using 280 repetitions of a 5-fold
procedure, which covers the whole data set with five independent validation sets.

We used permutation tests to assess significance. These tests sample the
distribution of the null hypothesis by random shuffling of the original data, which
is repeated a large number of times. To obtain the correct null-distribution for our
data, we randomly shuffled condition labels, that is, the two conditions of each
subject were randomly labelled as ‘face’/‘house’ or as ‘house’/’face’, effectively
removing all relevant data pertaining to the effect of interest, while keeping other
dependencies in the data constant. We then calculated classification accuracies for
the randomly labelled data to estimate the random distribution. This was repeated
1,001 times. Significance was calculated by determining the percentage of times
that classification on randomly labelled data produced accuracies that were equal to
or higher than the classification accuracy obtained from the actual data. If
randomly labelled data did not result in a classification accuracy equal to or higher
than the actual data, then the P value was determined by the number of random
repetitions that were calculated (see Supplementary Fig. 1).

To assess whether reprocessing occurs uniformly across time, we split the night,
starting from time to bed, into five 90-min segments, which are likely to include a
whole sequence of sleep stages (S2, S3, S4 and REM sleep; see Supplementary
Table 5 for details of sleep stage distribution). In this first analysis, we classified
separately for all segments and sleep stages to assess the temporal dynamics of
memory reprocessing. To determine a more fine-grained time course of
classification accuracy, we moved a sliding window with a width of 22.5 min in
steps of 4.5 min across the night. We then estimated classification accuracy within
each window using the same two-step classification procedure as before. Analysis
was done separately for each sleep stage and the same inclusion criteria were
applied as in the main analysis.

To assess which features of the sleep EEG are particularly predictive, we
analysed classification weights. To assess which features of the sleep EEG are
particularly predictive, we analysed classification weights. The absolute value of the
weights are informative about how much each frequency band and channel
contributes to successful distinction. We averaged the classification weights over all
repetitions of the training procedure, resulting in an averaged 32 (channels)� 60
(frequency bins) weight matrix. To examine frequency contributions to memory
reprocessing, we further averaged the absolute values of these weights over all
channels (see Fig. 5a). The topography of predictive channels (see Fig. 5b) was
obtained by averaging absolute values of classification weights for each channel
over different frequency bands (delta: 0.5–3.5 Hz, theta: 4–7.5 Hz, alpha: 8–10.5 Hz,
spindle: 11–15.5 Hz, beta: 16–30 Hz). We chose to analyse classification weights for
frequencies obtained in the inner train–test loop (Fig. 1) because they can give
additional information on the topography of predictive channels. These frequency
weights are confirmed by weights from the outer validation loop (Fig. 1).
Frequency contributions to classification assessed from both loops show the same
pattern (see Supplementary Fig. 2).

Behavioural performance. For assessment of memory performance, we calculated
the memory sensitivity index d0 as the difference of z-values between correctly
recognized old items versus falsely recognized new items (z(hits)� z(false alarms)).
Performance presleep and postsleep, as well as memory consolidation across the
nights is reported in Supplementary Table 1. We correlated overnight memory
consolidation with time spent in different sleep stages (see Supplementary Table 2).
To examine whether memory reprocessing during sleep is associated with better
memory performance, we correlated the probability estimates for classification
given by the classifier with overnight memory consolidation measured as the dif-
ference between postsleep and presleep d0 values. No such correlation was found
for encoding or retrieval performance per se (see Supplementary Table 3). For each
subject, results of all 280 repetitions of the 5-fold cross-validation procedure
were averaged. We conducted this analysis separately for different sleep stages.
All correlations report Spearman’s rho.

Data availability. All data and codes are available from the corresponding authors
upon request.
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