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Abstract: The total boll count from a plant is one of the most important phenotypic traits for cotton
breeding and is also an important factor for growers to estimate the final yield. With the recent
advances in deep learning, many supervised learning approaches have been implemented to perform
phenotypic trait measurement from images for various crops, but few studies have been conducted to
count cotton bolls from field images. Supervised learning models require a vast number of annotated
images for training, which has become a bottleneck for machine learning model development. The
goal of this study is to develop both fully supervised and weakly supervised deep learning models to
segment and count cotton bolls from proximal imagery. A total of 290 RGB images of cotton plants
from both potted (indoor and outdoor) and in-field settings were taken by consumer-grade cameras
and the raw images were divided into 4350 image tiles for further model training and testing. Two
supervised models (Mask R-CNN and S-Count) and two weakly supervised approaches (WS-Count
and CountSeg) were compared in terms of boll count accuracy and annotation costs. The results
revealed that the weakly supervised counting approaches performed well with RMSE values of 1.826
and 1.284 for WS-Count and CountSeg, respectively, whereas the fully supervised models achieve
RMSE values of 1.181 and 1.175 for S-Count and Mask R-CNN, respectively, when the number of
bolls in an image patch is less than 10. In terms of data annotation costs, the weakly supervised
approaches were at least 10 times more cost efficient than the supervised approach for boll counting.
In the future, the deep learning models developed in this study can be extended to other plant organs,
such as main stalks, nodes, and primary and secondary branches. Both the supervised and weakly
supervised deep learning models for boll counting with low-cost RGB images can be used by cotton
breeders, physiologists, and growers alike to improve crop breeding and yield estimation.

Keywords: cotton phenotyping; boll counting; supervised learning; mask R-CNN; weakly
supervised learning

1. Introduction

Cotton (Gossypium hirstum L.) is one of the most important cash crops in the world [1].
To improve the crop in terms of fiber yield and quality, cotton breeders need to measure
plant phenotypic traits, and one of the most important traits is the total boll count. In
addition to being valuable to breeding programs, boll count is also important to growers
because it is the primary indicator of potential yield from the field. Furthermore, boll count
can provide a good understanding about the growth conditions of the crop, which can lead
growers to make crucial crop management decisions such as the timing of harvest [2]. It
is an arduous task, however, to manually count cotton bolls accurately in the field and
it even becomes impossible when a large number of plants (e.g., over a thousand plants
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with 40–50 bolls per plant) are involved. The cotton plant has a complex architecture, and
bolls are distributed throughout the plant, making the counting task even more difficult.
Traditionally, cotton breeders are only able to measure a limited number of samples to infer
the larger population, which does not fully consider the variation within the population
and impedes breeding programs.

To address this phenotyping bottleneck, researchers have been developing non-
destructive high throughput phenotyping (HTP) techniques to automate the phenotyping
tasks with less time and labor requirements [3,4]. In particular, computer vision used with
deep learning has been playing an increasingly important role in HTP in several areas [5,6],
such as plant disease classification [7,8], yield prediction [9], and plant organ detection and
counting [10]. For example, Jiang et al. [11] developed an imaging system by leveraging
deep learning object detection models to detect and count emerging cotton blooms that
can characterize flowering patterns efficiently. A multi-object tracking approach was de-
veloped by the same group to count cotton seedlings and flowers from video frames over
time [12–14]. There are a few studies on counting cotton bolls from proximal images. For
instance, Sun et al. [15] implemented a boll recognition and counting pipeline based on
traditional image-processing algorithms, achieving an accuracy of 84.6% in boll counting.
Sun et al. [16,17] further demonstrated that machine learning models using hand-crafted
features can segment cotton bolls from the 3D point cloud data with promising results.
However, 3D point cloud data collection is more time consuming and costly than RGB
images. Li et al. [18] leveraged the unsupervised clustering methods and region-based
semantic segmentation with random forest to detect in-field cotton bolls with a best case
segmentation accuracy of 97% for forward-facing images. However, this study only pro-
vided the number of superpixels for cotton bolls and did not provide the boll count from
each plant. It would be desirable to leverage the deep learning approaches to count cotton
boll numbers without hand-crafted features.

To make the deep learning model effective, the models have to be trained using a
large number of annotated training data to learn diverse features in the data and reduce
overfitting. However, annotation or labeling of training data in either bounding boxes
or polygons is time consuming. In the case of cotton plants, a single plant in a 2D image
typically contains 40 to 50 boll instance masks. These masks represent bolls with irregularly
shaped polygons that require intricate annotations and consume at least 40 seconds for each
mask and around 30 min per image for a skilled annotator. There are few public datasets
available for the agricultural domain and most researchers have to label their training data
from scratch. Furthermore, precise annotation of the training data in plant phenotyping
has been a challenge because of factors such as domain knowledge, multi-modal input
data, and application specific annotations. The burden of annotation on HTP researchers
needs to be addressed to produce high quality deep learning models.

One promising way of addressing the data annotation burden is to provide weak
supervision, either with partially annotated data or with pseudo-labels obtained from
lower-level (image-level class annotations) labels. With the introduction of complex loss
functions and processing, intermediate outputs can be used to perform image recognition
tasks using the activation layer output and partially annotated datasets (only a subset of
the objects in an image are labeled). These techniques have been used to perform advanced
tasks, such as object instance counting and segmentation, which achieve comparable results
to supervised methods [19]. When the lower-level labels are available, many approaches are
available to localize and detect object instances [20] that leverage two prominent paradigms:
multiple-instance learning (MIL) [21] and class feature activation maps (CAMs) [22]. MIL
is based on learning object instances from positive (one or more instances present) or
negative (no instances) bins of data samples, and this approach has been used widely
for weakly supervised object detection [23,24]. CAMs use intermediate feature maps
from the classifier’s activation layers along with pseudo-label generation, and the method
has gained popularity due to its versatility for object detection as well as for instance
segmentation [25–27].
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Following the success of weakly supervised approaches for detecting and segmenting
object instances, the approach is gaining researchers’ interest in medical and cellular biology
fields, in which the annotated data are difficult to produce [28,29]. Recently, researchers
have begun to explore weakly supervised models to reduce the annotation efforts in a
variety of applications in the agricultural domain, including disease classification, yield
estimation, and plant organ counting. For instance, Bollis et al. [30] designed a CNN-
based algorithm to select automatically the regions of interest (ROI) from citrus fruit that
were damaged by pests and diseases. The algorithm uses the MIL paradigm to classify
those crops with the help of saliency maps, which significantly reduced the annotation
costs. Ghosal et al. [31] performed head detection and counting to understand the relation
between the phenotypic and genotypic traits of the sorghum crop. They demonstrated
that it was possible to alleviate the annotation costs with the help of a partially anno-
tated dataset in a weakly supervised learning setting without compromising the final
model performance. Another weakly supervised counting network, PSSNet [32], used
point-supervision to segment and count trees in aerial images and convert feature maps
to masks. This network outperformed the state-of-the-art methods in most of the chal-
lenging conditions and greatly reduced human labor by generating masks automatically.
As discussed previously, these approaches used either CAMs or MIL paradigms, but
Yu et al. [33] proposed an approach combining both MIL and CAMs for Minirhizotron
image segmentation, which outperformed standard weakly supervised semantic segmenta-
tion frameworks. Bellocchio et al. [34] proposed a novel fruit counting method for yield
estimation based on spatial consistency loss, which falls under MIL because of the nature
of the weak learning provided to the model. This weakly supervised counting (WS-Count)
architecture performed exceptionally well in high density fruit counting and was able
to achieve a performance similar to its fully supervised counterparts. Thus, for the boll
counting application, we chose WS-Count as one of the frameworks to study in detail.

To the best of our knowledge, there are neither applications of supervised deep
learning models nor weakly supervised learning methods to count the number of cotton
bolls in a single plant using proximal RGB imagery. In particular, leveraging a weakly
supervised paradigm with partial or low-level annotations from proximal imagery would
help alleviate the annotation burden. Furthermore, there is a lack of understanding of
the performance difference between supervised and weakly supervised approaches for
cotton boll detection and counting. To address these gaps, the overall goal of this study is
to segment and count cotton bolls from proximal imagery using supervised and weakly
supervised deep learning with limited annotated data for training. The specific objectives
of this study are to:

1. Train and test fully supervised deep learning models to segment cotton bolls from
both indoor and infield images;

2. Develop weakly supervised methods based on class activation maps and multi-
instance learning to segment cotton bolls from both indoor and infield images;

3. Compare the supervised and weakly supervised methods in terms of their perfor-
mance on boll counting and annotation efficiency.

2. Materials and Methods
2.1. Data Source and Pre-Screening

The dataset used for this study consisted of RGB images of cotton plant from both
potted (indoor and outdoor) and in-field settings, which reflected variations in plant
conditions and background. The images were taken using hand-held consumer grade
cameras. Pre-screening of data was performed to select good quality images, resulting
in 290 images with resolutions ranging from 800 to 4000 pixels across both dimensions.
During the initial experimentation with images at these resolutions, it was observed that if
a single boll instance occupied only a very small area compared to an entire image, weakly
supervised models would under-count the number of bolls. The object resolution in an
image along with the pixel density for a single instance became an important factor in the
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learning process. It was also observed that at a certain point the model was not able to
count more than a certain number of bolls, termed as the model’s subitizing range.

To make the boll number and resolution within each image conducive to the models,
the entire dataset of 290 images was pre-processed to generate smaller, uniform image tiles
containing fewer cotton bolls. Furthermore, 285 out of 290 images were selected to generate
the training and validation sets with a uniform image size. The remaining 5 images with
variable features were held out to test the entire processing pipeline. Table 1 summarizes
this dataset and corresponding boll counts per image. The background and other adjacent
cotton plants (if any) were cropped out to focus on the subject plant and reduce the noisy
data while training. Furthermore, a fixed input image window of 500 × 500 was chosen to
train the models and thus the images were cropped with zero padding along the borders.
This resulted in 4266 image tiles from 285 images and 84 tiles from 5 held-out images, all
with fixed size of 500 × 500 pixels.

Table 1. Summary of raw images selected for boll counting task and corresponding tiles generated
after zero-padding along with sum of boll count per tile. A total of 285 full plant images were selected
to obtain image tiles for training and testing of weakly supervised methods with random shuffling.
The remaining 5 full plant images were held out to test all the methods on a full scale plant.

Image Set No. of Images No. of
Tiles Generated No. of Bolls

Training + Testing 285 4266 23,651
Full Plant Testing 5 84 217

Total 290 4350 23,868

2.2. Annotation Approaches

The cotton boll instances to be detected are complex in nature, with variable sizes,
shapes, and appearances. In the dataset described above, an average cotton plant consisted
of 35 bolls. To train the supervised models, all the ground truth object instances were
annotated with pixel masks, also known as pixel-wise annotations or mask annotations.
Each object instance in the image was annotated along its contour and the pixels enclosed in
it represented the instance mask. The mask annotations demanded highly skilled annotators
and their inexhaustible efforts both in terms of precision and time. The mask labels for bolls
were obtained from 350 image tiles from Table 1 and annotated with additional instance
masks. Furthermore, 300 images from the above training set were used for training and 50
from the testing set were used as a validation set.

However, weakly supervised models require less annotation effort to achieve the same
objective. Instead of providing total object count as a ground truth, weakly supervised
methods for the counting task were trained using a classification or class-level annotations.
This reduced the annotation efforts significantly, as the annotator was required to detect
the presence of any single instance and give the classification label as class “present” or
“absent”. Image tiles with “present” labels are further annotated using point labels. In point
annotations [35], each boll instance was marked in the image with a point. Although only
the boll presence label is required for learning, point labels help maintain the ground truth
count for the image. Figure 1 shows the basic difference between the mask and point labels,
representing one sample each from field data, potted outdoor data, and potted indoor data.
In this study, all the annotations were performed using the VGG Image Annotator online
tool [36].

Table 2 presents a summary of the total 4350 image tiles that were annotated with
point annotations for six categories of boll counts. The images that do not contain bolls
(background or other plant parts) were kept as negative category images, i.e., class label = 0.
Even with pre-processing, in certain images the presence of background bolls from nearby
plants contributed to noisy boll count. Following the literature for weakly supervised
counting, a subitizing range was considered as [0, 10] and range [11, 15] was categorized as
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a challenging example. The image tiles containing over 15 bolls were discarded because
most of the bolls were from the background.

Figure 1. Annotation Types. Two main types of annotations were used in this study. The top row
represents instance masks with class labels, whereas the bottom row represents point labels for
the same image with the boll ID (the red numbers). The first column shows a sample tile from
in-field plant image, whereas the second and third column show potted plants in outdoor and indoor
conditions, respectively.

Furthermore, as Table 2 shows, images with boll count in the range [1, 5] dominate
the dataset (close to 50%) and this imbalance proved to be a limiting factor for the weakly
supervised models. To avoid this imbalance, the 3712 training images were augmented
manually with 1758 randomly sampled images from range [6, 15] by applying 90°, 180°,
and 270° rotations. This training set with 5470 image tiles was used as the final dataset for
weakly supervised counting.

Table 2. Summary of boll count per tile in different counting ranges for each of the train, validation,
and test datasets. Train and validation set contain tiles obtained from 285 full-scale raw images
whereas test set represents tiles from 5 held-out images. Because of the dense boll population, the
tiles containing more than 15 bolls cannot be counted accurately. Hence, these were not considered
(DNC) in training or in the total count for the training and validation sets.

Boll Count
per Image Training Tiles Validation Tiles Testing Tiles Total

0 919 50 21 990
[1, 5] 1852 102 48 2002
[6, 10] 710 42 6 758

[11, 15] 231 6 3 240
above 15 300 (DNC) 54 (DNC) 6 360

Total 3712 200 84 4350
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2.3. Fully Supervised Learning Approaches
2.3.1. Mask R-CNN

Mask R-CNN is considered one of the best performing instance segmentation models
and was therefore chosen as one of the supervised models [37]. Mask R-CNN operates
on the regions proposed by the region proposal network (RPN) to predict the class label,
bounding box, and corresponding instance pixel masks from multiple regions of interest
(ROIs). The choice of Mask R-CNN was inspired by the flexibility this method offers in
terms of output. It can produce both instance masks and bounding boxes. In addition, it
has been proven superior at localization tasks both in terms of precision and accuracy.

2.3.2. Supervised Count Regression: S-Count

The S-Count network is an end-to-end fully supervised method that was trained as a
regression model for counting bolls from the image tile. The network consists of ResNet-101
as the feature extractor without the final fully connected layer, which was replaced with an
additional 1 × 1 convolution layer with N filters. This produces N filter maps which were
treated as output response maps and fed to the fully connected layer to regress the boll
count. The choice of N varies depending on the dataset. In this case, both N = 6 and N = 8
were experimented with variable random seed value to initialize the weights and data
samples. Except the output layer, all layers have ReLU activation with batch normalization
layers. Finally, the network is optimized with standard mean squared error (MSE) loss.

2.4. Weakly Supervised Learning
2.4.1. MIL-CAM Based Weakly Supervised Counting: WS-Count

Weakly Supervised Counting (WS-Count) [34] is a promising weakly supervised
architecture for counting based on multi-instance learning (MIL) and class activation maps
(CAMs). Its architecture is comprised of two sub networks: a presence-absence classifier
and a regression network to produce the final count (Figure 2). The presence-absence
classifier (binary classifier) takes the image as an input to detect the presence of a class in it
and is trained in a supervised manner using the classification labels. The second part is the
counting branch that regresses the object count based on the feature map and it is trained
using the output of the first presence-absence classifier.

During the training of the WS-Count network, the input image was processed at three
different scales (Figure 2): the original image tile scale, a quarter scale (the image tile is
evenly divided into 4 sub-windows), and a 1/16 scale (the image tile is evenly divided into
16 sub-windows). This scaling makes this architecture a multi-branch (MB) network with a
total of 21 branches being trained simultaneously. Each branch processes a sub-window
and is weakly supervised by the PAC prediction of the same sub-window to produce the
count. The learning objective for this method is to minimize the classifier consistency
loss LPAC-C and a spatial consistency loss LSP-C. Classifier consistency loss maintains the
coherence between classifier output and counts of each branch. Ideally, if the classifier
predicts the presence of boll then the count network should produce a count greater than
zero and vice versa. The main purpose of spatial consistency loss is to bring consistency
between the total count at three different scales. A combined loss function was optimized
during the training of the WS-count multi-branch network (Equation (1)).

LWS-Count = LPAC-C + LSP-C (1)

2.4.2. CAM Based Counting with Partial Labels: CountSeg

Figure 3 illustrates the general network architecture of the CountSeg network for boll
counting. The input image is passed through the ResNet-50 backbone feature extractor and
1 × 1 convolution is applied before feeding into the two main branches of this network.
Out of available features, half of the features are fed to image classification branch whereas
the other half are given to density branch as an input. The image classification branch
performs simple convolution operation to predict the presence or absence of the boll in the
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image whereas the density branch is responsible for predicting the global boll count as well
as its spatial distribution for that image by constructing a density map.

Figure 2. Schematic representation of WS-Count architecture. An image is divided into 4 windows
and then further divided into 16 windows. A total of 21 images are passed to the main two networks
that are responsible for boll counting. Presence Absence Classifier (PAC) detects the presence of
boll in the patch and thus provides a weak supervision for the regression network, whereas the
counting network (S-Count) estimates a boll count for that patch with the help of additional fully
connected layers. The processing of 21 image patches in parallel makes the individual PAC and
S-Count networks multi-branched (MB) and predicts unique output count for each of the 21 patches.
The count predictions are kept in accordance with the classifier supervision and the total count loss is
optimized through all the image levels.

Figure 3. CountSeg architecture for boll counting. The two branches, classification branch and density
branch, are jointly trained using image-level lower-counts (ILC) supervision. The pseudo ground
truth is generated by classification branch to supervise the output of density map with the help of
spatial and global loss functions.

CountSeg architecture is jointly trained end to end with the help of image-level lower-
counts (ILC) supervision [38]. The main objective of the joint training is to minimize the
total loss that consists of three loss terms (Equation (2)).
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L = Lclass + Lspatial + Lglobal (2)

The term Lclass denotes the loss of the classification branch which is trained with the
supervised class labels. The class labels were extracted from point labels, where a count
greater than zero was considered as presence label and count equal to zero was given an
absence label. The peaks generated from the classifier alone contain a large number of
false positives. To address the issue, the lower-level count information is incorporated to
generate the pseudo ground truth for training the density branch. The term Lglobal helps
to reduce the error between predicted count and ground truth count whereas the term
Lspatial ensures that all the individual object instances are localized properly. Detailed
implementation of these loss functions can be found at [19].

Figure 4 shows the overall workflow for boll counting. The full-scale raw images were
pre-processed into image tiles (Section 2.1), which were annotated with instance masks,
point labels, or binary (presence or absence) labels. The classification labels and image-level
counts were derived from point label counts. Two fully supervised (Mask R-CNN and
S-Count) and two weakly supervised (WS-Count and CountSeg) counting methods were
trained on the respective annotated image tiles. The intermediate and final stage output of
each method can be visualized by instance masks and feature maps that are used to obtain
the final boll count. The total count for an entire plant image was calculated as the sum of
counts from all the tiles. Although the question of counting a single boll multiple times
may arise, very few instances of such case were observed in the raw dataset. To verify this,
the 5 held out images were tested in an end-to-end fashion.

2.5. Boll Counting
2.6. Evaluation Metrics

The performance of boll counting from the two supervised (Mask R-CNN and S-
Count) and two weakly supervised models (WS-Count and CountSeg) was compared in
terms of counting accuracy and annotation efficiency. The boll counting task was evaluated
on validation and test sets explained in Table 2 with 200 and 84 image tiles in each set,
respectively. To eliminate any random errors, each of the four models was trained five times
by changing random initialization and data shuffling. The evaluation methods include:

(1) Absolute counting error and root mean squared error. Counting error is the
difference between the ground truth and predicted count, which was visualized with an
error histogram. As each model was trained five times with varying prediction results, the
error for a single image was computed by taking the median of the five predictions.

In addition to the absolute counting error, the root mean squared error (RMSE)
(Equation (3)) was computed to measure the spread of the error. RMSE provides the
same unit (i.e., boll count) as the absolute error and penalizes outliers more compared to
absolute error, which is desirable in this case for counting bolls in a smaller range.

RMSE =
√

MSE =

√√√√ 1
N

N

∑
i=1

(Groundtruth counti − Prediction counti)2 (3)

(2) Linear regression. Linear regression analyses with least squares method were
conducted to evaluate the correlation between the predicted and the ground truth. The
fitted line was compared with the standard Y = X line along with corresponding R2 values.

As several image tiles have the same boll count, the scatter plot took the form of a
bubble plot, in which the radius of the bubble depicted the number of samples representing
the corresponding point.

(3) Annotation time. One of the purposes of this study was to obtain accurate and
precise boll counts with minimum annotation effort. While annotating the image tiles, the
time required was manually recorded for each of the annotation approaches by a single



Sensors 2022, 22, 3688 9 of 17

annotator. These measurements can be used to compare the performance of supervised
and weakly supervised approaches with respect to the efforts to properly train the models.

Figure 4. Overview of the boll counting workflow.The image tiles generated after pre-processing
were labelled with point and mask labels. The classification labels (X and ×) and image-level boll
counts (1, 2, 3. . . ) were derived from point label counts. Two fully supervised and two weakly
supervised counting methods were trained on the image tiles’ training set (Table 2). The intermediate
and final stage output of each methods can be visualized by instance masks and feature maps that
will be used to obtain final boll count. In this example, the raw image (top row) contains 34 cotton
bolls which were predicted accurately by both the Mask R-CNN and CountSeg Methods.
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2.7. Implementation Details

The Mask R-CNN network was built using Matterport’s [39] tensorflow implementa-
tion and the further experiments were performed by tuning the hyperparameters with a
small sample size. To keep the model simple, ResNet-50 was used as feature extractor with
pre-trained weights on COCO dataset. The remaining parameters were kept unchanged
from the original implementation. The model was trained using SGD optimizer and a
fixed learning rate of 0.001. The 300 training images were augmented with the help of
image augmentation library [40]. The augmentations were randomly selected from flip,
rotate, blur, and scale operations. Another supervised model, the S-Count network, was
trained with the counts obtained from point labels with the feature map size, N = 6 to
8. Two weakly supervised models, WS-Count and CountSeg methods, were primarily
implemented based on the codes provided by the authors [41,42] with a modified feature
map layer to fit the boll data. For the classifier PAC and entire WS-Count model, N = 6
was observed to perform better and thus used for further experiments. At first, the PAC
was trained with the help of class labels extracted from the point labels to yield a robust
classifier that can be used for supervising WS-Count architecture. To train the WS-Count
network, SGD and Adam optimizers were tested with a learning rate of 0.0001. The rest of
the parameters were unchanged from original implementation. For CountSeg, ResNet-50
was used as the backbone feature extractor to keep the model more lightweight than the
original implementation. In addition to replacing the backbone, the size of channels for
the 1 × 1 convolution filter was chosen to be 60, as it offered significant counting per-
formance gain. The network was optimized using SGD optimizer with a learning rate
of 0.001. All of the above mentioned models were trained on computer cluster nodes
with Nvidia Tesla P100-PCIE-16GB GPU cards at Georgia Advanced Computing Resource
Center (GACRC) [43].

3. Results and Discussion
3.1. Model Performance on Boll Counting Accuracy

The histogram of error distribution revealed that the mean errors of the two supervised
models (S-Count and Mask R-CNN) were closer to zero and had less spread of error than
those of the two weakly supervised models (Figure 5). For example, the majority (99%)
of counting errors for the supervised methods were within ±3, whereas only 93% of the
images had the counting error within this range for weakly supervised methods. However,
the spread of errors for CountSeg are comparable to that for both the supervised methods.
Errors on the positive side signified the under-counting by the methods within a certain
range. This can be attributed to the fact that the weakly supervised models were not directly
trained on actual boll counts but were trained on the presence or absence of bolls.

If the data contained fixed-sized objects and the subitizing range could be increased,
then this under-counting could be reduced. However, in the case of bolls, the images in
this dataset had large variations in boll size, shape, and depth that limited the subitizing
range to [0, 10].

The linear regression analyses (Figure 6) show that although the supervised methods
performed better than weakly supervised methods, CountSeg achieved a comparable
performance with Mask R-CNN and S-Count. The WS-Count network that combines the
MB-PAC and S-Count (a regression network) learns to regress the total count with the help
of PAC and thus performs according to expectations.

Comparisons of mean RMSE of the four models on the test set revealed that the
weakly supervised methods performed well within the subitizing range ([0, 10]) but were
far less accurate than the supervised methods when boll counts were greater than ten
(Table 3). It should be noted that as the boll number grew, all the methods showed more
errors as the images with higher numbers of bolls were likely to contain occlusions, closely
placed bolls, or visually challenging instances that were hard to detect without any depth
information. Overall, the mean RMSE values of the weakly supervised methods were close
to the supervised methods despite being trained with a minimum amount of supervision.
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Figure 5. Error histograms from median predictions given by each method. Error is computed
as the difference between the ground truth count and median of predicted counts from five
model variations.

Figure 6. Bubble plots and linear regression between ground truth and predicted boll counts. The total
boll count from 200 validation images is shown to demonstrate counting capabilities of the method.
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To verify the performance of the end-to-end counting approach, these models were
compared with respect to the total boll count on full scale images (Table 4). The outputs of
one weakly supervised method (CountSeg) and one supervised method (Mask R-CNN)
were illustrated on images representing the dataset of in-field and potted plants taken
under different conditions (Figure 7). For example, image Boll_008 was taken from a tilted
angle such that the plant casts shadows of the bolls on the ground, creating a false boll
instance in the image. In this case, all of the methods show random performance as the
boll count varies largely for each model. Supervised methods, such as Mask R-CNN,
overestimated the count because of the false predictions of masks to shadows, whereas
CountSeg underestimated the number because of occluded bolls forming a single peak.
Image Boll_022 depicts an irregularly shaped cotton plant that has visually distinguishable
cotton bolls and every patch in the image has a different background texture. The top
part of the image has bolls on the far background, which produce noisy input, and all the
models misdetected a few of those bolls in the background as true bolls belonging to the
plant in final predictions. Nevertheless, because of the clear separation between bolls, one
weakly supervised method (CountSeg) and Mask R-CNN give predictions close to the
actual ground truth. In fact, CountSeg yielded better counts on all 5 of its model variations
than S-Count and Mask R-CNN.

Table 3. Testing set boll counting mean RMSE along with standard deviation for different methods
with respect to boll count per image.

Boll Count/Image 0 [1–5] [6–10] [11–15] Total

Train/Test split 919/50 1852/102 710/42 231/6 3712/200

S-Count 0.582 ± 0.25 1.069 ± 0.16 1.556 ± 0.26 2.430 ± 1.04 1.181 ± 0.16
WS-Count 0.708 ± 0.07 1.431 ± 0.25 2.489 ± 0.23 5.314 ± 0.39 1.826 ± 0.05
CountSeg 0.286 ± 0.06 0.869 ± 0.02 1.978 ± 0.14 3.805 ± 0.45 1.284 ± 0.08

Mask R-CNN 0.566 ± 0.20 0.982 ± 0.04 1.586 ± 0.42 2.884 ± 1.03 1.175 ± 0.20

Table 4. Hold-out test set average boll count with std. deviation for the five models of each method.
These images represent the entire plant under various conditions.

Image ID Boll_008 Boll_022 Boll_041 Boll_116 Boll_127

Actual Count 41 34 100 20 22

S-Count 43.6 ± 4.22 41.8 ± 11.12 87.8 ± 7.50 16.4 ± 1.67 21.4 ± 1.67
WS-Count 48.2 ± 1.31 40.2 ± 3.49 86.4 ± 2.79 23.2 ± 1.48 18.8 ± 1.30
CountSeg 37.8 ± 2.49 34.2 ± 0.84 81.8 ± 3.56 17.0 ± 0.00 18.0 ± 1.414

Mask R-CNN 46.0 ± 6.16 34.8 ± 1.90 89.0 ± 3.94 17.2 ± 0.84 21.2 ± 0.45

One of the challenges for this end-to-end processing pipeline was to handle crowded
bolls in a single image, as can be seen in image Boll_041. All the methods underestimated
the total count for the image because this image is visually difficult for counting in 2D
viewpoint. Nevertheless, the counts obtained from WS-Count show least variation and are
close to the predictions of supervised counts. Extending the application to indoor potted
plants (Boll_116), both supervised and weakly supervised methods show highly precise
counting performance. The accuracy is slightly lower as the background and illumination
contribute to the noise in the image, which lead to a reduced spatial context that can be
used to separate boll instances. On the other hand, potted images in outdoor conditions
(Boll_127) are slightly easier to process as the boll instances are less occluded by the
background and illumination. In conclusion, supervised methods performed slightly better
in adverse image conditions but the weakly supervised methods without adequate spatial
context during training were able to localize most of the boll instances, even in adverse
conditions such as noisy background, large boll population, and changing illuminations.
The CountSeg method produces highly accurate density maps which can be combined with
a proposal ranking method to achieve weakly supervised instance segmentation (Figure 7).
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The instance masks produced by CountSeg can be compared with the masks obtained from
Mask R-CNN, thereby replacing the intensive supervised method with a low-cost weakly
supervised method.

Figure 7. Comparison of CountSeg and Mask R-CNN. This shows the output from CountSeg density
maps and prediction instance masks from Mask R-CNN for 5 held-out test samples (starting from the
top row): Boll_008, Boll_022, Boll_041, Boll_116, Boll_127, respectively. It can be observed that even
with lower supervision, CountSeg was able to retain the spatial contexts for most of the bolls.
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3.2. Annotation Time Comparison

Average annotation time was compared among three annotation methods (mask, point,
and class labels) and the class annotation method showed a clear advantage (Figure 8).
For annotating instance masks, the annotator must draw exact polygons that cover all the
pixels in that instance. As a result, the time required to annotate a single instance varies
according to the size, shape, and visual separability from other boll instances. The time
required to annotate an image increases significantly as the number of bolls in the image
increases. In the case of point labels, the annotator is required to click/draw a single point
for a single instance, which can be done in a comparable amount of time for a fixed number
of bolls per image. The time required to annotate an image increases moderately as the
number of bolls in the image increases. The class labels, in contrast, are the simplest form
of annotation in which the annotator can simply select “yes” or “no” for the presence or
absence of the object instance, respectively. Irrespective of the boll count per image, on
average class labels require approximately 2 s per image.

It can be seen that point labels are at least 10 times faster for the images with boll counts
in the subitizing range ([0, 10]) and at least 15 times faster for images beyond the counting
range than the mask labels. This essentially allows researchers to use more raw data in the
training process given the fixed amount of time. In terms of boll counting, the performance
gap between fully supervised and weakly supervised seems acceptable, considering the
huge advantage with respect to annotation costs and the potential to significantly increase
the training data. Experimentation with current weakly supervised methods to improve
the spatial consistency, such as the use of the Generative Adversarial Networks (GAN)
along with the WS-Count architecture, may result in an even better performance in the
future [44].

Figure 8. Comparison of annotation time of three types of labels. The time taken for annotating an
image tile was measured with respect to the boll count in that image tile. A sample set of 10 images
per boll count was considered and the average times were reported for point labels whereas the box
plots represent the range of time taken by mask labels for the same boll count.

3.3. Discussion

This study investigated both the supervised deep learning methods and weakly
supervised learning approaches for cotton boll counting from low-cost RGB images with
satisfactory results. Previous studies used traditional image processing techniques or
machine learning methods that required hand-crafted features [15,18]. Many customized
parameters and computationally intensive methods, such as shape transforms, split-and-
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merge, and density-based spatial clustering (DB-SCAN) in the previous studies make these
algorithms less robust for testing on different datasets. In contrast, our approaches can
learn the features automatically in an end-to-end fashion and are robust on unseen datasets.

Our study revealed that supervised and weakly supervised approaches had different
annotation costs. With minimum efforts spent in data annotations, weakly supervised
methods achieved comparable performance with a supervised approach under similar
inference conditions. Furthermore, the intermediate results obtained from the peak re-
sponse maps could easily be used for the semantic segmentation problem, and, if provided
with object proposals, the peak response maps can perform instance segmentation at the
annotation cost of classification.

On the other hand, while working with weakly supervised methods for boll detection,
a few questions remain open for discussion, such as occlusion handling, identifying in-
stances in high density of cotton bolls, and real-time in-field detection of bolls. Supervised
segmentation of cotton bolls showed better performance in dealing with occlusions and
counting densely populated cotton bolls as they learn from precise instance boundaries.
However, the proposed weakly supervised methods do not have the instance boundaries
from which to learn, so instead they aggregate the peaks observed in the boll feature maps,
making them prone to under-counting in such scenarios. The advancements in current
WS-Count architecture [44] to handle high density and occlusions can help answer those
questions with a few modifications in the current experimental setup. Furthermore, be-
cause the data annotated for weakly supervised methods is easy to reproduce and can be
reused across a variety of different algorithms, one can try an ensemble of these methods
to obtain the best match for their counting task, for example, boosting the boll counting
weak detector with a pre-trained source, that was trained for a similar task, with the help
of knowledge transfer [45]. This may help to solve the problem of the dense population of
cotton bolls and the occlusions caused by other organs through the incorporation of the
instance boundary knowledge of a strong base learner.

Three-dimensional point cloud data encompass the missing depth information from
2D images and thus are considered as an alternative to address the 2D overlapping struc-
tures and occlusions by other plant parts [46]. For instance, 3D point clouds obtained from
a cotton plant can be segmented with the help of deep learning to accurately segment the
organs to perform more intricate trait extraction [47]. However, 3D data collection typically
involves more expensive instruments (such as LiDAR) and takes a longer time to process
(such as the photogrammetry methods) than RGB images. Furthermore, pre-processing and
post-processing of 3D data require more skills and computational resources. Considering
these factors, the proposed method using RGB images is a low-cost and effective way to
perform the initial field analysis and to estimate boll counts.

4. Conclusions

In this work, both the supervised and weakly supervised deep learning models
achieved promising results in cotton boll counting from proximal images. With the help
of manually annotated datasets for segmenting and counting cotton bolls, a supervised
boll instance segmentation pipeline was developed and it achieved excellent segmentation
performance. Weakly supervised approaches were tested and achieved slightly lower
performance in boll counting than the supervised models, but their annotation cost was
10 times lower than that of supervised methods. This significant saving in annotation cost
makes it possible to train a large dataset to boost the performance of the weakly supervised
learning models. Future work will be directed toward training models with high resolution
data and measuring more fine-grained cotton plant and boll phenotypic traits such as main
stalk, node number, branch angle, and internode distance. The supervised and weakly
supervised deep learning models for boll counting with low-cost RGB images can be
used by cotton breeders, physiologists, and growers alike to improve crop breeding and
yield estimation.
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