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Exploring gene knockout strategies 
to identify potential drug targets 
using genome‑scale metabolic 
models
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Research on new cancer drugs is performed either through gene knockout studies or phenotypic 
screening of drugs in cancer cell-lines. Both of these approaches are costly and time-consuming. 
Computational framework, e.g., genome-scale metabolic models (GSMMs), could be a good 
alternative to find potential drug targets. The present study aims to investigate the applicability of 
gene knockout strategies to be used as the finding of drug targets using GSMMs. We performed single-
gene knockout studies on existing GSMMs of the NCI-60 cell-lines obtained from 9 tissue types. The 
metabolic genes responsible for the growth of cancerous cells were identified and then ranked based 
on their cellular growth reduction. The possible growth reduction mechanisms, which matches with 
the gene knockout results, were described. Gene ranking was used to identify potential drug targets, 
which reduce the growth rate of cancer cells but not of the normal cells. The gene ranking results 
were also compared with existing shRNA screening data. The rank-correlation results for most of the 
cell-lines were not satisfactory for a single-gene knockout, but it played a significant role in deciding 
the activity of drug against cell proliferation, whereas multiple gene knockout analysis gave better 
correlation results. We validated our theoretical results experimentally and showed that the drugs 
mitotane and myxothiazol can inhibit the growth of at least four cell-lines of NCI-60 database.

Chronic progressive diseases such as cancer do not derive from abnormal functioning of a single gene or a 
single pathway but reflect the disorder of complex intracellular and intercellular networks that link tissues and 
organs1. Various tissues and organs like breast, central nervous system (CNS), colon, lung, ovary, prostate, renal 
are affected by cancer. Millions of people are suffering from cancer and the number is increasing2–4. Available 
drugs that are used for treating cancer, unfortunately, have many side effects5. Therefore, there is an increasing 
demand for new therapies with better therapeutic windows, implying that the drug will target a particular cell 
type (such as tumour cells) with no or minimum negative effects on healthy cells. The search for such suitable 
therapeutic windows is an important and challenging problem in the case of cancer. Another problem with the 
existing cancer drugs is that a particular drug shows different responses when applied to different individuals. 
This is because the effects of a drug on a patient depend not only on the interaction with its targets but also on the 
activities of many other enzymes which form a complex network of metabolic reactions in which the products 
of a reaction become the substrates of other reactions6. This leads to the emerging field of personalized medicine 
and personalized drug-choice7. Thus there is a need for developing new anti-cancer drugs taking care of the 
above problems and demands for an in-depth mechanistic understanding of cancer8,9.

Gene knockout study in cancer cell-lines is used to see the effect of an existing cancer drug or to develop new 
cancer drug10–14. Another approach is the phenotypic screening of drugs in cancer cell-lines to find its effect on 
the cell growth10,15–18. Both of these processes are very costly and time consuming19–21. Therefore, a computa-
tional method, like metabolic networks, could be a good alternative to find drugs having better selective ability 
in killing cancerous cells22–24. One tool which is particularly suitable to deal with problems like personalized 
medicine and finding a larger therapeutic window is genome-scale metabolic models (GSMMs)6. GSMM is the 
reconstructions of metabolic networks that connect gene–protein–metabolic reactions25,26. Different reactions 
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containing stoichiometric coefficients are used to build a stoichiometric matrix to obtain quantitative information 
on how different metabolites are linked to each reaction in the network. Through flux balance analysis (FBA) on 
these GSMMs, one can evaluate the metabolic capabilities of the cell, e.g., the capability of synthesizing biomass 
building blocks. GSMMs have successfully been used in cancer drug development27–31. For example, Folger 
et al.27 made a generic metabolic model of cancer and predicted some growth-supporting genes for cancer, which 
were validated with experimental shRNA data. GSMMs were also used to predict the putative effects of drugs of 
DrugBank database6, but the results were not compared with the experimental data.

The present study is an attempt to explore gene knockout strategies that apply GSMMs in finding possible 
targets and mechanisms related to cancer disease. For the analysis, we considered the GSMMs of the NCI-60 
cell-lines built by Yizhak et al.29 using Personalized Reconstruction of Metabolic models (PRIME) approach. They 
established their cell-specific model based on molecular and phenotypic data. It is shown that the models can 
find drug targets that inhibit the proliferation of specific cell-lines. Their models can also infer on the prognosis 
of breast and lung cancer. In this study, we applied their model for a more comprehensive study on the single 
and multiple gene knockout effects on the growth rate of the cancer cell-line and compared the results with the 
online experimental database. We also attempted to capture the underlying mechanisms associated with the 
observed growth reduction rate due to gene knockout. We further analysed our top-ranked genes to get potential 
targets which were then validated experimentally. It is also observed that multiple knockout tests give a better 
correlation with experimental observation than single-gene knockout results.

Results
Single gene knockout ranking based on their influence on cancer cell proliferation using the 
genome‑scale metabolic models.  We used the study of Yizhak et al.29 to obtain the GSMMs of cancer 
from different tissue types. The networks were made using the molecular (gene expression) and phenotypic 
data (proliferation rate) of cancer cell-lines by applying PRIME method. These data were used to constrain the 
bounds on the flux values of the corresponding reactions in metabolic networks. The data for NCI-60 collection 
were taken from the study by Lee et al.32, in which RPMI-1640 was used to grow the cell-lines experimentally. 
We used 60 cancer metabolic networks across 9 tissue types of NCI-60 panel to find cancer drug targets which 
inhibit cell growth across all cell-lines. We aimed to rank metabolic genes according to their growth inhibitory 
effect in cancer cell-lines.

Cancer cell-lines metabolic models used in our work contains 1905 genes. We simulated the models via 
MOMA33,34 and predicted the growth rate of cancer cell-lines after knocking out each gene one by one. Tak-
ing the average of fractional cell growth (FCG) of 60 cell-lines, we obtained the mean FCG of each 1905 genes 
(Fig. 1). Using a cut off value of 10−6 (lower circled portion in Fig. 1) on the sorted mean FCG, we obtained 143 
genes that are responsible for very low growth rate in our knockout cancer models (see Supplementary File S1). 
On the other hand, we got 1488 genes, using a cut off value of 0.99995 (the upper circled portion in the Fig. 1), 
which show a negligible effect on the growth rate (see Supplementary File S1). Interestingly, looking at the reac-
tions corresponding to the 143 genes, we found that all of them, except one gene, is associated with the coupled 
reactions (Supplementary Fig. S1).

Figure 1.   Gene knockout simulation result. Mean value of the fractional cell growth (FCG) across 60 cancer 
metabolic models for each individual of 1905 metabolic genes. The right lower panel represents the 143 
genes which give very low growth rate after knocking out across all 60 cancer models (mean value< 10−6 & 
s.d.< 1.2874× 10−6 ) and the upper panel represents the 1488 genes which show no change in the growth rate 
after knocking out across all 60 cancer models (mean value > 0.99995 & s.d. < 3.2838× 10−6).



3

Vol.:(0123456789)

Scientific Reports |          (2021) 11:213  | https://doi.org/10.1038/s41598-020-80561-1

www.nature.com/scientificreports/

Mechanistic insight into the genes giving a low growth rate after knockout.  We looked for the 
underlying mechanisms associated with the observed growth reduction rate due to gene knockout. We applied 
parsimonious enzyme usage FBA (pFBA)35 using COBRA Toolbox36. pFBA classifies each gene into six catego-
ries depending on the optimal growth solutions: essential genes, pFBA optima, enzymatically less efficient (ELE), 
metabolically less efficient (MLE), zero flux genes and blocked genes. There are 71 essential genes, 470–530 
pFBA optima, 230–280 ELE, 545–577 MLE, 82 zero flux genes and 427 blocked genes across 60 cancer cell-lines 
models. We looked for the classification of the 143 growth reducing genes and found that these genes contain 
all the 71 essential genes and the rests are pFBA optima (Fig. 2A). On the other hand, all zero flux and blocked 
genes, with almost all ELE and MLE genes belong to the 1488 non-effecting genes set (Fig. 2B). Though there 
are some genes from the 1488 set, which are present in pFBA optima class, but no essential genes are there in 
the 1488 gene set.

The production fluxes of the metabolites involved in the biomass reaction is changed due to gene knock-
out. The biomass reaction in the GSMMs uses 43 metabolites as substrate, termed as biomass metabolites (see 
Supplementary Table S1). We measured the fold changes in the production flux of these biomass metabolites 
under individual gene knockout condition with respect to wild-type condition. The biomass metabolites whose 
production flux are reduced by more than twofolds are shown in Fig. 3A. The upper panel of this figure shows 
the number of biomass metabolites associated with 143 genes responsible for growth reduction, and the lower 
panel shows the number of biomass metabolites associated with 1488 genes, which do not affect the growth rate. 
One can observe that the number of biomass metabolites associated with the 143 genes is much higher than 
that of 1488 genes. To confirm the association of 143 genes with the biomass reaction, we introduced a biomass 
reduction score (BRS) for each gene (see “Method” for details). A gene with higher BRS has more knockout 
effect on the biomass reaction. It was observed that BRS of 143 genes are much higher than 1488 genes (Fig. 3B), 
confirming that they are more effective in reducing the flux of biomass reaction.

Finally, we looked for the biomass metabolites that are associated specifically with the 143 growth reducing 
genes. We observed that the production flux of 37 biomass metabolites are reduced by knocking out different 
genes from 143 genes set (Fig. 4A), while different genes from 1488 genes set reduced production flux of 27 
biomass metabolites (Fig. 4B). Calculating the set difference, we obtained 16 biomass metabolites that are specifi-
cally associated with different genes from the 143 gene set. It is observed that 12 out of 16 biomass metabolites 
showed association with most of the 143 genes (see Fig. 4C and Supplementary File S1). Next, we looked for 
these 16 metabolites whether they are flux coupled or not. If they are flux coupled, then one can expect that the 
corresponding genes become essential for the production of both for the metabolites. We observed that only 
4 metabolites out of 16 are flux coupled (Fig. 4D). L-Aspartate (asp-L[c]) is produced from L-Glutamate (glu-
L[c]) by the enzyme kinetic reactions Aspartate Transaminase (ASPTA) but there is another transport reaction 
L-aspartate transport via Na, H symport and K antiport (ASPt6) in which influx of cytosolic L-Aspartate happens 
from the extracellular space. For the three cell-lines (SNB-75, HOP-9 and SK-OV-3), flux values of another trans-
port reaction aspartate-glutamate mitochondrial shuttle (ASPGLUm) was observed, which transfer L-Aspartate 
from mitochondria to cytosol, and as a consequence, cytosolic L-Glutamate enters into the mitochondria. There 
is another reaction sterol O-acyltransferase (SOAT11) which uses cholesterol (chsterol[c]) to produce cholesterol 
ester (xolest_hs[c]).
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Figure 2.   Coverage of pFBA classes by the 143 growth reducing and 1488 non-effecting genes set. For each of 
the 60 models, pFBA was applied to classify the genes into six categories and then the parentage of involvement 
for each class into the (A) 143 growth reducing genes set and (B) 1488 non-effecting genes set was calculated.
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Finding potential cancer drug targets from the top‑ranked genes.  Our top-ranked genes can be 
a potential drug target if their knockout does not significantly affect the growth of non-cancerous cells. So, we 
need to see the effect of our growth reducing genes on normal cell model. The 60 cell-line panel covers nine 
different tissues. So, we considered nine models26 built on different cell-type from these nine tissues represent-
ing their normal condition. The cell-specific models26 were built from a global reconstruction (Recon 2), which 
contains 7440 reactions and 2194 transcripts, using protein expression data from the Human Protein Atlas37. 
These models consist of 2426 ± 467 reactions (± s.d.) and 1262 ± 204 transcripts. They applied a published 
algorithm38,39 to predict the flux activity states of the genes by applying an optimization method. The method 
maximizes the consistency between gene expression and the corresponding enzyme activity. A comparison of 
the result of normal cells with that of the cancer cell-lines will help us to find targets that can reduce the growth 
of cancer cells but has minimal effect on the normal cells. Our gene knockout simulation result gave us 143 genes 
whose knockout can reduce the growth rate in cancer cell-line metabolic models. Some of these genes have mul-
tiple isoforms. After removing those isoforms, the gene list reduced to 121 unique genes and all of them could be 
potential drug targets. However, to be a potential drug target, a gene should show a minimal activity in normal 
cells. So, we looked for the activity of these 121 genes on normal cell models and found from the literature26 that 
only 13 genes (Table 1) out of 121 are inactive across all the 9 normal cell models. Thus we have 13 genes that 
reduce the growth in 60 cancer cell-lines models but have no effect on the flux state of the normal cell models. 
Therefore, these 13 genes can be considered as potential drug targets against cancer for these 9 tissues with mini-
mal side effects. Interestingly, each of these 13 genes has very high BRS (> 353) (see Table 1). Most of the genes 
(UQCR11, CYC1, UQCRQ, UQCR10, MT-CYB, UQCRB, UQCRC1, UQCRC2, UQCRFS1 and UQCRH) given 
in Table 1 have same BRS because they are associated with the same reactions “Ubiquinol-6 Cytochrome C 
Reductase, Complex III” with AND combinations. This reaction is catalysed by cytochrome bc1 complex (EC 
1.10.2.2), which is the third complex in the electron transport chain in mitochondria and the subunit proteins 
are encoded by these ten genes. It plays a critical role in ATP generation process by catalysing electron transfer 
from ubiquinol to cytochrome c, coupled to proton transport from the matrix space to the intermembrane space 
of mitochondria40,41.

Experimental validation of the identified potential drug targets.  To validate our simulation results 
for identifying potential drug targets, we searched for the inhibitors of these 13 genes and used two commercially 
available inhibitors, i.e., mitotane (SOAT1 inhibitor)42 and myxothiazol (CYTB inhibitor)43 for in-vitro studies. 
Mitotane is reported to show anticancer activity in some cell-lines such as NCI-H295, Hela, HepG2, IMR-32 
and HEK29342. So we considered four cell-lines (HCT116, K562, HL60 and A549) from NCI-60 cell-line panel, 
which are different from the cell-lines reported in Ref.42. The effect of these two inhibitors on the cell viability 
was studied by adding the inhibitor at different concentrations and measuring the growth rate of cell-lines. Fold 
change in the growth rate (i.e., cell viability) was calculated for each cell-line at different drug concentrations 
for both the drugs and was plotted in Fig. 5. An EC50 value (concentration of drug at 50% fold change cell 
viability) was calculated for each cell-line from the resultant curve. The EC50 value of mitotane was 37.83 µ M 
(for HCT116), 60.85 µ M (for K562), 38.51 µ M (for HL60) and 57.99 µ M (for A549) and for myxothiazol, it was 
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Figure 3.   Effect of metabolic genes on biomass function. (A) The upper and lower panels indicate the number 
of biomass metabolites whose production flux at least twofolds decreased by each of the 143 growth reducing 
genes and 1488 non-growth reducing genes, respectively. For the details of these genes, see Supplementary 
File S1. (B) Biomass reduction scores (BRS) of genes following synergic effect. BRS is high for first 143 growth 
reducing genes and it is low for 1488 non-growth reducing genes.
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Figure 4.   Biomass metabolites affected by the 143 growth reducing genes and 1488 non-effecting genes. 
Reduction in production fluxes for each individual biomass metabolites were captured in the gene knockout 
condition. (A) Represent the production flux are twofold decreased or not for any 143 genes and (B) represents 
the case for 1488 genes. We gave value 1 if the production flux of a metabolite is decreased in at least one gene 
knockout condition across each cell-lines, otherwise, the value remains zero. For 16 metabolites, all values are 
zero across the 60 cancer cell-lines in (B) but there are non-zero values in (A). (C) The number of genes among 
the set of 143 growth reducing genes whose knockout shows at least twofold reduction in the production fluxes 
for each of the 16 metabolites. (D) A bipartite network that represents the connection between L-Aspartate, 
L-Glutamate, cholesterol and cholesterol ester. Rectangular and ellipse-shaped boxes indicate the reaction and 
metabolite respectively and the arrow shows the flow of the flux.

Table 1.   Gene ID, gene symbol and the corresponding average value of the biomass metabolic score (BRS) 
across 60 cancer cell-line models of the cancer specific drug targets.

No. Gene ID Gene symbol Avg. of BRS

1 10975 UQCR11 379

2 1537 CYC1 379

3 27089 UQCRQ 379

4 29796 UQCR10 379

5 31 ACACA​ 385

6 32 ACACB 370

7 4519 MT-CYB 379

8 6646 SOAT1 383

9 7381 UQCRB 379

10 7384 UQCRC1 379

11 7385 UQCRC2 379

12 7386 UQCRFS1 379

13 7388 UQCRH 379
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18.28 µ M (for HCT116), 84.92 µ M (for K562), 8.21 µ M (for HL60) and 9.25 µ M (for A549). Thus, mitotane and 
myxothiazol both are effective in inhibiting the growth of these four cell-lines.

Testing the predictive ability of GSMM for single‑gene knockout.  We extracted the information 
from DEMETER database44 on the knockdown effect of 1444 genes in 30 cell-lines (Supplementary File S1). We 
calculated the Spearman rank-correlation between the predicted FCG from our GSMM and the experimental 
data from DEMETER database for each of the 30 cell-lines. The corresponding p-value of the rank-correlation 
for each cell-line was obtained by permutation test. It was observed that most of the obtained positive rank-
correlation were not significant (Fig.  6). There were only 5 cell-lines, which are showing significant positive 
rank-correlation but their correlation value was less than 0.15. Thus, the obtained gene ranking from single-gene 
knockout results does not show much correlation with the experimentally observed result. So, we looked for the 
effect of multiple genes knockout on the growth rate.

Identification of multiple targets using DrugBank database information.  We took the drugs 
available in the DrugBank database45 based on the gene target information. DrugBank database contains the 
biochemical and pharmacological information about the drugs. We only selected 380 drugs which are inhibitory 
and the corresponding target genes are present in the cancer cell-lines metabolic models (see Supplementary File 
S1). These 380 drugs have 202 metabolic targets in the models. To observe the effect of a particular drug on the 
growth rate, we knocked out all the genes that were inhibited by that drug and simulated the models via MOMA. 
This exercise was repeated for all the 380 drugs across all the 60 cancer cell-line models. We used a cut off value 
of 0.5 on FCG (representing at least 50% reduction on the growth rate) to call a drug active (see Supplementary 
File S1) and obtained 76 drugs. 10 out of these 76 drugs have already been approved in cancer treatment and 
another 18 drugs are in different phases of the clinical trial.

We considered NCI-60 growth inhibition database46 to get the GI50 values of the drugs and compared the 
predicted anti-proliferative activity with the experimentally measured potency of the drugs. There are 64 drugs 
with GI50 value in the NCI-60 growth inhibition database. Out of these 64 drugs, 23 drugs have mean log GI50 

Figure 5.   Effect of mitotane and myxothiazol in cell viability. Experimentally measured fold change in cell 
viability of four different cell-lines (A549, HL60, K562, HCT116) at different concentrations of mitotane and 
myxothiazol.

Figure 6.   Comparison of gene knockout simulation results with DEMETER database. Distribution of measured 
Spearman rank-correlation between predicted FCG of genes using GSMM and experimental data from 
DEMETER for the 30 cell-lines. The p-values were measured using permutation test.
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value less than − 5 across 60 cell-lines and therefore considered to be active against cancer for most of the cell-
lines. Comparing these 23 drugs with our list of 76 drugs, we obtained 17 drugs common in both sets.

Finally, a cell-wise comparison between predicted FCG of drugs using GSMM and their log GI50 values was 
performed and the Spearman rank-correlations was obtained. It is observed that around 50% cell-lines were 
showing significant rank-correlation and their correlations were also higher than single knockout result, see Fig. 7 
(median Spearman rank-correlation = 0.2137, Wilcoxon’s signed-rank p-value = 1.6296× 10−11).

Linking the significance of single‑gene knockout ranking on the activity of drug.  We used our 
gene knockout results of 202 target genes corresponding to those 380 drugs to test the significance of gene rank-
ing. It was observed that 37 genes were present at the top position and 146 genes at the bottom in our gene rank-
ing list (see Supplementary Table S2). The drugs corresponding to these 37 genes significantly reduced (mean 
FCG < 10−6 ) the growth rate of cancer models (Fig. 8). On the contrary, those drugs whose targets belong to the 
set of 146 genes, placed at the bottom in our gene ranking list, showed no effect in the cancer models.

Discussion
Recently, GSMM gained a lot of attention in drug discovery. It has been used to study drugs related to cancer. 
Ghaffari et al.47 explored strategy for identifying anti-growth factors for the inhibition of cell growth using 
GSMM on 11 cell-lines and identified potential antimetabolites that could inhibit the growth or kill any of the 
cell-lines. They also checked the in-silico toxicity by employing GSMMs for 83 human healthy cell-types. The 
same methodology had been applied by Agren et al.30 in a different study to find potential drugs for hepatocellular 
carcinoma (HCC) by reconstructing and analysing personalized GSMMs for six HCC patients. Raškevičius et al.6 
used GSMMs to predict the putative effects against cancer of those compounds which are structurally similar 
to human metabolite and also gave a concept of finding therapeutic windows through GSMMs. Turanil et al.48 
introduced a drug repositioning based method via GSMMs to predict therapeutic agents for cancer treatment. 
They reconstructed prostate cancer-specific GSMM by combining personalized GSMMs (n > 450) and proteomics 
data. They used drug-perturbed gene expression data of three cell-lines (PC3, HL60, and MCF7) from the Con-
nectivityMap2 (CMap2)49 to reveal drug off-targets by predicting novel gene–drug interactions and evaluated 
in-silico cell viability. The present study aimed to develop a knockout strategies for identifying potential drug 
targets and the associated mechanisms using GSMM and gene expression data. This will help us to get novel 
drug targets as well as targets that might be used for drug repurposing. We used existing GSMMs of NCI-60 
cell-lines29 to predict the anti-proliferative activity of single metabolic genes as targets against cancer and ranked 
them accordingly. We got 143 genes whose knockout reduced the cell growth across all the metabolic models of 
the NCI-60 panel. We also obtained a list of 1488 genes whose knockout does not show any effect on the growth 
rate of any cancer model. We searched for the underlying mechanism for such reduction in the growth rate of 
cancer cells by 143 genes and found that the biomass reduction score (BRS) of those genes were much higher than 
those of 1488 genes. The synergic effect in biomass reaction is much more for 143 gene list than 1488 gene list. 
It is observed that there are 12 biomass metabolites which are influenced by almost all the 143 genes but not by 
any of the 1488 genes for all the 60 cell-lines. Glycogen is the top-ranked among those 12 biomass metabolites. 
It is already reported that glycogen pathway is up-regulated in various cancers50,51 and funneled into glycolysis 
to promote cell growth, invasion and metastasis52. Likewise, glycogen is used by cancer cells to survive under 
nutrient starvation condition53. Considering its importance, inhibition of glycogen metabolism has become a 
new potential strategy for cancer treatment50,54–56.

We looked for potential targets from these 143 genes which showed a significant reduction in the growth rate 
following knockout. To be a potential target, these genes need to show the minimal knockout effect on the normal 
cells. We obtained 13 such targets from 143 genes whose knockout reduced the proliferation rate of cancer cells 
but were inactive across all the 9 normal cell models. One of the main features of the identified targets was that 
they were showing their effect in all the NCI-60 cell-lines. To experimentally validate the effect of these targets 
on multiple cell-lines, we chose SOAT1 and CYTB and showed that it’s inhibition reduces the growth rate in 
multiple cell-lines. Inhibition of SOAT1 is known to reduce growth rate in 5 cell-lines42 and additionally we have 

Figure 7.   Validation of predicted cell-line specific responses of drugs. Distribution of measured Spearman 
rank-correlation between predicted FCG of drugs using GSMM and their log GI50 values for the 60 cell-lines. 
The p-values were measured using permutation test.
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showed its effect on 4 more cell-lines. These cell-lines are taken from different tissues like blood peripheral, colon, 
adrenocortical gland, cervix, liver, kidney and brain. We have used mitotane to inhibit SOAT1, which is already 
known for the treatment of adrenocortical carcinoma and Cushing’s syndrome57–59. However, the inhibitor of 
CYTB, myxotyiazol, is not known as an anticancer drug, but we have seen its growth inhibiting effect on four 
cancer cell-lines. This could be a potential novel repurposed drug and need further evaluation. Moreover, litera-
ture survey showed that inhibition of SOAT1 and CYTB do not have any significant influence on the growth of 
the normal cells60–62. Literature also supports the validity of our other identified targets (given in Table 1). For 
example, atovaquone, a potent and selective mitochondrial inhibitor63,64, has been shown to reduce prolifera-
tion in cervical cancer cell-lines65, Du145 prostate cancer cells66 and MCF7-derived Cancer Stem-like CSCs62. 
Another identified target is UQCRB, whose inhibitor terpestacin blocks vascular endothelial growth factor 
(VEGF)-induced angiogenesis in endothelial cells and is proposed to be applied as a drug for human cancer67,68. 
Cytochrome c-1 (CYC1) is found to play an important role in breast cancer patients. Knocking down of CYC1 
inhibits proliferation in human breast cancer cell-lines69. In another study, it was observed that silencing CYC1 
by shRNA transfection also inhibits proliferation in human osteosarcoma (OS) cells70. Another identified gene 
target UQCRFS1 appears to be involved in the progression of gastric cancers and in the development of more 
aggressive phenotype of breast cancer71,72. Lentivirus-mediated knockdown of UQCRC2 suppresses cell growth 
and colony formation in RKO and HCT116 cells, result in cell cycle arrest and induce cell apoptosis in vitro in 
colorectal cancer (CRC)73. The knockdown of ACACA expression inhibits cell proliferation in prostate74 and 
breast75 cancer cell-lines.

We used Spearman rank-correlation method to compare our single-gene knockout ranking obtained from the 
GSMM with the experimental data. Most of the observed rank-correlations were very low and/or not significant. 
This was in agreement with other studies where single-gene knockout does not show the desired result76–78. On 
the other hand, when applied multiple gene knockout strategies, we obtained a higher and significant rank-
correlations with the experimental results. It leads to the conclusion that multiple genes knockout show a better 
result than single-gene knockout, confirming the similar observations by other studies77–81. This might be because 
genes or proteins interact in a complex network, where alternative pathways always exist to carry the function77,82. 
Though the single knockout results did not give the desired correlations, the gene ranking obtained using this 
strategy seemed to be significant. It was noticed that a drug could only be active if it has at least one target belong-
ing to the top rank. In case, none of the targets is from the top rank then that drug is observed to be ineffective.

Figure 8.   Robustness of gene ranking. (A–C) Gene ranking of total 202 targets of at least one of the 380 drugs 
(Supplementary Table S2). (A) Top 37 genes lie on the lower circled portion (mean FCG< 10−6 ) in Fig. 1. 
(B) 19 Genes lie in between the lower and upper circled portion (mean FCG lies between 10−6 to 0.99995) in 
Fig. 1. (C) Bottom 146 genes lie on the upper circled portion (mean FCG> 0.99995 ) in Fig. 1. (D) 73 drugs 
(mean FCG< 10−6 ) significantly reduce the growth rate of cancer models. (E) 16 drugs which gives mean FCG 
between 10−6 to 0.99995 in cancer models. (F) 291 drugs that show no effect (mean FCG > 0.99995 ) in the 
cancer models.
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The developed strategy to use gene knockout in GSMMs to identify drug targets has general applicability 
with any novel set of gene expression data associated with a tumour. The tumour-specific GSMM can be built 
from the gene expression data to go for the single or multiple gene knockout strategies. We proposed to use 
drug information for multiple gene knockout strategies that can also serve as drug repurposing technique. This 
method could be used to identify novel drug targets as well as targets that might be used by existing drugs on 
novel kinds of tumour. It is, therefore, possible to identify genes that are more relevant to specific cancer. The 
developed methodology could also be used to screen for common therapy. This strategy was used in the present 
study where we obtained 143 genes whose knockout were showing significant growth reduction across all cell-
lines (see Supplementary Fig. S2)

Finally, we want to mention that the GSMM models use the metabolic flux values of reactions for prediction. 
It is known that these fluxes depend on protein’s post-translational state as well as corresponding metabolite 
levels83. More detailed data of these cell-lines (proteomics and metabolomics)84–86 would help to construct a more 
accurate model of cancer cell-lines and will certainly enhance the possibility of finding new targets.

Materials and methods
Predicting cancer cell growth by gene knockout.  We used minimization of metabolic adjustment 
(MOMA) technique33 for observing gene knockout effect on the growth rates of 60 cancer cell-line models. To 
mimic the knockout condition of a gene, we changed the lower and upper bounds of flux values of the reac-
tions associated with the gene to zero. In the case of simultaneous knockout of multiple genes, the bounds of 
all reactions of these participating genes were set to zero. To measure the growth rate, we used two models as 
input for MOMA: one representing the knockout condition and the other one representing the wild-type condi-
tion of a particular cell-line. The fractional cell growth (FCG) was then calculated by taking the ratio of growth 
rates in knockout condition to wild-type condition. COBRA toolbox was used from the MATLAB package34 
for MOMA. Though there exists several genes associated with the same reaction with non-trivial AND and OR 
combinations, in order to keep our analysis simple, we followed the literatures27,29,87,88 and assumed zero flux for 
the reaction associated with the knockout gene.

Gene symbol to Gene ID conversion.  In GSMMs, the identity of genes is given in gene ID format and 
therefore the gene symbols need to be converted into gene IDs. For this purpose, we used the Uniprot database, 
which provides the mapping between gene IDs and gene symbols of the metabolic genes. Using this method, one 
can find out the metabolic genes from any given gene set having gene ID information. One can also extract genes 
from any given gene set, which are present in the cancer cell-line metabolic models, by taking intersection with 
the 1905 gene IDs present in the cancer models.

Gene knockout effect on the production flux rate of metabolite.  Flux balance analysis (FBA) was 
applied to get the flux values of each of the metabolic reactions present in the metabolic networks under the 
wild-type and gene knockout condition. Then, the production flux rate of a metabolite was obtained by sum-
ming up the flux values of the reactions in which it is produced. Finally, the ratio between the production flux 
rates under the two different conditions was calculated.

Biomass reduction score (BRS).  Total 43 metabolites are used as the substrate in the biomass reaction, 
and we termed them as biomass metabolites (see Supplementary Table S1). These biomass metabolites are then 
arranged in the decreasing order of their coefficient values in the biomass reaction and scored them accordingly. 
For example, the biomass metabolite having the highest coefficient was scored 43 and the biomass metabolite 
with the lowest coefficient was scored 1. To capture the individual gene knockout effect on the biomass reaction, 
we first listed out the biomass metabolites whose production flux rates are reduced by more than twofolds. We 
then calculated the sum of the scores of these biomass metabolites and termed them as biomass reduction score 
(BRS).

MTT assay.  Different cancerous cell-lines were maintained at 37 ◦ C in a humidified incubator with 5% 
CO2 supply. A549 (Human lung carcinoma), HCT116 (Human colorectal carcinoma), K562 (Human chronic 
myelogenous leukaemia) cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) (Hyclone, West 
South logan, USA) and HL60 (Human promyeloblast) was grown in RPMI 1640 (Gibco) supplemented with 
10% fetal bovine serum (FBS). The SOAT1 inhibitor mitotane and CYTB inhibitor myxothiazol were purchased 
from Sigma Aldrich (St. Louis, USA). They were dissolved in dimethyl sulfoxide (DMSO) (Sigma-Aldrich, MO, 
United States) and stored in −20 ◦C as a stock concentration of 10 mM and 50 mM respectively. The effect of 
mitotane and myxothiazol on the proliferation and viability of all cell-lines was monitored using 3-(4,5-dimeth-
ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. MTT powder was purchased from Merck, USA 
and was dissolved in PBS (5 mg/ml) prior to the assay. MTT assay is based on the principle of reduction of 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to purple coloured formazan by the mitochon-
dria of metabolically active cells. Cells were seeded at a density of 2× 104 cells per well in 96 well plate for 24 h 
followed by addition of the drug at different concentrations. The MTT assay was performed after 48 h of incuba-
tion with the drug. Each experiment was performed three times with five replicates. Mean, standard deviation 
and standard error were determined using Graphpad prism.

Extraction of experimental gene knockdown information from database.  We used DEMETER 
database44 to obtain the experimental gene knockdown effect on cell growth. It contains a knockdown effect on 
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the viability of cells from 501 cancer cell-lines using the shRNA library. The data is given in the form of log fold 
change in cell number due to gene knockdown. A gene with a negative log fold change value implies that there 
is a reduction in the cell growth upon knockdown of this gene44. The database contains the knockdown results 
of 17,098 genes on 501 cell-lines, out of which 30 cell-lines are present in NCI-60 cell-lines panel. In our cancer 
models, we got only 1444 genes from those 17,098 genes. So, we obtained the gene knockdown effect of 1444 
metabolic genes on 30 cancer cell-lines.

Permutation test.  Permutation test was applied to get the p-value corresponding to each Spearman rank-
correlation. In the first step, Spearman rank-correlation was calculated between the predicted data and the 
experimental data. Next, the predicted data were randomly permuted by using the randperm function in MAT-
LAB. The function randperm gives a randomly permuted vector of the integers from 1 to n without repeating 
elements. In our case, n represents the number of data points. The elements of the randomly generated vector 
is used as index of the original data to generate the permuted data. Spearman rank-correlations were calculated 
between the permuted data and the experimental data. This process was repeated for 1000 times and the p-value 
was obtained by using the formula (r + 1)/1001 , where r is the number of cases for which random permuted set 
gave better rank-correlation than the non-permuted case.

To verify the usefulness of the permutation test we obtained the distribution of the rank-correlations for the 
1000 randomly permuted set (see Supplementary Fig. S3 for three cell-lines). It was observed that they follow 
normal distribution.

Finding drugs with inhibitory type nature from DrugBank database.  In DrugBank database45, 
6490 drugs (out of 8283) have information about its targets and the corresponding mechanism of action. These 
targets are given in the form of gene names. There are 1684 drugs which have gene ID information of at least one 
metabolic target (see method “Gene symbol to Gene ID conversion”). We then searched for the drugs that can 
decrease the activity of at least one metabolic target. For this purpose, we selected the following three mecha-
nisms of actions: (i) inhibition, (ii) antagonist, (iii) inverse agonist. We found 410 drugs out of 1684 which 
decreased the activity of at least one metabolic gene. Out of these 410 drugs, only 380 drugs have at least one 
inhibitory type target on cancer cell-lines GSMMs.

Link between DrugBank database and NCI‑60 growth inhibition database.  DrugBank database 
has DrugBank ID, whereas NCI-60 growth inhibition database46 has NSC ID. So, we first converted their IDs 
into a single ID for further analysis. In the DrugBank database, the conversion of drug ID to PubChem CID or 
CAS ID is provided and the conversion of CAS ID to NSC ID is given in the chemical data section of the NCI-60 
growth inhibition database. We therefore used CAS ID information of the drugs to link these two datasets. There 
are 373 drugs, out of previously described 380 drugs, which have CAS ID information and out of them only 
200 drugs have NSC IDs. However, all NSC IDs do not have information regarding GI50 value. So, we finally 
obtained 64 drugs with NSC IDs that have a GI50 score in negative log value.

Finding active drugs using GI50 score.  GI50 score is an important measure of drug activity. It quantifies 
the dosage of the drug required to inhibit the cell growth by 50% . In the NCI-60 growth inhibition database, the 
range of log value of GI50 score of the drugs is given between − 10 to − 1. Drugs with log GI50 score less than − 5 
was considered to be active against cancer89,90.

Data and code availability
The data and the code are provided as Supplementary File S1, Supplementary Table S1 and Supplementary File S2.
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