
molecules

Article

Effects of a Reserve Protein on Spodoptera frugiperda
Development: A Biochemical and Molecular
Approach to the Entomotoxic Mechanism

Carolina Turatti Oliveira 1,2 , Suzy Wider Machado 1, Cézar da Silva Bezerra 2,
Marlon Henrique Cardoso 3,4 , Octávio Luiz Franco 3,4 , Carlos Peres Silva 5,
Demetrio Gomes Alves 5, Cristina Rios 5 and Maria Lígia R. Macedo 1,2,*

1 Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul,
Campo Grande, Mato Grosso do Sul 79070-900, Brazil; caroltuo@hotmail.com (C.T.O.);
suzywider@gmail.com (S.W.M.)

2 Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Instituto de Biologia,
Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul 79070-900, Brazil;
cezar.bezerra@gmail.com

3 Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicase Biotecnologia,
Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil;
marlonhenrique6@gmail.com (M.H.C.); ocfranco@gmail.com (O.L.F.)

4 S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo
Grande, Mato Grosso do Sul 79117-900, Brazil

5 Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catariana,
Florianópolis, Santa Catarina 88040-900, Brazil; carlos.peres@ufsc.br (C.P.S.);
demetrio.gomes@gmail.com (D.G.A.); crisaqi1@gmail.com (C.R.)

* Correspondence: ligiamacedo18@gmail.com; Tel.: +55-67-33457612; Fax: +55-67-33457400

Received: 4 February 2020; Accepted: 14 April 2020; Published: 8 May 2020
����������
�������

Abstract: Talisin is a storage protein from Talisia esculenta seeds that presents lectin-like and peptidase
inhibitor properties. These characteristics suggest that talisin plays a role in the plant defense process,
making it a multifunctional protein. This work aimed to investigate the effects of chronic intake of
talisin on fifth instar larvae of Spodoptera frugiperda, considered the main insect pest of maize and the
cause of substantial economic losses in several other crops. The chronic intake of talisin presented
antinutritional effects on the larvae, reducing their weight and prolonging the total development
time of the insects. In addition, talisin-fed larvae also showed a significant reduction in the activity
of trypsin-like enzymes. Midgut histology analysis of talisin-fed larvae showed alterations in the
intestinal epithelium and rupture of the peritrophic membrane, possibly causing an increase of
aminopeptidase activity in the midgut lumen. Talisin also proved to be resistant to degradation
by the digestive enzymes of S. frugiperda. The transcription profile of trypsin, chymotrypsin and
aminopeptidase genes was also analyzed through qPCR technique. Talisin intake resulted in differential
expression of at least two genes from each of these classes of enzymes. Molecular docking studies
indicated a higher affinity of talisin for the less expressed enzymes.

Keywords: multifunctional protein; lectin properties; bioinsecticides; enzyme activity; insect gut

1. Introduction

Insect pest control is one of the major problems facing agriculture because of the need for
agrochemicals to be more environmentally sound, economically efficient and not pose a threat to
human health. Different strategies have to be adopted to optimize crop productivity, mainly considering
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the rapid world population growth [1]. Cultivars expressing plant defense genes have shown efficient
results against insects, pointing toward a promising direction. Insects fed on transformed plants exhibit
remarkable effects on larval weight, fecundity, survival and, consequently, lower plant damage [2–4].
However, the development of insect resistance against single-defense genes, including those currently
used in Bt-crops, is well known [5,6].

Talisin is a Talisia esculenta seed protein that presents both peptidase inhibitors and lectin-like
properties [7], which consist of two classes of proteins involved in plant defense mechanisms [8].
Previous studies showed that talisin intake promotes insecticidal activity against diverse insects [9–11].
In parallel, insects are one of the most evolutionarily well-adapted groups of organisms worldwide,
mainly due to their ability to exploit diverse habitats and food sources, which may have induced the
evolution of a large number of digestion enzymes [12].

The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is one of the insect pests
responsible for considerable damage to various crops around the world, due to its generalist habit [13].
One of the main insect control strategies is the use of transgenic crops, most of which were modified to
carry the Bt (Bacillus thuringiensis) gene that codes for a particular endotoxin. There is an obvious need
to better understand how plant bioactive compounds interact and affect insects, as this knowledge
would help to uncover the causes of insect pests’ development and their resistance mechanisms.
A very promising alternative seems to be the expression of proteins with different modes of action [14].
In this context, this work aimed to explore the multifunctional properties of talisin, focusing on the
investigation of talisin intake effects on S. fugiperda development and on their main digestive enzymes’
activity, as well as on their expression pattern. Moreover, structural and histopathology studies were
also explored.

2. Results

2.1. Effects of talisin on Insect Development

Diets containing 0.1%, 0.5%, and 1% talisin (w/w) caused fifth-instar larval mass to decrease by
about 26, 48 and 73%, respectively (Figure 1). Despite this significant weight reduction (p < 0.05),
talisin intake did not affect larval survival.
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 Figure 1. Effect of dietary Talisia esculenta reserve protein (talisin) on mass of fifth-instar

Spodoptera frugiperda larvae. Inset: size difference in a control larva (left) and a larva fed 0.1, 0.5 and 1%
talisin (right). Different letters indicate significant differences (p < 0.05; Tukey’s test). Bar = 1 cm.
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In talisin-fed larvae, the larval stage was extended by 1 day and the total development time,
which comprises hatching to adult death, was 3.3 days longer than the control (Table 1). Furthermore,
no significant differences were found in the physiological parameters analyzed in the larvae fed with
talisin 0.5% (Table 1).

Table 1. Effect of dietary 0.5% Talisia esculenta reserve protein (talisin) on Spodoptera frugiperda
larval development.

Parameter Control 0.5% Talisin

Pupal mass (mg) 275.08 ± 13.25 a 272.86 ± 15.67 a

Larval stage (days) 18.80 ± 0.97 a 19.70 ± 0.78 b

Pupal stage (days) 9.60 ± 0.91 a 10.40 ± 1.01 a

Adult life span (days) 9.66 ± 1.75 a 8.33 ± 1.10 a

Total development time (days) 35.70 ± 2.53 a 39.00 ± 0.89 b

Survival to adulthood (%) 100 a 100 a

Values are the means ± SE. Means on the same line with the same letters do not differ significantly (p < 0.05).

2.2. Nutritional Data

Talisin-fed larvae consumed 9% more food and produced 36% less frass than controls, resulting in
a significant difference in the approximate digestibility (AD) (Table 2). AD is an index that indicates
the percentage of ingested food that is effectively assimilated by the insect and in talisin-fed larvae AD
increased by 21%. No other nutritional parameter was changed (Table 2).

Table 2. Nutritional parameters in control and experimental (0.5% talisin-fed) fifth-instar
Spodoptera frugiperda larvae.

Parameter Control 0.5% Talisin

Relative Consumption Rate (g/g/day) 0.7490 ± 0.0801 a 0.7646 ± 0.2592 a

Relative Growth Ratio (g/g/day) 0.0833 ± 0.0060 a 0.0809 ± 0.0102 a

Relative Metabolic Ratio (g/g/day) 0.3907 ± 0.0613 a 0.4605 ± 0.2018 a

Approximate Digestibility (%) 63.526 ± 4.0253 a 76.8555 ± 7.6049 b

Efficiency of Conversion of Ingested Food (%) 11.966 ± 1.8135 a 11.2151 ± 3.4421 a

Efficiency of Conversion of Digested Food (%) 17.861 ± 2.6050 a 14.8380 ± 5.8188 a

Metabolic Cost (%) 85.447 ± 6.5185 a 92.5912 ± 6.5681 a

Values are the means ± SE. Means on the same line with the same letters do not differ significantly (p < 0.05).

2.3. Digestive Enzyme Activity in Larvae Fed on Talisin-Amended Diet

Differences in food consumption and utilization were followed by differences in digestive
enzyme activity. The in vitro proteolytic activity of trypsin-like enzymes, both in the midgut lumen
and in the frass, decreased by 30% and 35%, respectively (Figure 2A). Furthermore, sensitivity of
trypsin-like enzymes present in the midguts from talisin-fed larvae was markedly decreased (Figure 3).
Aminopeptidase-N activity from the epithelial sample of talisin-fed larvae increased by 25% compared
to the controls. This increase was even more significant in samples from the midgut lumen, about 70%
(Figure 2C). No differences were observed in the chymotrypsin-like (Figure 2B) and α-amylase activities.
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Figure 2. Trypsin-like (A), chymotrypsin-like (B) and aminopeptidase (C) activities in control and 
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Figure 2. Trypsin-like (A), chymotrypsin-like (B) and aminopeptidase (C) activities in control and
experimental (0.5% talisin-fed) Spodoptera frugiperda larvae. Different letters indicate significant differences
(p < 0.05; Tukey’s test).
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Figure 3. In vitro inhibition of proteolytic activity of midgut trypsins of Spodoptera frugiperda larvae fed
on control diet (square) and diet containing 0.5% talisin (circle), using the synthetic BApNA substrate.

2.4. In-Gel Visualization of Peptidase Activity

Casein zymography was employed for visualization of proteinase activity using midgut lumen of
control and 0.5% talisin-fed larvae. S. frugiperda gut peptidases (SfGP) were designated SfGP1 through
SfGP5 (Figure 4). Incubation of samples with TLCK suggested that SfGP1 and SfGP3 are trypsin-like
enzymes. The comparison of activities between control and experimental larvae (lines 1 and 2) revealed
no differences among the bands, suggesting that major SfGP are similar in both control and talisin-fed
larvae (Figure 4, lanes 1 and 2). Talisin incubation with midgut homogenates, both from control and
talisin-fed larvae, showed that the peptidase activity was subtly inhibited (Figure 4, right-side arrow,
lanes 5 and 6).
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Figure 4. Peptidase activity of midgut peptidases in zymography gel electrophoresis. Samples fed
with control diet or diet containing 0.5% talisin were used for the determination of enzyme profile.
The bands were designated SfGP1 through SfGP5. Lane 1 was loaded with midgut juice extract from
larvae fed on a control diet devoid of talisin; lane 2, with midgut juice extract from larvae fed on a 0.5%
talisin diet; lanes 3 and 5, with midgut juice extract from larvae-fed control diets mixed with TLCK and
talisin, respectively; lanes 4 and 6 with midgut juice extract from larvae fed 0.5% talisin diets mixed
with TLCK and talisin, respectively.

2.5. Talisin is Resistant to Hydrolysis by Midgut Peptidase

To evaluate whether talisin is resistant to degradation by peptidases present in the larval midgut,
talisin was mixed with midgut juice extract of control-fed and talisin-fed larvae and incubated for
periods of up to 24 h. SDS-PAGE demonstrated that the band with apparent molecular weights of
22.1 kDa, corresponding to talisin, remained in the samples after 24 h of incubation, indicating a strong
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talisin resistance to proteolysis by midgut peptidases (Figure 5C,D). SDS-PAGE performed with BSA
showed that the enzymes from control-fed larvae were active and capable of degrading BSA within
15 min, whereas enzymes from talisin-fed larvae midgut had a longer delay to be able to degrade the
BSA (Figure 5A,B).
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Figure 5. Resistance of talisin (Talisia esculenta reserve protein) to hydrolysis by Spodoptera frugiperda
midgut peptidases. SDS–PAGE of midgut juice extract mixed with talisin at a 1:5 (lectin to midgut
homogenates) ratio and incubated at 30 ◦C for different periods. Digestion of BSA (A) and talisin (C)
with midgut juice extract of control-fed larvae and digestion of BSA (B) and talisin (D) with midgut
juice extract of talisin-fed larvae. TAL: talisin; BSA: bovine serum albumin; MG: midgut.

2.6. Microscopy Analysis

Due to the differences between the aminopeptidase-N activity in the lumen and in the epithelium
samples, we investigated the integrity of the midgut membranes. The midgut epithelial layer of
control larvae presented a single layer of columnar cells and the integrative peritrophic membrane
(Figure 6A,C). In talisin-fed larvae, it is possible to notice changes in the epithelial cells, the less thick
peritrophic membrane with ruptures, and a reduction in ectoperitrophic space (Figure 6B,D).
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Figure 6. Photomicrographs of fifth-instar larvae of Spodoptera frugiperda. (A) Midgut of control larvae,
10×. (B) Midgut of larvae fed on a 0.5% talisin diet, 10× (C) Midgut epithelium of control larvae, 40× (D)
Midgut epithelium of larvae fed on a 0.5% talisin diet, 40×. Lu, Lumen; EP, Epithelium; PM, Peritrophic
Membrane; (*) Difference between the ectoperitrophic space.

2.7. Real-Time PCR

Three out of the six trypsin genes analyzed showed a differential expression in talisin-fed larvae.
The Try6 gene showed an increase in relative expression up to 6-fold. The Try8 and Try12 genes were
less expressed (Figure 7A). Regarding the chymotrypsin genes, only two genes presented differential
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expression. Chy21 saw its expression increased by 4-fold, and the Chy2 gene was less expressed
(Figure 7B). The other genes, both trypsin and chymotrypsin, did not present differential transcription
when compared to talisin intake. However, the APN1 and APN6 genes, related to N-aminopeptidases,
were less expressed after talisin ingestion, and the others did not present differential transcription with
respect to talisin intake (Figure 7C).Molecules 2020, 25, x 8 of 26 
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Figure 7. Relative expression of trypsin (A), chymotrypsin (B) and N-aminopeptidase (C) genes of fifth
instar of talisin-fed Spodoptera frugiperda larvae. Genes above the dotted line were considered more
expressed and genes below the dotted line were considered less expressed. Different letters indicate
significant differences (p < 0.05).
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2.8. Molecular Modeling and Docking

In order to verify the interactions and affinity between talisin and the more/less expressed enzymes
observed in the real-time PCR, these proteins were modeled and further submitted to docking studies
to shed light on the talisin-enzyme complexes. Talisin presented the best coverage (92%) and identity
(42%) values allied to the low E-value when aligned to the primary sequence of a Delonix regia
Kunitz-type serine peptidase inhibitor (PDB id: 1R8N). For trypsin 6 and 12, the crystallographic
structure of Fusarium oxysporum (PDB id: 1gdu) was selected as the model structure of atomic
coordinates. For chymotrypsin 2 and 21, the model structure used was a collagenase from the larvae of
the Hypoderma lineatum (PDB id: 1hyl) fly. The ProSa-web analyses also confirmed the fold quality of
the theoretical models obtained, revealing equivalent z-scores (−4.62, −5.82, −5.28, −5.42 and −5.82
for talisin, Try6, Try12, Chy2 and Chy21, respectively) of proteins structurally resolved by X-ray
crystallography and deposited in the Protein Data Bank (PDB). All validated models presented above
87% of the residues in the most favorable regions of the Ramachandran plot. For detailed information
on all structure statistics, please see Table 3. All these characteristics and parameters revealed the
reliability of the constructed models, making them suitable for molecular docking studies.

The best affinity values for the talisin/Try 6, talisin/Try 12, talisin/Chy 2 and talisin/Chy 21
complexes were −8.4 −8.8, −11.2, −10.0 kcal·mol−1, respectively. Therefore, we observed that talisin
has a slightly greater affinity for Trypsin 12 (less expressed), than for Trypsin 6 (more expressed).
Talisin also shows higher affinity for Chymotrypsin 2 (less expressed) than for Chymotrypsin 21
(most expressed). These data corroborate our in vitro findings regarding the relative expression of the
genes coding for these enzymes. The atomic interactions of the talisin/Try 6 complex were predicted to
range from 1.9 to 3.6 Å, consisting of 9 hydrogen bonds and 1 hydrophobic interaction. The talisin/Try
12 complex had 12 hydrogen bonds and 2 hydrophobic interactions, where the distances between
all atoms involved in interactions ranged from 1.7 to 3.6 Å (Table 4, Figure 8A,B). The talisin/Chy
2 complex presented 13 hydrogen bonds and 3 hydrophobic interactions, varying from 2.6 to 3.6 Å
distance. Finally, the talisin/Chy 21 complex had the same number of hydrogen bonds as the talisin/Chy
2 complex and only one hydrophobic interaction, varying from 2.9 to 3.6 Å (Table 5, Figure 8C,D).
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Table 3. Structural statistics for the tridimensional theoretical models generated in this study for talisin, trypsin (6 and 12) and chymotrypsin (2 and 21).

Predicted
Structures

Sequence
Length

Fold Quality
(Z-Score)

Stereochemistry
(G-Factors)

Ramachandran
Most Favored (%)

Ramachandran
Allowed (%)

Ramachandran
Outliers (%) Bad Bonds (%) Bad Angles (%)

Talisin 198 −4.62 −0.28 87.7 94.9 5.10 0.00 1.58
Trypsin 6 233 −5.82 −0.21 94.8 98.3 1.73 0.06 2.14

Trypsin 12 232 −5.28 −0.28 93.0 97.0 3.04 0.00 2.22
Chymotrypsin 2 234 −5.42 −0.25 94.8 97.8 2.16 0.00 1.68
Chymotrypsin 21 237 −5.82 −0.22 91.5 98.7 1.28 0.17 1.90

The z-scores obtained for all structures here reported are in agreement with those with similar size, structurally determined by X-ray crystallography and deposited in the Protein Data
Bank (PDB). The G-factors indicate that the overall average for the dihedral angles, along with the main-chain covalent forces for each structure are within the expected values for reliable
structures (G-factors > −0.5). The structural validations were performed on PROCHECK [15], ProSa-web [16] and MolProbity [17].

Table 4. In silico interactions for the complexes talisin/Trypsin 6 (−8.4 kcal·mol−1) and talisin/Trypsin 12 (−8.8 kcal·mol−1).

Residues Positions Atom Names Distances (Å) Residues Positions Atom Names Interactions

Trypsin 6 (XP_022821647.1 *) Talisin (ACJ51124.1 *)
Asn 37 ND2 1.9 Ser 106 OG HB
Ser 112 OG 3.1 Ser 50 N HB
Ile 113 O 1.9 Gln 48 NE2 HB
Ile 113 N 2.5 Ser 49 OG HB

Gly 115 N 3.1 Gln 48 NE2 HB
Ala 116 CB 3.6 Leu 34 CD2 H
Asn 197 O 2.1 Gln 53 NE2 HB
Ile 199 N 3.5 Gln 53 OE1 HB
Ile 199 N 3.3 Gln 53 NE2 HB
Ser 231 OG 1.9 Pro 35 O HB

Trypsin 12 (XP_022821658 *) Talisin (ACJ51124.1 *)
Gly 4 O 2.9 Ile 117 O HB
Thr 133 CG 3.6 Val 116 CG1 H
Thr 133 OG1 3.6 Ile 117 N HB
Tyr 134 O 3.2 Tyr 65 OH HB
Tyr 134 CE2 3.6 Met 126 CE H
Tyr 135 OH 2.0 Tyr 65 O HB
Ala 137 O 1.9 Tyr 65 OH HB
Pro 138 O 3.3 Val 96 N HB
Thr 139 O 1.7 Ser 94 OG HB
Thr 139 OG1 2.3 Gln 82 OE1 HB
Thr 139 OG1 3.2 Val 96 N HB
Ser 141 OG 3.4 Tyr 93 N HB
Arg 145 NH2 2.3 Ile 117 O HB
Arg 145 NE 2.7 Ile 117 O HB

Å: Ångström; HB: Hydrogen bond; H: hydrophobic interactions; * NCBI identification.
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Table 5. In silico interactions for the complexes talisin/Chymotrypsin 2 (−11.2 kcal·mol−1) and talisin/Chymotrypsin 12 (−10.0 kcal·mol−1).

Chymotrypsin 2 (ALO61082.1 *) Distances (Å) Talisin (ACJ51124.1 *) Interactions

Residues Positions Atom Names Residues Positions Atom Names
Ile 35 O 2.6 Asn 66 OD1 HB
Ile 35 O 3.2 Asn 66 ND2 HB
His 81 CE1 3.5 Val 116 CG1 H
Ile 110 O 2.8 Asn 66 ND2 HB

Leu 112 N 3.2 Tyr 65 O HB
Asn 119 OD1 3.1 Val 149 N H
Asn 119 OD1 3.2 Ser 148 OG HB
Leu 201 CD2 3.6 Tyr 65 CE1 H
Ser 229 OG 2.9 Lys 98 NZ HB
Gln 232 OE1 2.9 Val 63 O HB
Gln 232 OE1 3.2 Asn 80 OD1 HB
Ser 233 O 3.4 Ser 94 OG HB
Ser 233 OG 3.5 Gln 82 OE1 HB
Gln 234 O 2.9 Gln 82 ND2 HB
Gln 234 OE1 2.9 Tyr 93 OH HB
Gln 234 NE2 3.0 Tyr 93 OH HB

Trypsin 21 (AIR09774.1 *) Talisin (ACJ51124.1 *)
Leu 9 N 3.0 Asp 70 OD2 HB
Glu 11 OE1 3.6 Gly 67 N HB
Gln 102 NE2 3.3 Asp 192 OD2 HB
Phe 103 O 3.0 Asp 192 N HB
Ala 111 CB 3.3 Tyr 93 CD1 H
Leu 112 O 2.9 Tyr 93 OH HB
Ser 116 OG 3.5 Gln 92 OE1 HB
Gln 117 OE1 2.9 Tyr 93 N HB
Tyr 151 OH 3.6 Asn 66 O HB
Gln 197 NE2 3.1 Asn 66 ND2 HB
Gln 197 OE1 3.6 Asn 66 ND2 HB
Arg 198 NH2 3.4 Tyr 65 O HB
Arg 198 NH2 3.5 Asn 66 O HB
Gly 200 O 3.6 Tyr 65 OH HB

Å: Ångström; HB: Hydrogen bond; H: hydrophobic interactions; * NCBI identification.
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3. Discussion

Talisin presents high similarity with several storage proteins [7], and also presents both peptidase
inhibitor and lectin-like properties, which comprise two classes of proteins involved in plant defense
mechanisms and that can lead to toxic effects when ingested by insects [8,18,19]. Therefore, talisin can
be considered a multifunctional protein, and such versatility makes this protein worth exploring for its
insecticidal potential.

In order to evaluate the in vivo effect of talisin ingestion by fifth instar larvae of S. frugiperda,
an artificial diet was offered to the larvae with different amounts of talisin. The weight reduction
indicates that talisin causes an antinutritional effect, hindering the absorption of nutrients. Although
talisin causes a significant decrease in larval mass, we did not observe a change in survival rate of
the larvae, possibly due to talisin impairing but not completely blocking the digestion of proteins,
allowing the insect to develop mechanisms that enable it to survive and adapt [20,21]. Macedo, Freire,
Kubo and Parra [10] reported a reduction of 50 and 76% in the weight of Anticarsia gemmatalis larvae
fed on an artificial diet containing 1.5 and 2.0% (w/w) of talisin, respectively, and also observed no
change in survival rate or the time of larval development.

Incorporation of 0.5% talisin into an artificial diet decreased larval mass by approximately 50%.
This concentration corresponds to lectin and other plant defense protein levels present in legume
seeds and is similar to that employed in other studies [22,23]. In addition to affecting the larval mass
gain, along with higher food intake and lower feces production, talisin intake caused alterations in
the approximate digestibility (AD) (Table 2). AD is an index that indicates the percentage of ingested
food that is effectively assimilated by the insect, or more specifically by the walls of the insect’s gut.
The higher food retention in the midgut is an attempt to maximize AD, probably to meet the increased
demand for nutrients and to compensate for the antinutritional effect of talisin [24].

Talisin ingestion also led to changes in the insect development period, with a 1-day increase in
larval stage and 3.3 days more in total development time (TDT) (Table 1). Similarly, Li and Romeis [25]
reported a 3.7-day increase in TDT from Chrysoperla carnea (Neuroptera) fed 1% GNA, a well-studied
lectin, purified from Galanthus nivalis (Amaryllidaceae). This delay in larval development has also been
observed in Helicoverpa armigera and Spodoptera litura when fed with miraculin-like proteins, with which
talisin presents amino acid sequence similarity (50%) [26]. The authors reported a 7-day increase in the
TDT of H. armigera larvae after ingestion of 0.43% Murraya koenigii miraculin-like protein (MKMLP).
Slowing down larval growth, especially in earlier larval stages, makes lepidopterans vulnerable to
predators for a longer period—which in economic terms could be an advantage.

For plant proteins to effectively exert an antinutritional effect when ingested by insects they must
be resistant to the action of the peptidases from the insect’s digestive tract [27,28]. Otherwise the
protein can be cleaved, losing its insecticidal activity [29]. To evaluate talisin’s resistance to the action of
S. frugiperda peptidases, it was incubated for up to 24 h with the intestinal extract of the larvae. Through
a PAGE-SDS, we verified that the midgut peptidases from S. frugiperda are incapable of degrading talisin,
which is resistant to proteolysis for up to 24 h, the period during which digestive enzymes remain
active (Figure 5C). Interestingly, BSA, which was used as a positive control, is completely degraded by
the peptidases from larvae fed on a control diet in a short period of time (15 min) (Figure 5A), whereas
the peptidases from larvae fed on a talisin diet degraded BSA only partially and in a much slower
way (Figure 5B). These findings support the fact that talisin interferes in the proteolytic activity of
this insect inhibiting the activity of digestive enzymes. The digestibility of plant reserve proteins is
related to the exceptionally high structural stability (Xia et al., 2016). Our results corroborate previous
studies showing the high resistance of talisin to proteolysis by digestive enzymes of insects, since
this protein has already been resistant to degradation by the peptidases of Anticarsia gemmatalis [10],
Callosobruchus maculatus [30], and Diatraea saccharalis [9].

Some insects from the order Lepidoptera and Coleoptera have great ability to alter digestive
peptidases in response to qualitative nutritional changes in the diet and/or when existing peptidases
are ineffective and/or inefficient for digestion [20,31–35]. One of these mechanisms includes increased
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activity of intestinal peptidases to achieve the optimal rate of protein digestion [36,37]. The PAGE-SDS
gel with the midgut extracts of talisin-fed larvae indicates that the proteolytic enzymes of these insects
were unable to degrade talisin (Figure 5).

In a previous study, Freire, Vasconcelos, Oliveira, Filho and Macedo [7] performed the biochemical
characterization and cloning of talisin, which showed a high similarity with several reserve proteins,
all of which presented amino acid sequences clearly related to the Kunitz family of peptidase inhibitors
(family I3 on MEROPS database). Considering this peptidase inhibitor property, along with the fact
that lepidoptera such as S. frugiperda have the serinepeptidases trypsin and chymotrypsin as the main
enzymes responsible for protein digestion [38], the first attempt involved investigating the in vivo
effect of ingestion of talisin on these two enzymes. Trypsin-like enzymes from the midgut lumen of
larvae chronically fed on talisin presented a reduction of 30% when compared to the control larvae.
A similar reduction (about 33%) was also observed in feces.

We employed the zymography using casein as substrate to visualize the major bands with
proteolytic activity in S. frugiperda midgut (Figure 4). Since trypsin is the major peptidase involved in
larval digestion, we further incubated the midgut extracts with the irreversible trypsin inhibitor TLCK.
Finally, we incubated the midgut extracts with talisin to understand the effects of Talisin on bands
with proteolytic activity. The zymography showed the presence of five bands, named S. frugiperda gut
peptidases (SfGP), from SfGP1 to SfGP5. The comparison of activities between control and experimental
larvae (lines 1 and 2) revealed no differences among the bands, suggesting that major SfGP are similar
in both control and talisin-fed larvae. The incubation of TLCK in control and talisin-fed larvae samples
prompted a strong inhibition of SfGP1 and SfGP3, suggesting that these band correspond to trypsin
activity. The incubation of talisin with midgut homogenates (lines 5 and 6), revealed the in both
control and talisin-fed larvae the SfGP1 was partially inhibited, in an intensity intermediate between
the samples with (lines 3 and 4) and without (lines 1 and 2) TLCK. We also noticed that in talisin-fed
larvae the SfGP3 was partially inhibited. Thus, we showed that the incubation of talisin inhibited the
proteolytic activity of SfGP1 and SfGP3, bands inhibited by TLCK, suggesting that talisin showed
inhibition against trypsin enzymes in zymography (right-side arrow in Figure 4).

Chymotrypsin activity was not altered either in the lumen or in the feces (Figure 2). Stevens,
Dunse, Guarino, Barbeta, Evans, West and Anderson [20] detected a high loss of peptidases in
Helicoverpa armigera feces fed with the NaPI serine peptidase inhibitor and suggested that this large
amount of lost enzymes limits the amount of enzymes that can be recycled by the insect, reducing the
pool of amino acids and nitrogen for the synthesis of proteins that, consequently, leads to a reduction
in larval growth. It is possible that talisin, when bound to the digestive enzymes of the midgut,
forming a complex, may prevent the reabsorption of these enzymes from the endoperitrophic space
into the ectoperitrophic space, causing a critical loss of essential amino acids for the feces. Furthermore,
because it is not degraded as it goes through the digestive tract of S. frugiperda, talisin is possibly
being completely eliminated in the feces (data not shown), which corroborates the reduction of trypsin
activity in feces.

In addition, we found that trypsins from talisin-fed larvae had a lower inhibition by talisin
(Figure 3). This result suggests that talisin-fed larvae break down proteins with trypsins that are
less sensitive to inhibition by talisin. This apparent difference in inhibition may arise from the
differential expression of enzymes, since one of the most common mechanisms in lepidopteran
species (e.g. S. frugiperda) in response to the ingestion of toxic proteins (e.g. peptidase inhibitors) is
the overproduction of peptidases or the expression of a new peptidase that is insensitive to peptidase
inhibitors [31,36]. Also, it would not be possible to verify the production of isoforms via zymography,
since most isoforms present modifications of a few amino acids, and this could not be visualized in gel.
Thus, we sought to verify differences in the gene expression of enzymes through qPCR.

Through the expression analyses of trypsin and chymotrypsin genes, we observed that talisin
intake causes a differential expression of only three trypsin genes and two chymotrypsin genes. In the
case of trypsins, after talisin intake, the larvae showed a 6-fold increase in Try6 gene expression,
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whereas two other genes were less expressed (Figure 7A). Regarding chymotrypsin genes, the Chy21
gene had its expression increased by 4-fold, and the Chy2 gene was less expressed than in control-fed
larvae (Figure 7B). There is evidence to suggest that some insects are able to modulate the set of
serinepeptidases according to the type of inhibitor ingested through differential regulation of the
trypsin and chymotrypsin genes [31,36,39]. Similar phenomenon is also observed in coleopteran to
overcome plant defensive cysteine protease inhibitor [35]. The expression profile of trypsins and
chymotrypsins after ingestion of talisin differs from the expression profile observed in other studies
with S. frugiperda fed on a diet containing soybean peptidase inhibitors [40]. Souza, Dias, Castelhano,
Brandão, Moura and Silva-Filho [40] reported that the ingestion of soybean peptidase inhibitors by
S. frugiperda resulted in the activation of a series of serinepeptidase genes, being able to distinguish one
group of responsive genes and the other of genes that were not responsive to the inhibitor. As mentioned
previously, we observed in this work that, after chronic ingestion of talisin, only one trypsin gene
was overexpressed and two trypsin genes were less expressed; and there was one overexpressed
chymotrypsin gene and one less expressed.

Based on the gene expression results, we aimed to establish a relationship between the binding
affinities of talisin for the more and the less expressed enzymes, at atomic level. Since the purification
of all enzyme isoforms would not be possible, we carried out in silico molecular docking simulations,
an appropriate technique for this type of study. Freire, Franco, Kubo, Migliolo, Vargas, de Oliveira,
Parra and Macedo [9] showed that the mechanism of talisin inhibition is a non-competitive type,
which was also observed in our work for all talisin/serine protease complexes. This mechanism of
inhibition is known to block the subtract access to the trypsin/chymotrypsin active site. Also in parallel
with previously reported data [9], no direct reactions with the trypsin/chymotrypsin catalytic site were
observed in our study. Similar computational finding have also been reported for Kunitz-type trypsin
inhibitors from Adenantera pavonina (ApKTI) [22,41]. However, differently from ApKTI, talisin presents
an important substitution at position 64 (arginine in ApKTI and glutamic acid in talisin). This amino
acid substitution compromise the function of the so-called “reactive site loop”, which is characteristic
of trypsin inhibitors [42]. Therefore, it is expected that talisin inhibits serine proteases by means of
inhibitor/protease interactions that does not strongly rely on this reactive loop, as observed in the
present study. Our results show that talisin establishes a higher number of interactions with the less
expressed trypsin (Try12) when compared with the more expressed trypsin (Try 6) (Table 4). The same
pattern is observed for the differently expressed chymotrypsins here reported (Table 5). Moreover,
the type of interactions, including hydrogen bonds and hydrophobic interactions, as well as the average
distance between all atoms involved in interactions are in agreement with those reported by Freire,
Franco, Kubo, Migliolo, Vargas, de Oliveira, Parra and Macedo [9]. Thus, in general, we may conclude
that because of the greater number of interactions and higher binding affinity with Try12 and Chy2,
these enzymes are more sensitive to talisin, supporting our in vitro data. It could also be inferred for
the complexes talisin/Try6 and talisin/Chy21, which presented fewer interactions and lower binding
affinities, suggesting that talisin does not significantly interfere with the physiological function of these
enzymes, which were overexpressed in the real-time PCR analyses.

Insects have several groups of peptidases comprising their digestive system. These peptidases have
high rates of self-activation, which allows the insect to have high transcription diversity. This feature
represents an acquired evolutionary advantage due to the need for rapid digestion, exploration of
several types of food and, as a result of this, the need to avoid negative and antinutritional effects
of toxic plant proteins. The Noctuideae family has a high diversity of trypsin and chymotrypsin type
enzymes, which may have resulted from these adaptation mechanisms [12]. While it is evident that
insects are capable of expressing a wide variety of peptidases in response to exposure to peptidase
inhibitors, the mechanism of this induction is still not clearly known. The evolutionary relationship
between biologically inactive proteins or sparing active proteins and normally active enzymes or
bioactive proteins strongly suggests that some reserve proteins may be derived from genes that
originally encoded proteins with a well-defined enzymatic action or other biological activity [43].
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In consequence, some carbohydrate binding proteins function as multifunctional molecules, and may
show sequence homology with Kunitz inhibitors, without, however, having trypsin inhibitory activity
or being less active. On the contrary, they exhibit lectin-like activities [44–46].

Since talisin is a protein that binds strongly to chitin [47], and aiming to explore the specific
carbohydrate interaction properties that talisin presents, we performed morphological analyses of
the midgut of the talisin-fed larvae and analyzed two other classes of enzymes involved in the
digestive process of S. frugiperda, α-amylase and aminopeptidase, enzymes involved in the digestion of
carbohydrates and final digestion of peptides, respectively [38]. We observed no change in α-amylase
activity, but we found that the aminopeptidase activity of intestinal lumen extracts was substantially
higher in talisin-fed larvae when compared to the control and even to the epithelium. The activity of
the enzymes isolated from the larvae’s intestinal epithelium from the group fed with talisin was also
higher. Aminopeptidases are microvillary enzymes typically anchored to the intestinal epithelium [48].
The increase of aminopeptidase activity in the lumen of talisin-fed larvae possibly occurs due to
epithelial damage and/or peritrophic membrane rupture (Figure 6). In addition, we did not observe
increased expression of any aminopeptidase gene.

In Lepidoptera, the midgut is surrounded by a semipermeable structure composed of microfibrils
of chitin associated with proteoglycans and glycoproteins, called the peritrophic membrane [38,49].
The peritrophic membrane acts as a physical and chemical barrier that compartmentalizes the digestive
process in insects, favoring high digestive efficiency as well as the recycling of digestive enzymes [50].
After initial digestion of food into the endoperitrophic space, molecules become sufficiently small and
cross the pores of the peritrophic membrane into the ectoperitrophic space (accompanied by polymer
hydrolases), and then flow into the cecum and the anterior intestine, where the intermediate and final
digestion occurs by the enzymes anchored on the surface of the intestinal epithelium.

A large enzyme (e.g. aminopeptidase molecular mass between 90 and 130 kDa) has a larger
diameter than the peritrophic membrane pores of S. frugiperda [51]. Therefore, in normal physiological
situations it must be found in the ectoperitrophic space [38]. The presence of aminopeptidase in
the endoperitrophic space suggests that the peritrophic membrane had its integrity compromised.
Morphological analyses showed changes in both the epithelium and impairment of peritrophic
membrane integrity in talisin-fed larvae (Figure 6). Molecules with a tendency to bind to chitin may
compete for the binding sites of the endogenous chitin binding proteins, dissociating the normal
structure of the membrane-protein complexes and finally modifying the physiology of the larval
digestive tract. The disruption of the peritrophic membrane adversely affects the insect’s development
by decreasing digestive efficiency, as well as increasing the metabolic costs associated with the synthesis
of new enzymes by disruption of the enzymatic recycling mechanism [23,52–55].

Exploring proteins that are multifunctional, including talisin, may be an advantageous path in the
search for molecules that can be used in more efficient strategies for pest control. The pyramiding of
multiple defense genes in a plant is a promising strategy to increase its protection in order to avoid
or delay the development of insect pest resistance [14,56]. The use of entomotoxic genes [57,58] is
only one of the existing options for pest control. The more we understand the effects of plant defense
proteins, as well as the adaptive responses used by insects, the more we will move in the right direction
for efficient and ecologically appropriate choices, and also make it possible to integrate these with
other pest control techniques.

4. Material and Methods

4.1. Talisin Extraction and Purification

T. esculenta seeds were obtained from the seed bank of the Laboratory of Protein Purification
and Biological Functions of the Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil,
and purified as previously reported by Freire et al. [9]. T. esculenta seeds were finely ground, defatted
with hexane and extracted (meal to buffer ratio of 1:5) with 150 mM NaCl for 24 h at 4 ◦C and then
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centrifuged at 10,000 g for 30 min at the same temperature. The clear supernatant (crude extract or
CE) was used to determine the protein content. The CE was diluted in 150 mM NaCl and applied to a
Sephadex G-100 column (2.5 cm × 80 cm) equilibrated with the same solution. The protein-rich fraction
was recovered and applied to a chitin column (1.5 cm × 10 cm) equilibrated with 50 mM phosphate
buffer, pH 7.6, and eluted with 100 mM HCl. The purified protein was dialyzed and lyophilized.

4.2. Insects

The colony of S. frugiperda (J.E. Smith, 1797) (Lepidoptera, Noctuidae) was maintained in standard
conditions (27 ± 1 ◦C, 60–70% relative humidity and a 14:10 light-to-dark photoperiod) and fed on an
artificial diet composed of jack bean, wheat germ, soybean flour, casein, vitamin complex, ascorbic
acid, agar, formaldehyde and microbial inhibitors (tetracycline, sorbic acid and nipagin) [59].

4.3. In Vivo Insect Assays

To evaluate the effects of talisin on S. frugiperda development, neonate larvae were selected
and individually transferred to glass tubes containing artificial diet supplemented with talisin at a
concentration of 0.1%, 0.5% or 1% (w/w) until reaching the fifth instar. Control larvae were fed a diet
devoid of talisin. Each treatment was composed of twenty larvae, and the experimental results are the
average of three independent bioassays. Larval mass and survival were determined when the larvae
reached the fifth instar under standard conditions. The treatment that was found to reduce larval
mass by 50% relative to controls was selected for the subsequent enzymatic assays and molecular
analysis. In the same treatment group, pupal mass, pupal stage and the number of emerging adults
were counted to determine the mortality (M), and the time elapsed until adult emergence was recorded
to estimate mean development time (T).

4.4. Midgut and Frass Preparation

Fifth-instar larvae were cold-immobilized and their midguts dissected in cold 0.15 M NaCl.
Two types of samples of the midguts were prepared (I) whole midgut homogenates (midgut epithelium
+ midgut contents) and (II) midgut epithelium homogenates. The frass of S. frugiperda were separated
from the rest of the tube’s diet and then collected. Both the samples of midguts and the frass were
homogenized in cold 0.15 M NaCl with a handheld Potter-Elvehjem homogenizer. After homogenizing,
the samples were centrifuged at 14,000× g at 4 ◦C for 20 min, and the supernatants were stored at
−20 ◦C until their use as an enzyme source.

4.5. Nutritional Parameters

The dry weight of the larvae at maximum development, food consumed and feces eliminated
were measured to determine the nutritional parameters (n = 20). Consumption, digestion, and food
utilization indices were calculated according to the methodology proposed by Waldbauer [60] and
modified by Scriber and Slansky Jr [61]. Weight of ingested food during T (I), larval weight gain
during T (B), mean larval weight during T (B), weight of frass produced during T (F), and duration of
feeding period (T) were employed to determine the following parameters: efficiency of conversion
of ingested food (ECI), calculated as (B/I) × 100, expressing the percentage of ingested food actually
converted to biomass; efficiency of conversion of digested food (ECD), calculated as [B/(I − F)] × 100,
expressing the efficiency with which digested food is converted to biomass; Relative consumption ratio
(RCR) calculated as I/(B × T), expressing the amount of ingested food per milligram of insect’s body
weight per day; Relative growth ratio (RGR) calculated as B/(B × T), indicating the biomass gain by
the insect in relation to its weight; Relative metabolic ratio (RMR), calculated as M/(B × T), indicating
the amount of food spent on metabolism per milligram of body weight and approximate digestibility
(AD), calculated as [(I − F)/I] × 100, expressing the amount of ingested food that undergoes digestion.
Metabolic cost (MC) was calculated as 100 − [B/(I − F)] × 100.
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4.6. Protein Quantification

Protein concentration was determined according to Bradford [62], using bovine serum albumin
(BSA) as a standard.

4.7. Enzymatic Assays

Trypsin-like and chymotrypsin-like activities were determined according to Oliveira, et al. [63].
The activity of trypsin-like enzymes was assayed using N-benzoyl-DL-arginyl-p-nitroanilide (BApNA;
Sigma-Aldrich, St. Louis, MO, USA) as a model substrate. A sample (10 µL) of midgut juice extract
was mixed with 60 µL of 50 mM Tris-HCl, pH 8.0 for 15 min, followed by 200 µL of BApNA for 30 min.
Chymotrypsin-like activity was assayed using N-succinyl-alanine-alanine-proline-phenylalanine
p-nitroanilide (SAAPFpNA; Sigma-Aldrich, St. Louis, MO, USA) as a model substrate. A sample of
midgut juice extract (10 µL) was mixed with 90 µL of 50 mM Tris-HCl, pH 8.0 for 15 min, followed by
20 µL of SAAPFpNA for 5 min. All substrates were used at a final concentration of 1 mM. All assays
were carried out at 30 ◦C. Absorbance was read at 405 nm. One unit of an enzyme (U) is defined as the
amount that hydrolyzes 1 µmol of substrate per minute.

To analyze the sensitivity of trypsin-like enzymes in the midgut to inhibition by talisin, an inhibition
curve was made with increasing concentrations of talisin (0–0.7 µg), and the trypsin activity was
measured as described above.

α-Amylase activity was determined by employing a 3,5-dinitrosalicylic acid (DNS; Sigma-Aldrich)
reagent prepared according to Noelting and Bernfeld [64]. An increase in reducing power, measured
by the DNS reagent, was used as a measure of starch digestion. Aliquots (25 µL) of midgut juice
extract were incubated with 25 µL of substrate–buffer solution (1% potato soluble starch in 50 mM
CAPS buffer at pH 9.6 containing 2 mM CaCl2 and 20 mM NaCl). The reaction was stopped by the
addition of 200 µL DNS. The resulting solution was heated in a boiling water bath for 5 min and cooled.
After the addition of 200 µL of distilled water, absorbance was read at 550 nm. One enzyme unit (U) is
defined as the amount of enzyme that produces 1 µmol of maltose equivalent per minute.

The enzymatic assays for aminopeptidase N detection were performed using the synthetic
substrate leucine p-nitroanilide (LpNa; Sigma-Aldrich) at a concentration of 1 mM, as described by
Erlanger, et al. [65]. The reaction volume comprised 10 µL of midgut epithelium homogenates or
midgut juice extract and 40 µL of the substrate in 50 mM Tris buffer, pH 7.5 at 30 ◦C for 30 min.
The reaction was interrupted by adding 50 µL of 30% acetic acid. Absorbance was read at 410 nm.
Three independent experiments were run in triplicate for each assay.

4.8. Peptidase Activity of Midgut Juice Extract in Native Polyacrylamide Gel Containing 1% Casein

Native slab polyacrylamide gel electrophoresis (PAGE) was used to separate peptidases on
discontinuous polyacrylamide gel (4% stacking gel and 8% resolving gel), as described by Hivrale,
Lomate, Basaiyye and Kalve [37], with a few modifications. Enzyme activity was detected by
zymography. Midgut juice extract (6 µg of protein) of larvae fed on 0.5% talisin and on the control diet
were loaded on native PAGE. To allow the identification of trypsin-like enzymes, the samples were
incubated with the synthetic trypsin inhibitor TLCK (1 mM N-p-tosyllysine chloroketone) at 30 ◦C for
30 min before being applied onto the gel. To evaluate whether talisin interferes in enzymatic activity
on zymography, the samples were also incubated with talisin at 30 ◦C for 30 min before being applied
onto the gel. Electrophoresis was performed at 20 mA. After electrophoresis, the gel was washed with
distilled water and equilibrated in 0.1 M glycine–NaOH buffer at pH 9.6. After equilibration, the gel
was placed in 1% (w/v) casein (prepared in the same buffer), incubated at 30 ◦C for 2 h, stained with
Coomassie brilliant blue R-250, and destained for visualization of proteinase activity.
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4.9. Talisin Digestion

To investigate talisin resistance to proteolysis, it was incubated with midgut juice extract of
fifth-instar larvae (fed control and talisin-amended diets) in 50 mM Tris-HCl buffer, pH 8.0 for different
periods. The talisin:midgut protein ratio was 1:5. Digestion was performed at 30 ◦C for 0.5, 2, 8, 16,
and 24 h and interrupted by boiling the samples in water for 2 min. Degradation of BSA was used
as a positive control for peptidase activity. The proteins were subsequently separated by SDS-PAGE
(15%), as described by Laemmli [66], and then stained with 0.1% Coomassie brilliant blue R-250 for
detection. The relative molecular masses of digestion products were estimated by SDS-PAGE using
protein markers of known molecular mass.

4.10. Microscopy Analysis

For insect histopathology, sections of whole larvae from both control and talisin-fed larvae were
examined. For light microscopy, whole larvae were fixed overnight in Bouin’s solution after several
incisions had been made in the cuticle to allow the fixative to permeate the cuticle of the larvae. Larvae
were then embedded in paraffin using a TP1020 Automatic Tissue Processor (Leica, Buffalo Grove,
IL, USA). Sections were cut at 3–5 micrometer and then stained with haematoxylin/eosin and mounted
on glass slides with DePeX mounting medium.

4.11. Quantitative Real-Time PCR

Total RNA was extracted from frozen midguts using 1 mL of TRIzol™ (Invitrogen, Carlsbad,
CA, USA). The samples were treated with DNase I (Thermo Scientific, Pittsburgh, KS, USA) at
37 ◦C for 1 h. Synthesis of the cDNAs was primed by oligo d(T) using a High Capacity cDNA
Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s
recommendations. The cDNA was diluted in a working solution and 8 µL was used in qRT-PCR
(20 ng). The reactions were carried out in a thermocycler StepOne™ Real-Time PCR System (Applied
Biosystems) using Maxima®SYBR Green/ROX qPCR Master Mix (2X) (Thermo Scientific, Pittsburgh,
KS, USA). The master mix prepared for analysis of each gene was composed of 1 µL of forward
primer (10 µM), 1 µL of reverse primer (10 µM), 10 µL of SYBR®, and 8 µL of cDNA (20 ng) in a
total volume of 20 µL. The amplification reaction conditions were 95 ◦C for 10 min, 95 ◦C for 15 min
followed by 40 cycles of 95 ◦C for 15 min, and 60 ◦C for 1 min. A negative control without a cDNA
template was run with each analysis to evaluate the overall specificity. The ribosomal protein S30 and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were used to normalize the data (NCBI locus
AF400225) [67]. The efficiency and specificity reaction of each primer set were evaluated by a standard
curve and a melting curve. Relative quantification was carried out using REST®model with efficiency
correction [68]. The experiments were repeated twice for validation of results.

4.12. Molecular Modeling

Molecular modeling studies were carried out with the primary sequences of talisin from
T. esculenta (GenBank: ACJ51124.1), as well as trypsin (NCBI reference sequence: XP_022821647.1 and
XP_022821658.1) and chymotrypsin (GenBank: ALO61082.1 and AIR09774.1) from S. frugiperda. Signal
peptide and transmembrane topologies were predicted by the Phobius [69] server and disregarded for
further analysis. Inactive precursor zymogens were also removed in order to obtain active sequences
for the serine peptidases. Template structures for comparative modeling were identified through
BLASTp [70] analysis. One hundred three-dimensional theoretical models were generated using
MODELLER v 9.17 [71] using as template structures: (i) the crystal structure of the Kunitz (STI) type
inhibitor from seeds of Delonix regia [72], for talisin; (ii) the crystal structure of a Fusarium oxysporum
trypsin [73], for the trypsin; and (iii) the collagenase from the fly larvae Hypoderma lineatum [74],
for chymotrypsin. All models were ranked according to their DOPE score (free energy). The lowest
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free energy models were validated regarding their stereochemistry and fold quality using the servers
PROCHECK [15], ProSa-web [16] and Molprobity [17].

4.13. Molecular Docking

Once validated, the theoretical models for talisin, trypsin and chymotrypsin were used as inputs
for molecular docking simulations in order to better understand the possible interactions occurring
in the inhibitor/peptidases complexes. AutoDock Tools [75] was used to configure grid boxes of
60 × 60 × 60 points with 1 Å spacing and positioned at the center of the serine peptidases. The maximum
freedom for the side chains from talisin was locked. Fifty runs of molecular docking simulations
were carried out using AUTODOCK 4.2 [75], and the complexes ranked according to their binding
affinities in kcal·mol−1. The best complex for each condition was then submitted to 50,000 steps of
energy minimization (steepest descent) in cubic boxes filled with single point charge (SPC) water
molecules using the GROMOS96 43a1 force field from the GROMACS 5.0.4 computational package [76].
Structural visualization and atomic interaction prediction (respecting the maximum distance of 3.6 Å)
was done in PyMOL (https://pymol.org).

4.14. Statistical Analysis

The results were expressed as means ± standard error, where appropriate. Data on initial mortality
rate, duration of larval and pupal periods, larval weight, nutritional parameters and enzymatic activity
were subjected to one-way analysis of variance (ANOVA). When differences were found between
treatments, Tukey’s test was applied to determine the level of significance (p < 0.05).
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