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Abstract

Background: Blood service agencies depend upon the availability of regular blood

donors for sustainability. The knowledge and understanding of the stochastic

behavior of donors is the first step toward sustaining the blood supply. Analyzing the

changes in the donor status within the donor pool will help the blood service

authorities to manage the blood donation process.

Objectives: The study presents a multistate Markov jump model in analyzing the

changes in blood donor status during their blood donation career. Relevant

covariates are used to aid in explaining the transitions.

Materials and Methods: The status of a blood donor i that can be in one of four

states S = {1; 2; 3; 4}. A new donor (s = 1), repeat/regular donor (s = 2), occasional

donor (s = 3), and lapsed donor (s = 4). A Continuous‐time Markov model was used to

estimate blood donor progression during their blood donation career. Frequencies of

blood donations made in a given time interval determines the state occupied.

Results: In the early years of blood donation career, first‐time donors have a higher

likelihood of becoming regular donors. Donor attrition increases with time whilst

donor retention decreases with time. The results show that when the jump process

is currently in an occasional state, the probability that it moves into lapsed state

when it leaves the occasional state is given as 69.06%. Similarly, donors are

forecasted to spend 21.193months (1.8 years) in the occasional state before lapsing.

Repeat donors can spend 39.342months (3.3 years) in the regular state before the

transition to other states. The study established that donor‐specific demographic

factors such as age and gender are critical in donor status transitions.

Conclusions: With the passage of time, donor status evolves, with trend inclined

towards reduction in the frequency of blood donations as more donors become

inactive or lapsed. The transition of donors in various states can be described by a

time homogeneous Markov model.
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1 | INTRODUCTION

The blood supply chain is facing a dual problem of ever‐increasing

demand for blood and the sometimes dwindling number of blood

donors.1,2 Many countries have continued to experience a decrease

in number of blood donors yearly resulting in blood inventories

instability. In the Netherlands, for example, approximately 10% of

blood donors lapse each year.3 In Australia, studies have shown that

nearly a third of first‐time blood donors never return to donate

blood.4 As alluded by Schreiber et al.,5 there is need to establish

reasons why approximately half of first‐time donors give blood once

and never return. For example, in the United States, 8% of donors

give blood regularly while an estimated 62% of first‐time donors

never return to donate at the same center of their first donation.6

Previous studies indicated that regular or repeat donors are

crucial for sustainability of the blood industry when compared to new

donors who are associated with uncertainty in the quantity and

safety of the donated blood.7 Regular donors are a key resource in

maintaining a safe and sufficient blood supply as they contribute

immensely to blood donations during their lifetime.5,6 Therefore,

blood collection agencies should strive to retain regular donors as

they are safer and more cost effective than new or unregular

donors.8 It is essential to continuously recruit new donors to replace

those who drop or retire from the donation career.9

The frequency of donations and intentions to donate is not easily

predictable and can be regarded as stochastic random variables.

Blood collection agencies could gain insights into the stochastic

characteristics of blood donors and their stochastic behavioral

patterns in blood donation. To predict the dynamics of the blood

donor status in the donor pool, a prediction and modeling

mathematical tool is necessary. The movement of blood donors in

their donor career possesses stochastic characteristics and that can

be modeled as a Markov jump process. Markov jump process

modeling is a typical example of stochastic modeling which describes

a sequence of transitions from one state to another in continu-

ous time.

Blood donation is regarded as a career with a blood donation

cycle, a donor stays in a given state for a certain period, moves to the

next state or leaves the donation system on retirement or due to

some other circumstances. The status i of a blood donor can be in

one of four states S = {1; 2; 3; 4} at any one time point. A new donor

(s = 1), repeat/regular donor (s = 2), occasional donor (s = 3), and

lapsed donor (s = 4). Blood donors move between these states with

transition rates that depend on donor population characteristics and

factors that motivates blood donation. Analyzing the dynamics of the

blood donors in each category or status/state within the donor pool

will help the blood authorities to plan on donor recruitment drives,

donor retention, and making estimations of the blood units they are

likely to collect.10

There is hardly any literature on the application of Markov jump

processes in modeling transitions in status of blood donors in

Zimbabwe's blood service system. The theoretical and practical

framework for applying a Markov jump process model in this study

helps to explain the migration and dynamics of blood donors from

one state to another and how it impacts on the blood supply in a

blood service center.

A study by Dyantikapm11 applied a hidden Markov model in

analyzing blood donation behavior of blood donors. The hidden

Markov model approach was suitable for the study because it

accommodated the time‐varying feature on the data. Results showed

that significant numbers of both males and females did not return to

donate blood after their first‐time donation. The results further

showed a high dropout rate in blood donation over time. A study to

establish the variation in blood supply and demand was conducted by

Abubakar et al.12 They developed a stochastic model based on

transitions among the various states. The model incorporated three

donor groups namely; first time, sporadic and regular donors. The

results showed that, of the first‐time donors who did not leave the

system, only 28% became regular donors and the rest became

sporadic donors.

A study by Bar‐Lev et al.13 focused on the application of a

Markov model with a first order dependence in blood transfusion in a

city hospital. The blood groups formed the state space of the model.

Their model sought to optimize the donation and transfusion of blood

considering the different blood group types and the various cross‐

matching permutations. Results showed that blood group AB was the

most demanded blood type, followed by blood groups B, A, and O in

that order. Transition probabilities from the results showed little

change in future demand for blood transfusion at the hospital. A

stochastic model for a blood bank in which the quantities of blood are

supplied and demanded according to stochastic processes was

developed by Hosseinifard et al.14

The goal of this study is to present/apply the multi‐state Markov

modeling as an option analyzing donor behavior in Zimbabwe. The

model involves estimating blood donor progression during their blood

donation career using the frequencies of blood donations made in

each time interval to determine the Markov states. The outcome of

the research is expected to provide Zimbabwe blood service

managers with a decision support system to manage blood donor

recruitment, attrition, and retention. It could enable the prediction of

future proportions of blood donors in different categories and add

new knowledge to existing literature on blood donors' attrition and

retention, not only in Zimbabwe, but the region and similar countries

throughout the world.

The sections in this study are organized as follows, Section 2

presents methods in data collection and the methodology. Section 3

focuses on data analysis and results. Section 4 presents discussions

and conclusions are in Section 5.

2 | MATERIALS AND METHODS

This section describes the sampling, data gathering tools, data set,

and the data analyzing tools.

A retrospective study was conducted on the blood donors

selected from the National Blood Service Zimbabwe's (NBSZ) head
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office database in Harare. The head office data is assumed to contain

a diversity of characteristics of the blood donors in Zimbabwe's

donor population.

2.1 | Description of the data

The study is based on blood donations data collected in Harare,

Zimbabwe over a period of four years, from January 1, 2014 to

December 31, 2017. The sample size was calculated by using the

Taro Yamane formula, stated as ( )n =
N

N e(1 + * )2
, where n is the sample

size, N is the population of the study and e is the error in the

calculation (95% or 0.05). A total of all the 8312 new voluntary and

non‐remunerated blood donors in 2014 were retrieved from the

donors' database thus forming the study population. From the Taro

Yamane formula, the sample size was found out to be 382 and was

increased by an additional 68 donors to 450 donors to improve the

accuracy of the estimates. Random sampling was then used to select

the objects of the study. The donors' specific data on donor

identification number, age, sex, number of donations each year,

interval between whole blood donations and blood group were

extracted as secondary data from the NBSZ database. Of the 450

new blood donors, 15 lapsed blood donors were excluded from the

analysis because they had resumed donation after lapsing. The

analysis assumed lapsing to be an absorbing state. The donors were

classified according to the number of times they donated blood

within a cycle of 12 months for a period of four years from 2014 to

2017. The donors were analyzed after every 12months to establish

their donation frequencies in each year. Once donation enter the

lapsed state, no further donations were made thus resulting in 1812

observations.

Statistical analysis was performed using the R software which is

an inbuilt msm package version 1.4 developed by Jackson.16

2.2 | Definition of states in the Markov chain

The blood donor status is defined according to the number of times

each donor gave blood within a given period as per theWorld Health

Organisation standards.15

The four identified major types of donors in the National Blood

Service Zimbabwe blood system are, new or first‐time donors, regular

or repeat donors, occasional or sporadic and lapsed or inactive

donors.

New donor (State 1): donor giving blood for the first time.

Regular/repeat/returning donor (State 2): donor who gives two or

more donations within 12months.

Occasional/sporadic donor (State 3): donor who gives blood

sporadically once in 12months and skips other cycles.

Lapsed donor (State 4): donor who has not donated or presented

to donate blood for a period of 24months from the date of their last

donation.

2.3 | Model formulation and structure

The model is based on a continuous time Markov process with four

states. Consider the status i of a blood donor that can be in one of

four states S = {1; 2; 3; 4}. The donor categories are described as new

donor (s = 1), repeat/regular donor (s = 2), occasional donor (s = 3),

and lapsed donor (s = 4). A blood donor enters the blood donation

system as first‐time donor, then either becomes a repeat donor or

occasional donor before lapsing.

The transitions from state i to state j are governed by a set of

transition intensities.

Let aij be defined by

a λ P i j= × , .ij i ij 

Since λi is the rate at which the process leaves state i and Pij is

the probability that it goes to state j, it follows that aij is the rate

when in state i, that the process makes a transition into state j. Hence

aij is called the transition rate from i to j.

Since P∑ = 1j i
r

ij= , it follows that

∑λ a= .i
j i

r

ij
≠

Let Tij be the time the process spends in state i before entering

state j(≠ i). The time Tij is exponentially distributed with rate λi.

Let T̃i be the sojourn time in state i.

Consider a short time interval ∆t and since Tij and T̃i are

exponentially distributed, we have,

∆ ∆ ∆∆P t T t e λ( ) = P( ̃ > ) = ≈ 1 − t,ij i
λ t

i
− i

∆ ∆ ∆∆P t T t e λ t( ) = P( ≤ ) = 1 − ≈ ,ij ij
λ t

i
− i

when ∆t is small.

Therefore,

∆

∆

∆

∆∆ ∆

P t

t
lim

P T t

t
λlim

1 − ( )
=

( ̃ < )
= ,

t

ii

t

i
i

→0 →0

∆

∆

∆

∆∆ ∆

P t

t
lim

P T t

t
a i jlim

( )
=

( < )
= for ≠ .

t

ij

t

ij
ij

→0 →0

Then the transition rates aij can be presented as a matrix:













⋯

⋮ ⋮ ⋮ ⋮
⋯

Q

a a a
a a a

a a a

…
r

r

r r rr

11 12 1

21 22 2

1 2

 

where the diagonal elements are aii = −λ a= −∑i j i
r

ij≠ .

The entries of row i of the transition rate matrix A are the

transition rates out of state i ( j≠ i).

These are called departure rates from state i. The rate a− ii = λi is

the sum total departure rate from state i. The sum of the entries in

row i is always equal to 0,  i ∈ S.
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By using the Markov property and the law of total probabil-

ity, then

Ɐ ∈
∈

∑P t s P t P s i j S t s( + ) = ( ) ( ) , , , > 0.ij
k S

r

ik kj

These equations are known as the Chapman–Kolmogorov

equations.

To find Pij (t) we start by considering the Chapman–Kolmogorov

equations

∈

∑P t P t P t( + Δt) = ( ) (Δ ).ij
k S

ik kj

We consider

∆ ∆ ∆∑P t t P t P t P t P t P t( + ) − ( ) = ( ) ( ) − [1 − ( )] ( ).ij ij k S ik kj jj ij

By dividing by ∆t and then taking the limit as ∆t → 0, we obtain











∈

∑
P t t P t

t
P t

P t

t

P t

t
P tlim

( + Δ ) − ( )

Δ
= lim ( )

(Δ )

Δ
−
1 − (Δ )

Δ
( ) .

Δt

ij ij

t k S
ik

kj jj
ij

→0 Δ →0

Since the summing index is finite, and by interchanging the limit

and summation, we obtain the Kolmogorov forward equations.

∈ ∈

∑ ∑P t a P t λ P t P t a′ ( ) = ( ) − ( ) = ( ) ,ij
k S

kj ik j ij
k S

ik kj

where a λ= −jj i.

The transition between the states is shown in the transition

diagram in Figure 1 below:

The problem under study is formulated as a multi‐state model

with four states as illustrated in Figure 1. At time t, the blood

donor is in state S(t) and the arrows show possible transitions

between the states.

The frequency of blood donation within a cycle by a blood donor

determines the status or type of blood donor.

The transitions of blood donors among the states can be

expressed as a generator matrix Q given below.












Q

σ μ σ μ

β β

γ γ ω ω
=

− − 0

0 − 0

0 − −

0 0 0 0

.

A blood donor can move from state 3 to 4. However, one could

still have a transition intensity from some states being equal to zero in

the Q matrix. It is impossible for a donor to return to state 1.

The intensity matrix Q is then used to fit the multi‐state model to

the data.

The transition rate matrix can be used to establish the transition

equations among the blood donor type state i at time t using

stochastic differential equations (SDEs).

The SDEs are derived from the Chapman–Kolmogorov equations.

SDEs can be formed using the generator matrix Q. The SDEs in

turn give rise to formulas used for calculating transition probabilities.

Theorem 1. Kolmogorov forward equations

For a continuous‐time Markov jump process, X t{ ( )}t≥0, with a

transition intensity matrix Q a= { }ij i j S,  and transition probability

P t{ ( )}ij i j S,  , it always holds that the solution to:

∈

∑P t P t a P t Q′ ( ) = ( ) = ( ) ,ij
k S

ik kj

is given by:

∫ ∑P t λ t δ P t v a λ v dv( ) = exp(− ) + ( − ) × × exp(− ( ))i ij

t

k j
ik kj i

0
≠



The theorem is proven by starting from the solution and show that the

stochastic differential equation holds.

Proof.

Since X s j( ) = , then by minimal construction, the waiting time to

the final jump follows an exponential distribution with the rate

λ a= −i jj and the solution is written as:

∫ ∑P t λ t δ P t v a λ v dv( ) = exp(− ) + ( − ) × × exp(− ( ))i ij

t

k j
ik kj i

0
≠



By change of variables, u t v= − the equation becomes:













∫

∫

∫

∑

∑

∑

P t λ t δ P u a λ t u du

λ t δ P u a λ u λ t du

δ P u a λ u du λ t

( ) = exp(− ) + ( ) × × exp(− ( − ))

= exp(− ) + ( ) × exp( ) × exp(− )

= + ( ) × exp( ) × exp(− ),

i ij

t

k j
ik kj i

i ij

t

k j
ik kj i i

ij

t

k j
ik kj i i

0
≠

0
≠

0
≠F IGURE 1 Transition rates diagram among the states

4 of 11 | CHIKOBVU AND CHIDEME



where δ i j= 0, ≠ ,ij and δ = 1.ii The integral is continuous in t since its

integrand is bounded on finite intervals, and so P t( )ij is continuous.

Then the integrand is continuous and so the derivative of the

integrand exists implying that P t( )ij is differentiable in t. Taking the

derivatives gives:























∈

∫ ∑

∑

∑ ∑

∑

P t δ P u a λ u du λ λ t

P t a λ t λ t

λ P t P t a P t a P t a

P t a P t Q

′ ( ) = + ( ) × × exp( ) × [− exp(− )]

+ ( ) × × exp( ) exp(− )

= − × ( ) + ( ) = ( ) + ( )

= ( ) = ( ) .

ij ij

t

k j
ik kj i i i

k j
ik kj i i

i ij
k j

ik kj ij jj
k j

ik kj

k S
ik kj

0
≠

≠

≠ ≠

Here are four examples of the SDEs, P t P t′ ( ), ′ ( )11 12 , P t′ ( )23 and

P t′ ( )34

∈ ∈

∑ ∑P t P t a P t P t a P t a P t a

P t a P t a P t a

a a and a

λ P t λ

ɑ = ɑ = ɑ = ɑ = ɑ = ɑ = ɑ = ɑ = 0

′ ( ) = ( ) ′ ( ) = ( ) = ( ) + ( )

+ ( ) + ( ) = −(ɑ + ɑ ) ( ) since

= = = 0, = −(ɑ + ɑ )

= − ( ), since = ɑ + ɑ .

ij
k S

ik kj
k S

k k

21 31 41 14 24 42 43 44

11 1 1 11 11 12 21

13 31 14 41 12 13 11 21

31 41 11 12 13

1 11 1 12 13

∈

∑P t P t a P t a

P t a P t a P t a a P t

λ P t a P t a λ

′ ( ) = ( ) = ( )

+ ( ) + ( ) + ( ) = ( )

− ( ) + ( ) since = − , ɑ = 0.

k S
k k12 1 2 11 12

12 22 13 32 14 42 12 11

2 12 32 13 22 2 42

∈

∑P t P t a P t a P t a P t a

P t a a P t a P t a P t

a P t a P t a P t a a P t

a a a a a P t

a P t λ P t λ a a

′ ( ) = ( ) = ( ) + ( ) + ( )

+ ( ) = ( ) + ( ) + ( )

+ ( ) = ( ) + ( ) − ( + ) ( )

since = 0, = −( + )= ( )

+ ( ) − ( ), since = +

k S
k k23 2 3 21 13 22 23 23 33

24 43 13 21 23 22 33 23

43 24 13 21 23 22 32 34 23

43 33 32 34 13 21

23 22 3 23 3 32 34

∈

∑P t P t a P t a P t a P t a

P t a P t a

′ ( ) = ( ) = ( ) + ( ) + ( )

+ ( ) = ( ) since ɑ = ɑ = ɑ = 0

k S
k k34 3 4 31 14 32 24 33 34

34 44 33 34 14 24 44
□

2.3.1 | Probability that the process goes into state j
when it leaves state i

The estimated value of transition intensities will enable the

determination of the probabilities that the donor will be in state j

next given that the blood donor was in state i. If the jump process is

currently in state i, the probability that it moves into state j when it

leaves the state i is expressed as:

p =ij λ

ɑij

i
, where λ = ∑ ɑi j S ij for each i and j, such that i j≠ is the

total force of transition out of state i.

For example, p = =
λ12

ɑ

ɑ + ɑ

ɑ12

12 13

12

1
, since λ = ɑ + ɑ1 12 13.

2.3.2 | Expected holding times

The expected holding time in each state, also known as the mean sojourn

time, is the average time an individual donor spends in each state in a

single stay before making a transition to another state. This is estimated

by
λ

1

i
, where λ = ∑ ɑi i j ij≠ is the sum total force of transition out of state i.

2.3.3 | Total time spent in each state

The total waiting time is useful in calculating the estimates of the

parameters σ μˆ , ˆ , β̂, γ̂ , and ω̂ using the maximum likelihood method.

Let:

T =Ni Waiting time of the ith donor in new state

T =Ri Waiting time of the ith donor in regular state

T =Oi Waiting time of the ith donor in occasional state

U =i Number of transitions New→ Regular by the ith donor

V =i Number of transitions New→ Occasional by the ith donor

Z =i Number of transitions Regular→ Occasional by the ith donor

X =i Number of transitions Occasional→ Regular by the ith donor

Y =i Number of transitions Occasional→ Lapsed by the ith donor

We also define totals as:

∑ ∑ ∑T T T T T T= , = , = ,N
i

N

Ni R
i

N

Ri O
i

N

Oi
=1 =1 =1

∑ ∑ ∑ ∑U U V V Z Z X X= , = , = , = ,
i

N

i
i

N

i
i

N

i
i

N

i
=1 =1 =1 =1

∑Y Y= .
i

N

i
=1

Using lower case symbols for the observed samples, it can be

shown that the likelihood given the parameters, σ μ ε γ β ω, , , , , for the

model is proportional to:

∏L σ μ γ β ω e e e σ μ β γ ω( , , , , ) =
i

N
σ μ T γ T β ω T u v x z y

=1

−( + ) −( ) −( + )Ni Ri Oi i i i i i

( )( )e e e σ μ β γ ω= ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑σ μ T γ T β ω T u v x z y− + − − +Ni Ri Oi i i i i i

e e e σ μ β γ ω= .σ μ T γT β ω T u v x z y−( + ) − −( + )N R O

Where u u v v z z x x y y= ∑ , = ∑ , = ∑ , = ∑ , = ∑i i i i i

The likelihood function L σ μ γ β ω( , , , , ) for the ith donor reflects:

• The probability of the donor remaining in the new state for total

time TNi, in the regular state for total time TRi and in the occasional

state for total time TOi, giving the factors e σ μ T−( + ) Ni, e andγ T−( ) Ri

e β ω T−( + ) Oi respectively.

• The probability of the donor making the relevant number of

transitions between states, giving factors σ μ β γ ω, , , andu v x z yi i i i i.
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Factorizing the likelihood into functions of each parameter

gives:

L σ μ γ β ω e σ e μ e γ e β

e ω

( , , , , ) = ( ) × ( ) × ( ) × ( )

× ( ).

σT u μT v γT z βT x

ωT y

− − − −

−

N N R O

O

Taking logarithms, gives the log‐likelihood:

T γT β ω T u σ v μ

x β z γ y ω

log L = −(σ + μ) − − ( + ) + log + log

+ log + log + log ).

N R O

Differentiating with respect to each of the five parameters

gives:

L

σ
T

u

σ

L

μ
T

v

μ

∂ log
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Equating each derivative to zero and solving the equations gives:
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To obtain the maxima, the Hessian matrix should be negative

definite, that is the eigenvalues of the Hessian matrix are all negative.

The Hessian matrix is obtained from second derivatives, thus:
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Hence, we consider the matrix
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Since this is a negative definite matrix, the maximum likelihood

estimates of σ μ γ β ω, , , , are:
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y

T34
(0)

O
. The 0 in the superscript has now been added to

denote baseline parameter estimates in the absence of covariates.

When the covariates are added, the notation becomes aij.

3 | RESULTS

The data is recorded and analyzed as a series of observations for each

donor. The variables in the data frame are: donor identification

number (donor_ID), time of observation and donor state (state),

defined by reference to frequency of donation per annum. In fitting

the multistate Markov models, data analysis was conducted using R

version 4.0.3 and the msm package.16 This section gives a summary

of the results obtained from the analysis of the data based on the

model given in Figure 1. The donor transitions, starting from first time

or new donors and their evolution overtime is studied.

Donor retention rates are expressed as the percentage of blood

donors who return to donate in each subsequent period while

attrition is the percentage of blood donors that the blood service

loses from one period to another. The donor attrition has a negative

impact on the blood inventory, since a decline in numbers of donors

has a ripple effect on the volume of blood collections. Furthermore,

acquiring new blood donors cost more than retaining the cur-

rent pool.

Figure 2 below illustrates the donor retention and attrition rates

over the 4‐year period.

Figure 2 shows a rise in the number of donors who are lost

(attrition or solid line) from the initial pool of donors. The graph also

shows that the donors who returned for further donations declined

with time (retention or dashed line).

According to data sequences from the four states namely: new,

regular, occasional, and lapsed, transition frequency or transition

count matrix was first calculated and are shown in Table 1.

Table 1 lists the observed transition frequencies of the blood

donors. The results show that 248 of the new donors transitioned to

regular state, 477 of regular donations repeated their donations as

regular donors and 251 of the occasional donors ceased their

donations and transitioned to lapsed state by the end of the study.

Regular donors are a reliable source of blood, and their high

frequency of blood donations is critical in blood centers. However,

with passage of time, frequency of donations declines resulting in

high occasions of observed lapsed donors.

The model was then specified as governed by the intensity

matrix Q. This was done by calculating the maximum likelihood

estimators.17 Estimates of the parameters: a12
0 , a13

0 , a23
0 , a32

0 , and a34
0 

with their confidence Intervals (CI) are shown inTable 2. The 0 in the

superscript denotes baseline parameter estimates in the absence of

covariates.

However, before calculating vital functions such as transition

probabilities matrices, the effect on the parameter estimates for

certain individuals was established. Individuals with larger score

residuals had a greater effect on the estimates. The score residuals

for each blood donor to establish the assertion is presented in

Figure 3 below.

Figure 3 shows that there are four donors with residual score

above 0.25 and these have large influence on the likelihood

estimates.
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The four donors showing large influence on the estimates were

removed and the model refitted. Table 3 below shows a comparison

of the estimates of the parameters between the initial model and the

refitted model.

Results from Table 3 indicate that the removal of the four most

influential donors had a significant effect on the transition intensities.

Using the refitted model, the results show that for first‐time blood

donors (state 1), there is a higher rate of transition from a new state to a

repeat state (1.57118) compared to rate of transition from new state to

occasional state (0.01457). Having higher rates for repeat donations is an

ideal scenario for blood centers. The results further show that the odds

of lapsing from occasional state is more than double (0.04718/

0.02114 =2.23) that of transition to regular state from occasional state.

The odds ratio of a transition from state 2 (regular) to state 3 (occasional)

is (0.03657/0.02114=1.73) times more than a transition from state 3

(occasional) to state 2 (regular) indicating a loss in the pool of voluntary

donors who are a reliable source of blood.

The maximum likelihood estimates are also used to calculate the

transition probabilities that the process goes into state j when it

leaves state i. The estimated value of transition intensities enabled us

to determine the probabilities that the donor will move to state j

given that the blood donor is in state i. For example, the probability

that state 3 (Occasional donor) is next on condition that the blood

donor was in state 2 (Regular donor) is given by:

p = = = 0.3094
a

a a
32

+

0.02114

(0.02114) + (0.04718)
32
0

32
0

34
0

 

    as in Table 4.

From Table 4, the first column indicates possible transitions of

blood donors from state i to state j. The second column indicates the

transition intensities.

Transition intensities are only estimated for the transitions away

from the origin state and, hence, for the off‐diagonal entries. Larger

rates are related to larger transition probabilities away from a state.

The results also show a high conditional probability (0.6906) of a

donor in state 3 moving to state 4 next and a low probability (0.3094)

of a donor in state 3 moving to state 2. This means that blood donors

who donate blood occasionally have a higher likelihood of lapsing.

The mean sojourn time gives the holding time or average time in a

single stay in a state. Results from Table 5 show that a donor just

entering the regular state is expected to spend 27months (2.25 years) in

that state before becoming a sporadic donor. Similarly, a donor just

entering the occasional state can expect to spend 14.6months (1.2 years)

at that level before moving to either regular or lapsed state.

The total length of stay in Table 6 gives the expected amount of

time spent in each transient state between two future time points.

Thus, a blood donor is forecasted to spend 21.193months (1.8 years)

as an erratic blood donor before lapsing. Repeat donors can spend

39.342months (3.3 years) in the regular state before the transition to

other states.

F IGURE 2 Donor retention and attrition
rates

TABLE 1 Transition frequency matrix for blood donors'
donations

From (i)
To (j)
New Regular Occasional Lapsed

New 0 248 187 0

Regular occasional 0 477 170 0

0 64 0 251

TABLE 2 Time homogeneous Markov model parameter
estimates

Transitions Estimate of aij
 (with 95% CI)

State 1−2 1.68394 (9.180e−02, 30.88793)

State 1−3 0.01176 (2.275e−06, 60.75562)

State 2−3 0.03791 (3.334e−02, 0.04311)

State 3−2 0.02412 (1.849e−02, 0.03146)

State 3−4 0.04637 (4.071e−02, 0.05281)

–2 × log‐likelihood: 3751.135
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3.1 | Effects of covariates on transition intensities

This subsection analyzed the effects of donor‐specific demographic

covariates on blood donation transition intensities. The effects of

covariates on the transition intensity for a blood donor i at time j is

estimated by a proportional intensities model:

( )Z β Za a i j( ) = exp , ≠ ,ij ij ij
T(0)

where:

aij is the estimated transition intensity with covariate Z.

Z is a vector of explanatory variables.

aij
(0) is the baseline intensity function between states i and j.

βij is a vector of regression parameters.

The covariates are defined and coded as:

{Gender =
1 = Female

0 = Male
,


Age =
0, <40 years

1, ≥40 years
.

The gender male, represented by a zero, acted as the reference

category for gender. The reference age category is donors less than

40 years.

The effects of the covariates on the transition intensities, aij, for

blood donor d is given by the following model:

F IGURE 3 Plot of score residuals to
establish individual donor effect on likelihood

TABLE 3 Comparison of parameter estimates

Transitions Model 1 estimates of aij


Refitted model
estimates of aij



State 1‐2 1.68394 1.57118

State 1‐3 0.01176 0.01457

State 2‐3 0.03791 0.03657

State 3‐2 0.02412 0.02114

State 3‐4 0.04637 0.04718

−2 × log‐likelihood:
3751.135 −2 × log‐
likelihood: 3697.661

TABLE 4 Maximum likelihood estimates of transition intensities
and probability that state j is next

Transitions Intensities aij


pij

State 1‐2 1.57118 0.9908

State 1‐3 0.01457 0.009189

State 2‐3 0.03657 1

State 3‐2 0.02114 0.3094

State 3‐4 0.04718 0.6906

−2 × log‐likelihood: 3697.661

TABLE 5 Estimates of the sojourn times

Transition
Sojourn time
(months)

Standard
error

95% Confidence
interval

New 0.631 1.023 (0.03, 10.44)

Regular 27.341 1.886 (23.19, 29.99)

Occasional 14.635 0.967 (12.49, 16.12)

TABLE 6 Estimates of the total length of stay in each state

Transition Total length of stay (months)

New 0.631

Regular 39.342

Occasional 21.193

Lapsed Infinity
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( )a a β β= exp Gender + Age .ij ij ij d ij d
(0) (Gender ) (Age )d d

For this model, the baseline transition intensities, aij
(0), refer to a

blood donor with age category = 0 (<40 years old), gender = 0

(Male).

A continuous time Markov model for the effects of covariates,

Z= [age, gender], is fitted. The covariates blood group and interval

between donations were not statistically significant and hence

dropped from the model, leaving age and gender as important

demographic factors in this cohort of blood donors. Transition

intensities incorporating the effects of the covariates are estimated

and the results are shown in Tables 7 and 8.

Results from Table 7 show that new recruits female donor

transition rates are 1.6291 [exp (0.488)] times (higher) than their male

counterparts rates in transiting to the regular donor status. Similarly,

the new recruits older donor (above 40 years of age) transition rates

are 2.0057 [exp (0.696)] times (higher) than the rates of their new

recruits younger counterparts (below 40 years old). This is quite

worrisome to the blood service managers since the sustainability of

any blood bank is anchored on young regular donors, yet the older

donors had more repeated blood donation episodes. This trend is

further shown by occasional older donor transition rates which are

3.3434 [exp (1.207)] times (higher) than the rates of their younger

counterparts (below 40 years of age) in transiting to regular donor

status.

Also, female occasional donor transition rates are 4.1996 [exp

(1.435)] times (higher) than the male rates in transiting to the regular

donor status, thus making female donor a more reliable partner in

blood donation drives. However, the occasional older donor transi-

tion rates are 2.4769 [exp (0.907)] times (higher) the younger donors'

rates in transiting to lapsed donor status. Similarly, the occasional

female donor transition rates are 2.6195 times (higher) than their

male counterparts in transiting to lapsed donor status. Generally,

occasional donors have a higher likelihood of lapsing regardless of the

demographic characteristic.

A likelihood ratio test was performed to confirm the improve-

ment. The model with covariates has a log‐likelihood function of

−2*log ‐likelihood = 3657.674 which shows an increase of 39.987

compared to −2*log−likelihood = 3697.661 for the model without

covariates.

Table 8 confirms the result that the model with covariates fits

significantly better than the model without covariates

(p = 0.000017 < 0.05) .

For the continuous‐time homogeneous model with covariates of

age and gender estimated above, the percentage prevalence in each

of the states are as shown in Figure 4 below.

Figure 4 shows plots of blood donor percentage prevalence in

blood donation from the time the donors entered the blood donation

system up to the end of the study. At t = 0, the whole system is in

state 1, which is the initial state (new donors). From 12months

onwards, none of the blood donors would have remained in state 1 as

new donors. All the donors would have moved to other states hence

the percentage prevalence of 0. The model underestimates the

expected prevalence from the point of entry as new donors up to

12months.

In state 2 (regular donors), the model gives a good fit of the

observed data beyond 12months up to 48months. The average

percentage prevalence is around 50%, indicating a fair blood donor

retention rate. However, there are slight yearly drops in the

prevalence in state 2, an indication that regular blood donors reduce

their donation frequency with time or cease to donate with the

passage of time.

An average of 45% prevalence in state 3 (occasional donors) is

seen between 12 and 24months. The rise can be attributed to new

donors from state 1 who do not return to donate after their first‐time

donation. From 24months onwards, the decline in percentage

prevalence could be attributed to occasional donors in state 3

returning to regular donation or lapsing in their donation, thus

moving to state 4. Expected frequencies from 24months and above

gives a good fit of the observed prevalence.

State 4 (lapsed donors) plot indicates a good fit of the observed

data. The stepped and steep increase in percentage prevalence for

state 4 is a worrisome trend to blood managers. This means that, with

the passage of time, more blood donors become inactive or lapse

from donating blood due to various reasons over this very short

donation period considered (4 years only).

TABLE 7 Estimated covariate effects and their confidence
intervals

Transitions

Transition
intensities aij )
(with 95%
Confidence
interval [CI])

Age
coefficient

ij
(Age )d

Gender coefficient

ij
(Gender )d

(with 95% CI)(with 95% CI)

State 1‐2 1.403 0.696 0.488

(0.171, 11.55) (0.042, 11.54) (0.017, 14.41)

State 1‐3 0.00055 1.874 0.823

(5.83e−22,
5.11e14)

(1.80e−20,
1.95e20)

(1.98e−25, 3.42e24)

State 2‐3 0.037 0.562 1.651

(0.032, 0.042) (0.422, 0.748) (1.259, 2.164)

State 3‐2 0.022 1.207 1.435

(0.016, 0.029) (0.641, 2.27) (0.793, 2.594)

State 3‐4 0.047 0.907 0.963

(0.041, 0.054) (0.657, 1.25) (0.734, 1.265)

Note: −2 × log‐likelihood: 3657.677

TABLE 8 Likelihood ratio test for model models with and
without covariates

Model −2logLR Degrees of freedom p

With covariates 39.997 10 0.000017
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4 | DISCUSSION

The study analyses the changes in status of new blood donors who

start their blood donation career for the first time until the end of the

study. Continuous‐time Markov models are fitted on the states: from

new to: regular, occasional and lapsed states. The states are defined

by the frequency of blood donations in each annual cycle of time.

With the passage of time, donor status evolves, more blood donors

become inactive or lapsed.

Donor attrition has a negative impact on the blood inventory

since a decline in the numbers of donors has a ripple effect on the

volume of blood collections. Time in the blood donation career had a

noticeable effect on the frequency of blood donation. Results from

the study show that the donors who returned for further donations

declined with time. In other words, the retention rate decreased

while the attrition rate increased. This trend is in agreement with

conclusions made by other researchers.4,5,18,19 This is further

evidenced by an increasing prevalence of donors in the lapsed state.

To maintain a stable donor pool that would ensure adequate blood

supply, blood bank authorities should not focus on the recruitment of

new donors only, but also retaining first time donors.20 The analysis

of donor‐specific factors is vital in helping blood bank authorities to

understand variables to focus on when recruiting potential blood

donors in supporting continued blood donation.21

Occasional donors have a higher likelihood of lapsing (69.06%)

than becoming repeat donors (30.94%). Blood service authorities

should target this group with motivational strategies that encourage

them to donate blood regularly and prevent lapsing. It is cost

effective in time, safety, and resources to motivate this group of

occasional donors than to recruit totally new donors.11,19 In other

words, acquiring new blood donors cost more than retaining the

current donors.

In consonance with previous literature, this study established the

donor‐specific factors linked with blood donation intensities namely,

age and gender.22,23 Female donors have higher transition rates from

occasional donor status to regular donor status when compared to

their male counterparts. Older donors (above 40 years of age) were

more consistent in donation than younger donors for both males and

females. A study by Veldhuizen et al.24 investigated the correlation

between sociodemographic factors and blood donor prevalence. The

conclusion was that, the prevalence in blood donation varied among

the age subgroups between males and females. Similarly, donation

rates were also particularly higher among the blood group O donors

who remained regular donors during the donation career than the

other blood groups.

Blood donor recruitment campaigns should be targeted at

potential donors with a higher probability of donating and becoming

regular donors. The salient characteristics of such donors should be

matched with those of current regular donors in the pool.25,26

5 | CONCLUSIONS

In this study, a multistate continuous‐time Markov model is fitted to

blood donation frequencies data. The maximum likelihood parame-

ter estimation method was used to estimate the parameters. The

model was improved further with the addition of covariate, age and

gender. The 4‐year period of study showed that blood donors who

return for repeat donations declined with time. Furthermore, the

study findings also showed that the odds of donor lapsing were

more than double for the occasional state when compared to other

states indicating a loss in the pool of voluntary donors who are a

reliable source of blood. The analysis and results show that the

Markov model is an alternative technique to study and model blood

donor status data in Zimbabwe. Furthermore, the study showed that

the less studied variables such as blood group and donation time

intervals had no statistically significant effects on blood donor

transition intensities.

F IGURE 4 Observed and expected prevalence plot for model with age and gender as covariates
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