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Abstract

To find an electrical conductivity (EC) in the nutrient solution used for pakchoi (Brassica

campestris L. ssp. Chinensis) cultivation that optimizes the plant’s physiology, growth, and

quality, we conducted an experiment with eight EC treatments (from EC0 to EC9.6) in a

hydroponic production system (i.e. soilless culture) under greenhouse condition in Shang-

hai, China. Plants biomass production, leaf photosynthesis, vegetable quality variables, tis-

sue nitrate and nitrite contents, and antioxidant enzyme activities were measured. The

results showed that very high (EC9.6) or low EC (EC0-0.6) treatments clearly decreased

plants fresh weight (FW) and dry weight (DW), leaf size, leaf water content, leaf net photo-

synthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and taste score.

Nitrite content, and antioxidant enzyme activities were low in medium EC treatments (EC1.8

and EC2.4), but high in very high or low EC treatments. Leaf relative chlorophyll, ascorbic

acid, and nitrate contents increased gradually from low EC to high EC treatments, while

crude fiber and soluble sugar contents decreased. Based on growth and quality criteria, the

optimal EC treatment would be EC1.8 or EC2.4 for pakchoi in the hydroponic production

system. Too high or too low EC would induce nutrient stress, enhance plant antioxidant

enzyme activities, and suppress pakchoi growth and quality.

Introduction

Plant physiology, growth, and development are closely associated with the environmental con-

ditions and nutrient supply [1, 2]. Optimization of the nutrient application to plants is
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fundamental to improve crop production, especially for fast-growing leaf vegetables [3, 4].

Inadequate management of nutrient solution such as the use of a too high or a too low concen-

tration of the nutrient solution, or an imbalanced ion composition could inhibit plant growth

due to either toxicity or nutrient-induced deficiency [5].

The electrical conductivity (EC) is an index of salt concentration and an indicator of elec-

trolyte concentration of the solution. EC of the nutrient solution is related to the amount of

ions available to plants in the root zone [6]. The optimal EC is crop specific, and depends on

environmental conditions [7, 8]. In general, higher EC hinders nutrient uptake by increasing

the osmotic pressure of the nutrient solution, wastes nutrients, and the increases discharged of

nutrients into the environment, resulting in environmental pollution. Lower EC may severely

affect plant health and yield [2, 9].

Vegetables in the Brassicaceae family are an important food source in Asian countries such

as China, Japan, and India, and in the European Union [10]. Pakchoi is a widely cultivated

leafy vegetable in China. It provides phenolic compounds, vitamins, fibers, soluble sugars,

minerals, fat, and carotenoids which included in human diets [11, 12]. As the consumption of

pakchoi has been increasing during recent years, the safety and quality of pakchoi has become

a major concern [13,14].

Several studies have been done on the effects of nutrient solution EC on leafy vegetable

growth such as lettuce [9, 15, 16]. For example, Samarakoon et al. [9] found the best EC of the

nutrient solution was 1.4 dS m-1 for lettuce under tropical greenhouse conditions (38.5˚C).

Raising the EC to 2 dS m-1 did not significantly increase leaf growth and yield. Albornoz et al.

[17] revealed that applying of different nutrient solution concentrations (i.e. different EC) dur-

ing day and night reduced NO3
− concentration in lettuce leaves without having much influ-

ence on leaf production. Albornoz and Lieth [18] demonstrated that over fertilization (high

EC) limited lettuce productivity because of osmotic stress. But so far, few studies have been

conducted to investigate the effects of EC on pakchoi growth and development, especially on

the yield, quality, and the potential regulation mechanisms of pakchoi plants growing in differ-

ent EC nutrient solutions.

The objective of this study was to assess the effect of different EC nutrient solutions on the

growth, leaf photosynthesis, quality, and activities of antioxidant enzymes in pakchoi. In addi-

tion, we attempted to seek the optimal nutrient EC for both pakchoi growth and eating quality,

and the underlying mechanisms of physiological changes of plants in too high or too low nutri-

ent solution concentrations.

Materials and methods

Plant materials and experimental design

A cultivar of pakchoi (Brassica campestris L. ssp. Chinensis (L.)), Shanghaiqing, was used in

this study. Pakchoi seeds were sown in Grodan blocks (2–4 seeds/ block, 10 cm x 10 cm x 6.5

cm) in a well heated greenhouse. Temperature in the greenhouse was maintained at about

20˚C during the day and 10˚C at night. Plants grew under natural light in the greenhouse.

When the plant’s sixth true leaf was fully expanded, eight blocks of seedlings were transplanted

into each plastic container (44 cm x 28 cm x 6.5 cm) for different EC treatments. The eight EC

treatments in this study were arranged in a randomized complete block design. The experi-

ment was replicated three times with one experimental unit (hydroponic system, eight plants)

per treatment. The original nutrient solutions (A and B) were based on Hoagland’s solution

(HS) with modifications and the nutrient concentrations were listed in Table 1. Nutrient solu-

tions for the EC treatments were described below. Plants grew under the EC treatments for 20
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days, and the largest leaves of each treatment were harvested. The samples were immediately

frozen in liquid nitrogen and stored at -80˚C for further analysis.

Nutrient solution treatments

Portable Conductivity Meter (DDB-303A, Shanghai Leici) and pH tester (PHB-4, Shanghai

Leici) were used to measure and set different EC treatments and pH value of the nutrient solu-

tions. The different nutrient solutions were prepared with deionized water and soluble fertiliz-

ers (Shanghai Wintong Chemicals Co., Ltd.), based on original nutrient solutions. The eight

different EC treatments included: 1) EC0, only deionized water; 2) EC0.3, diluted original

nutrient solutions A and B with deionized water to 0.3 dS m-1 of EC; 3) EC0.6, diluted original

nutrient solutions A and B with deionized water to 0.6 dS m-1 of EC; 4) EC1.2, diluted original

nutrient solutions A and B with deionized water to 1.2 dS m-1 of EC; 5) EC1.8, diluted original

nutrient solutions A and B with deionized water to 1.8 dS m-1 of EC; 6) EC2.4, diluted original

nutrient solutions A and B with deionized water to 2.4 dS m-1 of EC; 7) EC4.8, diluted original

nutrient solutions A and B with deionized water to 4.8 dS m-1 of EC; 8) EC9.6, diluted original

nutrient solutions A and B with deionized water to 9.6 dS m-1 of EC. Every time the same

amounts of A and B were used. We use hydrochloric acid (HCl) and sodium hydroxide

(NaOH) to adjust pH of the nutrient solution to 5.8 for all treatments. Before the different EC

treatments were applied, all seedlings were watered with nutrient of EC1.2 and pH of 5.8.

When the EC treatments started, we watered the plants three times a week to maintain stable

EC levels for all treatments. Each time, 3 L of different EC nutrient solutions were given in the

growth containers, maintained for half an hour, and then the extra solutions were drained.

Measurements of pakchoi fresh weight, dry weight content and leaf water

content

After 20 days of the different EC treatments, shoots of each treatment were harvested for fresh

weight (FW) measurement, then dried in an oven at 80˚C for 5 days and reweighed for dry

weight (DW). At least three replicates per pot were measured in each treatment. Leaf water

content (%) was calculated as (FW-DW)/FW � 100%.

Measurements of leaf gas exchange parameters

Leaf gas exchange was measured with Li-6400 Portable Photosynthesis System (Li-Cor Inc.,

Lincoln, NE, USA) on a fully developed leaf from the middle of each seedling. Measurements

of photosynthesis were repeated once for each leaf, and six leaves were measured for each

treatment. Irradiance level was set at 600 μmol photons m-2 s-1. CO2 concentration was set at

400 μmol mol−1 with air temperature and relative humidity set at the greenhouse conditions.

Leaves were allowed to acclimate to each irradiance level for about 2 min before reading. The

Table 1. Elements component in the original nutrient solutions in different tanks (A, B,).

A Tank B Tank

Macro-elements kg/1000L Micro-elements g/1000L Macro-elements kg/1000L

KNO3 12.2 MnSO4�H2O 55.8 KNO3 32.0

Ca(NO3)2�4H2O 27.9 ZnSO4�7H2O 35.8 KH2PO4 13.6

5Ca(NO3)2�NH4NO3�10H2O 18.9 Na2B4O7�4H2O 118.9 K2SO4 1.1

EDPA-Fe (13%Fe) 1.0 CuSO4�5H2O 9.3 MgSO4�7H2O 12.3

Na2MoO4�2H2O 6.0

https://doi.org/10.1371/journal.pone.0202090.t001
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net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci)

and transpiration rate (Tr) of pakchoi leaves were measured.

Measurements of leaf relative chlorophyll, ascorbic acid, crude fiber, crude

protein, soluble carbohydrates content and taste

Chlorophyll content was measured on the middle of intact, fully developed leaves using a chlo-

rophyll meter SPAD-502 (Minolta, Japan) which provides a rapid, accurate and non-destruc-

tive estimate of leaf chlorophyll content. At least five leaves were measured for each treatment

[19]. Ascorbic acid of leaf tissue was measured using the titration method with 2, 6-dichloro-

phenol-indophenol sodium salt dehydrate [20]. Crude fiber content was measured using the

improved method of Śmiechowska and Dmowski [21]. The plant samples (2 g dry samples)

were boiled in 200 ml 1.25% sulfuric acid solution for 30 min, and the insoluble residue was fil-

tered and washed. The obtained substance was subsequently boiled in 200ml 1.25% potassium

hydroxide solution for 30 min, filtered and washed. A sample thus prepared was dried for 2 h

in the oven at 130˚C. Finally, weight loss was determined after burning at 550˚C. The content

of crude fiber in the leaf sample was calculated in weight loss percent relative to the fresh

weight of the product. Crude protein was determined according to Licitra et al. [22]. The solu-

ble carbohydrates were determined according to Dubois et al. [23]. Tastes was determined by

5–10 persons who ate boiled plants in the different EC treatments and graded the plants from

0 (poor taste) to 10 (good taste).

Measurements of nitrate and nitrite contents

Fresh plant leaves (2g) were added to a test tube with 10 ml distilled water. The test tube was

heated in boiling water for 30 min, then cooled down with tap water. The extract in the tube

was filtered into 100 ml flask, and the residue was repeatedly washed, and finally distilled

water was added to the flask to make the solution of 100 ml. The filtrate was used for nitrate

and nitrite content determinations. The nitrate concentration of the filtrate was detected using

the method of Cataldo et al. [24]. The content of the nitrite in the filtrate was determined by

the method of Kaur et al. [25].

Antioxidant enzyme activity assay

For the enzyme assays, 0.3 g of leaf sample was ground in 3 ml of ice-cold 25 mM HEPES

buffer (pH 7.8) containing 0.2 mM EDTA, 2 mM AsA, and 2% PVP. The homogenate was cen-

trifuged at 4˚C for 20 min at 12,000 g, and the supernatant was used for the determination of

enzymatic activity. Superoxide dismutase (SOD) activity was measured in a reaction mixture

containing 50 mM phosphate buffer (pH 7.8), 0.1 mM EDTA, 13 mM methionine, 75 μM

nitroblue tetrazolium (NBT), 2 μM riboflavin, and 50 μl enzyme aliquot [26]. One unit of SOD

activity was defined as the amount of enzyme required to cause a 50% inhibition of the rate of

p-nitro blue tetrazolium chloride reduction at 560 nm. The method of Cakmak and Marschner

[27], with some modifications, was used to determine the activity of guaiacol peroxidase

(G-POD). The reaction mixture contained 25 mM phosphate buffer (pH 7.0), 0.05% guaiacol,

1.0 mM H2O2 and 100 μl enzyme extract. The increase in absorbance at 470 nm caused by

guaiacol oxidation was used to determine the G-POD activity.

Statistical analysis

Analysis of variance (ANOVA) was conducted using the SAS Statistical Analysis System (SAS

version 9.3; SAS Institute Inc., Cary, NC). Each value was presented as the mean ± standard
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error (SE), with a minimum of three replicates. Differences between treatment means were

tested using the Least Significant Difference (LSD) method at P� 0.05 level of significance.

Figures were plotted using Origin 7.5 software (Origin Lab, Northampton, MA, USA).

Results

Plant fresh weight, dry weight and leaf size

The production and leaf size of pakchoi varied in different EC treatments (Fig 1). Both FW

and DW of Pakchoi leaves increased with the increase of EC level, reached the highest value in

the EC4.8 treatment, and decreased in the higher EC treatments. FW in the EC9.6 treatment

was similar to that in the EC2.4 treatment, but DW was significant higher than EC2.4 treat-

ment. The leaf size showed similar pattern to the production which the largest leaf also

appeared in the EC4.8 treatment.

Leaf gas exchange parameters

The EC treatment had significant effects on Pn, Gs, Ci and Tr (Fig 2). Interestingly, there were

no significant differences in Pn among the EC1.2, EC1.8, EC2.4, and EC4.8 treatments. But the

EC0, EC0.3, EC0.6 and EC9.6 treatments showed significantly lower Pn, with the lowest in the

EC0 treatment. The changes of Gs were similar to Pn, but there were no significant differences

among the treatments from EC0.3 to EC2.4. Gs in the EC0, EC4.8 and EC9.6 treatments clearly

decreased and decreased most in the EC9.6 treatment. There were no clear differences in Ci

among the treatments from EC0 to EC2.4. But the EC4.8 and EC9.6 treatments significantly

decreased Ci. Tr in the EC0 and EC9.6 treatments was significantly reduced, but there was no

significant difference among other EC treatments.

Leaf relative chlorophyll, ascorbic acid, crude fiber, crude protein, soluble

carbohydrates content and tastes

The leaf relative chlorophyll content gradually increased as nutrient EC increased, but there

were no significant differences between the EC2.4 and EC4.8, between the EC1.8 and EC2.4,

between the EC1.2 and EC1.8, and between the EC0.3 and EC0.6 treatments (Table 2). The

Fig 1. Effect of different electrical conductivity (EC) treatments on pakchoi fresh weight (A), dry weight (B) and

largest leaf (C) after 20 days of treatment. Data represent mean ± SE (n = 3). Different letters indicate significant

differences at p�0.05 based on the Least Significant Difference test.

https://doi.org/10.1371/journal.pone.0202090.g001
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leaf water and ascorbic acid contents increased from the EC0 to EC4.8 treatments, and then

decreased in the EC9.6 treatment (Table 2). The contents of leaf water and ascorbic acid were

significantly higher in the EC2.4 to EC9.6 treatments compared with the EC0 to EC0.6 treat-

ments. Conversely, the soluble sugar contents decreased from the EC0 to EC9.6 treatments

and there were no significant differences from the EC0.6 to EC4.8 treatments (Table 2). The

crude fiber content gradually decreased from the EC0 to EC4.8 treatments, but showed a slight

increase in the EC9.6 treatment (Table 2). The crude protein content increased from the EC0

to EC1.8, and then decreased in the EC2.4 and EC4.8 treatments, but there was a significant

increase in the EC9.6 treatment (Table 2). The taste was ranked higher in the EC1.2 to EC2.4

treatments than that in the EC0 to EC0.3, and EC4.8 to EC9.6 treatments (Table 2).

Nitrate and nitrite contents

The nitrate contents in the EC0, EC0.3, and EC0.6 treatments were very low and increased to

0.297 mg g-1 and 0.686 mg g-1 in the EC1.2 and EC1.8 treatments, respectively (Fig 3). The

nitrate content reached 1.18 mg g-1 and 1.25 mg g-1 in the EC4.8 and EC9.6 treatments, respec-

tively. The nitrite content was the lowest in the EC1.8 treatment and increased in the treat-

ments with low and high EC levels (Fig 3).

Fig 2. Effect of different electrical conductivity (EC) treatments on net photosynthetic rate (Pn), stomatal

conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr) after 20 days of treatment. Data

represent the mean ± SE (n = 3). Different letters indicate significant differences at p�0.05 based on the Least

Significant Difference test.

https://doi.org/10.1371/journal.pone.0202090.g002

Table 2. Effect of different EC treatments on relative chlorophyll content, leaf water content, ascorbic acid content, crude fiber content, crude protein content, solu-

ble sugars and taste scores after 20 days of treatment. Data represent the mean ± SE (n = 3). Different letters indicate significant differences at p�0.05 based on the

Least Significant Difference test.

Treatments Relative Chlorophyll Leaf Water (%) Ascorbic acid (mg/g) Crude Fiber (% FW) Crude Protein (% FW) Soluble Sugars (% FW) Taste Scores

EC0 23.5±1.4f 92.92±0.36d 0.57±0.03b 0.98±0.02a 1.08±0.002d 1.69±0.17a 4.36±0.69d

EC0.3 30.1±0.9e 92.98±0.22d 0.62±0.06b 0.92±0.02b 1.11±0.036c 1.13±0.08b 6.16±0.67c

EC0.6 33.4±1.2e 93.20±0.39d 0.63±0.03b 0.87±0.02c 1.13±0.001c 0.96±0.09bc 6.50±0.59bc

EC1.2 39.3±0.8d 94.36±0.16c 0.70±0.04ab 0.76±0.01d 1.13±0.006c 0.93±0.08bc 7.88±0.33ab

EC1.8 40.8±0.9cd 94.89±0.43bc 0.71±0.06ab 0.70±0.02e 1.25±0.011b 0.87±0.15bc 8.00±0.55ab

EC2.4 44.2±1.9bc 95.31±0.17ab 0.82±0.07a 0.64±0.02f 1.12±0.021c 0.82±0.07bc 8.22±0.37a

EC4.8 46.0±2.2b 95.89±0.16a 0.86±0.06a 0.53±0.02h 1.06±0.035d 0.82±0.12bc 6.16±0.50c

EC9.6 54.4±2.5a 94.59±0.18bc 0.82±0.09a 0.56±0.02g 1.36±0.015a 0.74±0.03c 4.20±0.37d

https://doi.org/10.1371/journal.pone.0202090.t002
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Antioxidant enzyme activity

Different EC treatments also induced significant changes of antioxidant enzyme activities (Fig

4). We found that G-POD significantly decreased when EC increased from the EC0 to EC2.4

treatments while there was no significant difference of G-POD between the EC2.4 and EC4.8

treatments. G-POD activities increased in the EC9.6 treatment. Similar pattern was observed

for the SOD (Fig 4). Although the SOD activities were the lowest in the EC2.4 treatment, there

were no significant differences among the EC1.2 to EC9.6 treatments. The highest SOD was

observed in the EC0 and EC0.3 treatments.

Plant growth

Plant growths of pakchoi showed clearly differences in the different treatments (Figs 5 and 6).

Plants in the EC0, EC0.3, EC0.6, and EC1.2 treatments had smaller leaves, lower biomass, and

some yellow leaves. The plants grew better in the treatments with EC level was 1.8 dS m-1 and

higher. Plants in the EC1.8, EC2.4, and EC4.8 treatments appeared to have larger leaves and

Fig 3. Effect of different electrical conductivity (EC) treatments on nitrate content and nitrite content after 20

days of treatment. Data represent the mean ± SE (n = 3). Different letters indicate significant differences at p�0.05

based on the Least Significant Difference test.

https://doi.org/10.1371/journal.pone.0202090.g003
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more biomass. In the EC9.6 treatment, plants were inhibited and had dark green color for new

leaves, and yellow color for some old leaves.

Discussion

Efficient management of nutrients is one of the main challenges for agricultural production.

The elements and concentration of nutrients are important for plant growth and development

[28]. In the present study we found that the fresh weight, dry weight, and leaf size of pakchoi

plants gradually increased with the increase in EC, and had the highest values in the EC4.8

treatment. The highest EC9.6 treatment had lower production and leaf size due to the toxic

effects of the very high nutrient solution concentration. Similar result was reported by Albor-

noz and Lieth [18] who found that high concentration of nutrients (EC of 6 and 10 dS m-1) in

the root zone reduces yield of lettuce because of a combination of decreased stomatal conduc-

tance and leaf area. Samarakoon et al. [9] also found that leaf lettuce is sensitive to high EC.

The plant fresh and dry weights were clearly reduced at high EC level. Leaf lettuce grows best

Fig 4. Effect of different electrical conductivity (EC) treatments on antioxidant enzyme activities of superoxide

dismutase (SOD) and peroxidase (POD) after 20 days of treatment. Data represent the mean ± SE (n = 3). Different

letters indicate significant differences at p�0.05 based on the Least Significant Difference test.

https://doi.org/10.1371/journal.pone.0202090.g004
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Fig 5. Pictures of individual plants of different electrical conductivity (EC) treatments after 20 days of treatment.

https://doi.org/10.1371/journal.pone.0202090.g005
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(the highest fresh and dry weights) at EC of 1.4 dS m-1 under tropical greenhouse conditions

(38.5˚C). The differences in optimal EC levels could be caused by different leaf vegetable varie-

ties and different growth climate conditions.

Reduced leaf photosynthesis often leads to low assimilation production [29]. In this study,

we found that Pn and Tr in the low or high EC treatments was significantly decreased com-

pared with the medium EC treatments. This could be caused by salinity stress in the high EC

treatment and nutrient deficiency in the low EC treatments [3, 30, 31]. Leaf photosynthetic

rates of lettuce and tomato are also affected by different nutrients management [17, 32].

Notably, we found that leaf relative chlorophyll content was significantly lower in the low

EC treatments (Fig 1C and Table 2), probably due to the deficiencies of nutrient elements such

as N, Mg, and Fe which were important for chlorophyll biosynthesis. Belkhodja et al. found

Fig 6. Pictures of plants in the pots of different electrical conductivity (EC) treatments after 20 days of treatment.

https://doi.org/10.1371/journal.pone.0202090.g006
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that Fe-deficient plants had clearly inhibited the chlorophyll content increase [33]. The highest

leaf chlorophyll content was found in the EC9.6 treatment. Increase in leaf chlorophyll concen-

tration or dark color of leaves has been reported for tomato plants grown under the high EC

level [34, 35]. Stefanov et al. [36] found that plants increase chlorophyll content under salt

stress to enhance the salt tolerance, similar to this study as the high EC9.6 treatment induced a

evidently salinity stress. The relative chlorophyll content for different EC treatments also con-

tributed to the photosynthesis changes.

Vitamin C is one of the most important quality factors in many horticultural crops and an

essential substance for humans. More than 90% of vitamin C in human diets is supplied by

fruits and vegetables through ascorbic acid and dehydroascorbic acid [37]. In this study, ascor-

bic acid showed an increasing trend up to 2.4 dS m-1, but did not significantly increase over

this EC level. Lisiewska and Kmiecik [38] reported that increasing amount of nitrogen fertil-

izer from 80 to 120 kg ha-1 does not affect the content of ascorbic acid in broccoli, but

decreases the ascorbic acid content by 7% in cauliflower. Müller and Hippe [39] found ascor-

bic acid concentration is positively correlated with the nitrogen supply in butter head lettuce.

This discrepancy between different vegetable crops may be due to the differences in growth

habitats and growing conditions. Lee and Kader [37] revealed that plant tissues would enrich

more ascorbic acid content when received higher intensity of light during the growing season.

High intensity of light would support the plants get high photosynthesis which would transfer

more assimilation production for plant growth and metabolism. This also coincides with our

results that the changes of ascorbic acid were correlated with photosynthesis of different treat-

ments. However, light intensity exceeding plant requirements may represent a constraint to

ascorbic acid synthesis; in this respect, Conti et al. [40] found higher values in pumpkin fruits

grown in greenhouse than in open field ones.

Crude fiber in plants mostly originates from cellular walls, sclerenchyma, colenchyma, and

transport tissues [21]. It was observed that crude fiber decreased with EC increasing from the

EC0 to EC4.8 treatment in our experiment. The highest crude fiber content was found in the

control (EC0 treatment). Similar results were found by Almodares et al. [41] who reported that

plants crude fiber content has a negative relationship with nitrogen fertilizer implementation.

The diets with high content of fiber have been reported to have a positive effect on health, but

too high crude fiber would negatively influence the food quality because high crude fiber per-

centage in diets will reduce digestibility [42, 43]. This is consistent with our result that the taste

of pakchoi was poor in the high and low EC treatments. Pakchoi tasted better in the EC1.2 to

EC2.4 treatments.

Crude protein is a term for the total protein content of a food source as determined by its

nitrogen content, and is a very important component of food quality [43]. In this study, we

found crude protein content increased with the increased EC treatment to 1.8 dS m-1. The

same result was found by Mullins et al. [44] who reported that nitrogen fertilizer increased

crude protein content in corn. The EC2.4 and EC4.8 treatments had clearly decreased, and

EC9.6 treatment had increased the crude protein content mainly because the leaf water con-

tent was high in EC2.4 and EC4.8 treatments and relative low in EC9.6 treatment.

A high content of soluble sugars is a desirable parameter in terms of food quality [45]. In this

study, soluble sugar content decreased with the EC increase, up to EC 9.6. These results are sup-

ported by Fallovo et al. [46] who reported that increasing the EC of the nutrient solution from

0.3 to 3.6 dS m−1 decreases the soluble sugar content of leafy lettuce. A high respiration rate of

tissue vegetable in high EC treatment may reduce sugar content [47]. Photosynthate that is not

fully used in the synthesis of organic compounds and sugars are accumulated where fertilizer

levels are limited [48]. Conversely, Amalfitano et al. [49] recorded an increase of soluble sugar

content in "Friariello" pepper fruits up to 3.8 or 4.4 dS m-1 depending on the sugar compound.
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Islam and Khan reported seasonal fluctuations would significantly affect tomato soluble sugar

content and the sugar reduction due to lower enzyme activities [50]. Further studies are needed

to investigate the reasons for soluble sugar content of pakchoi decreasing with EC increase in

the future.

Nitrate and nitrite are nutrients found in various leafy vegetables and are also part of food

preservation systems [51]. Nitrate content in pakchoi leaves were low in the low EC treat-

ments, but increased to high level in the EC4.8 and EC9.6 treatments. Similar result was found

by Fallovo et al. [46] who reported that lettuce leaf nitrate content increases in response to an

increase in nutrient solution concentration. Moreover, Morano et al. [52] recorded an increase

of nitrate content in basil leaves up to 2.8 dS m-1. The lowest nitrite content was found in the

middle EC treatment (EC1.8), and the highest nitrite content in the highest and lowest EC

treatments (EC9.6 and EC0) which indicated that too low or too high EC treatment can pro-

duce higher nitrite content in pakchoi leaves. Nitrate by itself is relatively non-toxic [53, 54],

but approximately 5% of all ingested nitrate is converted in saliva and the gastrointestinal tract

to the more toxic nitrite [55, 56]. So a low nitrite content is preferred in leafy vegetables. The

Joint Expert Committee of the Food and Agriculture (JECFA) Organization of the United

Nations and the European Commission’s Scientific Committee on Food (SCF) have set an

acceptable daily intake (ADI) for nitrate of 0–3.7 mg kg −1 bodyweight, and have proposed an

ADI for nitrite only of 0–0.07 and 0–0.06 mg kg−1 bodyweight [57].

The activities of antioxidant enzymes are an important tool to evaluate whether the plant

suffered biotic and abiotic stresses [58–60]. Here, we found that the activities of POD and

SOD were increased in the low and high EC treatments while the lowest activities of POD and

SOD appeared in the EC2.4 treatment. The high activities of antioxidant enzymes in the low

EC treatments could be due to the nutrient deficiency that inhibiting plant leaf development

and production [61–63]. The high activities in the high EC treatments were caused by toxicity

and salt stress [64, 65]. Phenolic compounds with ascorbic acid are the major antioxidants and

their production could be stimulated under the salt stress. Indeed, both high ascorbic acid con-

tent and high antioxidant enzyme activity were found in the EC9.6 treatment in our study.

Podsedek [11] also found high ascorbic acid and antioxidant activity in Brassica vegetables.

Conclusion

Eight different EC treatments were examined in our research. Pakchoi plants of Shanghaiqing

grow better in the medium EC treatments (EC1.8 to EC2.4), as they show higher photosyn-

thetic rate and production, as well as better quality. Too low EC treatments limit plant growth

due to nutrient deficiency while too high EC treatments are inhibiting due to salinity stress, as

plants have to enhance activities of antioxidant enzymes to adapt to the stress conditions. The

findings of this study improved our mechanistic understanding of the effects of different EC

nutrient solutions on pakchio plants and are useful for optimization of nutrient solutions to

improve crop production and quality.
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