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Abstract

As a type of relatively new methodology, the transcriptome-wide association study (TWAS)

has gained interest due to capacity for gene-level association testing. However, the devel-

opment of TWAS has outpaced statistical evaluation of TWAS gene prioritization perfor-

mance. Current TWAS methods vary in underlying biological assumptions about tissue

specificity of transcriptional regulatory mechanisms. In a previous study from our group, this

may have affected whether TWAS methods better identified associations in single tissues

versus multiple tissues. We therefore designed simulation analyses to examine how the

interplay between particular TWAS methods and tissue specificity of gene expression

affects power and type I error rates for gene prioritization. We found that cross-tissue identi-

fication of expression quantitative trait loci (eQTLs) improved TWAS power. Single-tissue

TWAS (i.e., PrediXcan) had robust power to identify genes expressed in single tissues, but,

often found significant associations in the wrong tissues as well (therefore had high false

positive rates). Cross-tissue TWAS (i.e., UTMOST) had overall equal or greater power and

controlled type I error rates for genes expressed in multiple tissues. Based on these simula-

tion results, we applied a tissue specificity-aware TWAS (TSA-TWAS) analytic framework to

look for gene-based associations with pre-treatment laboratory values from AIDS Clinical

Trial Group (ACTG) studies. We replicated several proof-of-concept transcriptionally regu-

lated gene-trait associations, including UGT1A1 (encoding bilirubin uridine diphosphate glu-

curonosyltransferase enzyme) and total bilirubin levels (p = 3.59×10−12), and CETP

(cholesteryl ester transfer protein) with high-density lipoprotein cholesterol (p = 4.49×10−12).
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We also identified several novel genes associated with metabolic and virologic traits, as well

as pleiotropic genes that linked plasma viral load, absolute basophil count, and/or triglycer-

ide levels. By highlighting the advantages of different TWAS methods, our simulation study

promotes a tissue specificity-aware TWAS analytic framework that revealed novel aspects

of HIV-related traits.

Author summary

Transcriptome-wide association studies (TWAS) are a type of bioinformatics methodol-

ogy for identifying complex trait-associated genes. There have been various TWAS meth-

ods, each developed under distinct biological assumptions of how genes contribute to

complex traits. It is unclear, however, how powerful different TWAS methods are under a

variety of biological scenarios. Here, we design an unbiased simulation strategy to evaluate

the performance of multiple representative TWAS methods. We find that no one method

fits all. Different TWAS methods are advantageous at dealing with different biological sce-

narios and answering different research questions. Thus, we propose a novel TWAS ana-

lytic framework that integrates and maximizes the performance of multiple TWAS

methods, and validate its capability using a well-studied real-world dataset. In summary,

our study provides quantitative evaluation of method performance to aid future TWAS

experimental design and understanding of genes underlying complex human traits. The

TWAS evaluation tool is made publicly available.

Introduction

Translating fundamental genetics research discoveries into clinical research and clinical prac-

tice is a challenge for biomedical studies of complex human traits [1,2]. Greater than 90% of

complex trait-associated single-nucleotide polymorphisms (SNPs) identified via genome-wide

association studies (GWAS) are located in noncoding regions of the human genome [3,4]. The

difficulty in making connections between noncoding variants and downstream affected genes

can hinder the translatability of GWAS discoveries to clinical research. The emerging tran-

scriptome-wide association studies (TWAS) are a type of recently developed bioinformatics

methodology that provide a means to address the challenge of GWAS translatability. TWAS

mitigates the translational issue by integrating GWAS data with expression quantitative trait

loci (eQTLs) information to perform gene-level association analyses. TWAS hypothesizes that

SNPs act as eQTLs to collectively moderate the transcriptional activities of genes and thus

influence complex traits of interest [5,6]. Accordingly, TWAS methods in general comprise

two steps. The first step in TWAS is to impute the genetically regulated gene expression

(GReX) for research samples in a tissue-specific manner. The second step is to conduct associ-

ation analyses between GReX and the trait of interest to evaluate the gene-trait relationship for

statistical significance [7–9]. Genome-wide eQTLs data are now available for various primary

human tissues (e.g., liver, brain and heart) thanks to large-scale eQTL consortia including the

Genotype-Tissue Expression (GTEx) project [10] and the eQTLGEN consortium [11]. The

considerable centralized eQTL data have been fostering the development and application of

TWAS.

While TWAS is an innovative and potentially powerful computational approach, several

factors can influence TWAS. The choice of eQTL datasets matters for the performance of
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TWAS [12]. Most available eQTLs to date are identified in a tissue-by-tissue manner [5,10].

This approach, however, does not leverage the potential for shared transcriptional regulatory

mechanisms across tissues, and can be limited by sample sizes of single tissues. One way to

overcome this limitation is to take into consideration all available tissues, so as to increase sam-

ple sizes and improve the quality of eQTL datasets. We referred this type of eQTL detection

method as the integrative tissue-based eQTL detection method [13–15]. Without a simulation

study, however, it was unclear how the choice of eQTL detection methods will impact TWAS.

Another prominent question in TWAS studies is the choice of the association approaches.

TWAS started with single-tissue association approaches, such as PrediXcan [5] and FUSION

[6]. The most recent TWAS methods, such as UTMOST [15] and MulTiXcan [16], perform

cross-tissue association analyses. Such TWAS methods evaluate whether a gene is significantly

associated with a trait by integrating association data across tissues and adjusting for the statis-

tical correlation structure among tissues. However, genes may vary substantially with regard to

how they are regulated across tissues. When a gene is specifically expressed in a single or few

tissues versus expressed in multiple tissues, how will tissue specificity of gene expression affect
TWAS power and type I error rates?

Another appealing feature of TWAS is its capacity for tissue-specific association analyses

thanks to the availability of tissue-specific eQTLs in a variety of primary human tissues. How-

ever, several recent studies revealed shared regulatory mechanisms across multiple human tis-

sues [17] and showed that cis-eQTLs are less tissue-specific than other regulatory elements

[10,11]. This suggests that TWAS can possibly identify genes in tissues that share biology with

the causal tissue(s), but in fact are not the causal tissues for the trait of interest [18]. While

TWAS is likely to identify false positive tissues, to date, the false positive rates of tissues are

TWAS is unknown.

The above TWAS challenges can be summarized in two questions—How does tissue speci-
ficity affect TWAS performance?How would this impact the choices of TWAS methods? Avail-

able simulation strategies can be limited in answering these questions. Some have not taken

into consideration the gene expression correlation structure across tissues [19,20]. Some

assume a monogenic structure of transcriptional regulation [13–15,21], rather than the poly-

genic structure suggested by recent studies [10,22,23]. To address these issues, we applied a

novel strategy to simulate eQTLs and gene expression of a wide range of tissue specificity (see

Methods). We then applied different TWAS methods on the simulated datasets to assess

power, type I error rates, and false positive rates of tissues. We found that the tissue specificity

affected TWAS performance, with no single type of TWAS method being best for every type of

genetic background of transcriptional regulation.

The simulation results motivated the development and implementation of an enhanced, tis-

sue specificity-aware TWAS (TSA-TWAS) analytic framework. We tested the performance of

TSA-TWAS analytic framework using AIDS Clinical Trials Group (ACTG) data (described in

Methods). We showed that the TSA-TWAS was able to both replicate proof-of-concept gene-

trait associations and identify novel trait-related genes. The simulation scheme highlighted the

effects of tissue specificity on TWAS performance, and that TSA-TWAS could help better

understand regulatory mechanisms that underlie complex human traits.

Results

Simulation design

We designed a novel simulation framework to investigate how the tissue specificities of eQTLs

and gene expression affected TWAS power and type I error rates, and the choices of TWAS

methods (Fig 1). We tested two representative eQTL detection methods, elastic net
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(implemented in PrediXcan [5]) and group LASSO (implemented in UTMOST [15]); and two

gene-trait association approaches, Principal Component Regression (PC Regression; imple-

mented in MulTiXcan [16]) and Generalized Berk-Jones test (GBJ test; implemented in

UTMOST [15]) (Table 1).

Tissue-specific eQTLs were defined as those that were only functioning in one single tissue.

Multi-tissue eQTLs were defined as those that had regulatory effect across all gene-expressing

tissues (see Methods). We generated genes that had different genetic makeup of tissue-specific

and multi-tissue eQTLs in a gene to evaluate the influence of tissue specificity of eQTLs on

TWAS performance.

Fig 1. Cross-tissue TWAS simulation scheme. With the simulation parameters, we were able to generate SNP-gene-trait relations of varied tissue specificity

backgrounds. In each replication, simulated datasets were divided into an eQTL detection dataset and a TWAS dataset. The former was used to identify eQTLs using

different eQTL detection methods and the sample size was equivalent to that of GTEx. The detected eQTLs were then passed, separately, to the TWAS dataset to assist

gene-level association tests. The TWAS dataset sample size was equivalent of that of the ACTG clinical trial dataset. Two types of gene-level association approaches

estimated and ascribed p-values to the simulated gene-trait relations. In each replication, we simulated 100 different SNP-gene-trait pairs for one single point estimation of

TWAS gene prioritization performance. All association p-values had been adjusted for the number of genes and tissues in each replication. 20 independent replications

were conducted to obtain the distribution of TWAS performance statistics.

https://doi.org/10.1371/journal.pgen.1009464.g001

Table 1. TWAS methods tested in this simulation study.

eQTL detection methods Gene-trait association approaches Equivalent developed TWAS methods PMID

Type Name Type Name

Single tissue-based Elastic net Single-tissue association Linear or logistic regression PrediXcan 26258848

Integrative tissue-based Group LASSO Single-tissue association Linear or logistic regression Single-tissue UTMOST 30804563

Single tissue-based Elastic net Cross-tissue association Principal component regression MulTiXcan 30668570

Integrative tissue-based Group LASSO Cross-tissue association Generalized Berk-Jones test Cross-tissue UTMOST 30804563

https://doi.org/10.1371/journal.pgen.1009464.t001
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Tissue specificity of gene expression was determined by the number of gene-expressing tis-

sues and the similarity of gene expression levels across tissues. (see Methods). Tissue-specific

genes were those specifically expressed in only one or two tissues. Ubiquitously expressed

genes were those expressed in all ten simulated tissues with high gene expression similarity

(expression similarity = 60%, 80%). Differentially expressed and similarly expressed genes

were those having distinctive gene expression levels (gene expression similarity = 0, 20% 40%)

or highly correlated gene expression levels across tissues (gene expression similarity = 60%,

80%), respectively, regardless of the number of gene-expressing tissues. To evaluate the impact

of tissue specificity of gene expression on TWAS performance, we generated genes that were

expressed in varied numbers of tissues and had diverse gene expression similarities across

tissues.

In addition, we designed different strength of gene-trait associations defined by R2
expression� trait

(the proportion of phenotypic variation explained by gene expression levels), but the reported

results by default were the cases under R2
expression� trait = 1%. Only continuous traits were evalu-

ated in this simulation study, in accordance with ACTG baseline laboratory values in the real-

world application dataset.

Power of different TWAS methods

We did not observe any obvious effect of tissue-specificity of eQTLs on TWAS power with the

exception of one condition (Fig 2, bottom row). Specifically, the group LASSO-GBJ test

(implemented in UTMOST [15]) had greater power to prioritize genes whose similar gene

expression levels were driven by multi-tissue eQTLs (the group LASSO-GBJ test in Fig 2, bot-

tom right) than those whose similar gene expression levels were not driven by multi-tissue

eQTLs (the group LASSO-GBJ test in Fig 2, bottom left).

We then asked how eQTL detection methods affected TWAS gene-prioritization power,

and whether one eQTL detection method was preferred over another. We found that the inte-

grative tissue-based eQTL detection method had, on average, approximately 2% greater power

than the single-tissue method. Take differentially expressed genes for instance, eQTLs identi-

fied via the Group LASSO led to 53.8% gene prioritization power of TWAS and eQTLs identi-

fied via the Elastic Net led to 50.7% power (Wilcoxon Signed-rank Test p = 5.85×10−4; S4 Fig,

top right corner). More pairwise comparison results among all TWAS methods can be found

in S1 Table. Overall, TWAS gained slightly more power when using eQTLs identified in an

integrative tissue context.

Gene-trait association approaches affected TWAS power more so than did choice of eQTL

detection method. For tissue-specific genes, SLR consistently had equal or greater power (aver-

age 70%) than the cross-tissue association approaches (PC regression and GBJ test; Fig 2, top

left triangle). For genes that were expressed in multiple tissues, GBJ test had equal or greater

power than SLR (Fig 2, bottom right triangle). Especially for ubiquitously expressed genes,

GBJ test had statistically significant greater power (62%) compared to SLR (51%) (Fig 2, bot-

tom right corner, Wilcoxon Signed-rank Test p = 9.4×10−5).

The group LASSO-GBJ test (implemented in UTMOST) had a greater power to prioritize

genes that had similar gene expression levels across tissues. For genes that were expressed in

five tissues, power of the group LASSO-GBJ test increased from 62.2% for differentially

expressed genes (Fig 2, top left corner) to 66.6% for similarly expressed gene (Fig 2, bottom

right corner). For genes that were expressed in all ten tissues, power of the group LASSO-GBJ

test increased from 51.2% for differentially expressed genes (Fig 2, top left corner) to 61.9% for

similarly expressed gene (Fig 2, bottom right corner). Moreover, the group LASSO-GBJ test

showed equal or statistically significant greater power than other TWAS methods in 65 of the
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Fig 2. Power of different TWAS methods in prioritizing genes of varied tissue specificity properties. Power was the proportion of successfully identified gene-trait

associations in the causal tissue out of all simulations. X-axis is the number of gene-expressing tissues. Each column stands for the proportion of eQTLs that are shared

among tissues for a gene. Each row is the similarity of gene expression profiles across tissues which is estimated by correlation. Moving from the top left to the bottom

right is a gradient spectrum from tissue-specific genes to broadly expressed genes. The colors represent different TWAS methods and y-axis is the power. For tissue-

specific genes at the top left, single-tissue TWAS (Elastic Net-SLR) and cross-tissue TWAS (Group LASSO-GBJ) had similar power. For broadly expressed genes at the

bottom right, cross-tissue TWAS (Group LASSO-GBJ) had greater power. Brackets showed pairwise comparison of power between the Group LASSO-GBJ and other

TWAS methods using Wilcoxon Signed-rank Test. Black brackets were cases where Group LASSO-GBJ had higher power than other three methods; red brackets were

cases where Group LASSO-GBJ had lower power than other three methods. �p-value< 0.05, ��p-value< 0.01, ���p-value< 0.0001.

https://doi.org/10.1371/journal.pgen.1009464.g002
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76 simulated scenarios (~84%). Black brackets in Fig 2 showed cases where Group LASSO-GBJ

had higher power than other three methods; red brackets showed cases where Group LAS-

SO-GBJ had lower power than other three methods. Comprehensive statistical test results of

power differences are available in S4 Fig and S1 Table. However, GBJ test does not handle the

case where the gene was only expressed in one single tissue. This would inevitably lead to

greater loss of power when the proportion of tissue-specific genes are higher in a test dataset.

Overall, the group LASSO-GBJ test had equal or greater power in prioritizing genes that

were expressed in multiple tissues. Single-tissue association approaches (e.g. SLR) had greater

power and robust performance in prioritizing tissue-specific genes.

The strength of gene-trait associations affected TWAS gene prioritization power. The stron-

ger the gene-trait associations, the greater the power for TWAS gene prioritization (Figs 2 and

S5–S7).

Type I error rates of various TWAS methods

All TWAS methods had well-controlled type I error rates (� 5%; Fig 3 and S2 Table). Signifi-

cance thresholds in this simulation were corrected using the Bonferroni approach to control

for family-wise error rate. All single-tissue association approaches (Elastic Net-SLR and Group

LASSO-SLR) had less type I error rates than the cross-tissue associations approaches (Wil-

coxon Signed-rank Test p< 0.01, S8 Fig). Both GBJ test and PC regression had average type I

error rates of approximately 5%. The GBJ test showed statistically significant lower type I error

rates than PC regression for ubiquitously expressed genes (Wilcoxon Signed-rank p< 0.05, S8

Fig and S2 Table).

False positives of statistically significant tissues

If not corrected for the number of tested tissues, single-tissue TWAS would have greater

power (S9 Fig), but also a higher false positive rate for tissues (S10 Fig). False positive rates of

tissues were at least 10% for genes that were expressed in more than one tissue. In effect, while

the genes might be related to a trait of interest, 10% of statistically significant results pointed to

wrong tissues. The false positive rate of tissues proportionally increased with the number of

gene-expressing tissues. The highest false positive rates were seen in the case of ubiquitously

expressed genes (S10 Fig, bottom right corner), which on average, had an 84% false positive

rate based on 20 random replications. This suggested that any single-tissue TWAS may have

10–84% false positive rate tissues associations if not adjusted for the number of tested tissues.

Adjusting for the number of tested tissues reduced the false positive rates somewhat, but

number-wise, the false positive rate may remain quite high. False positive rates of tissues were

relatively controlled at approximately 5% for tissue-specific genes (Fig 4, top left corner). False

positive rates still increased with the number of tissues in which a gene was expressed (Fig 4).

Genes expressed in ten tissues had at least on average a 24% false positive rate. False positive

rates were as high as 77% for ubiquitously expressed genes (Fig 4, bottom right corner).

Validation and support of simulation design

To evaluate whether our simulation findings would translate from in silico parameter designs

to real world scenarios, we designed a Monte Carlo simulation process to estimate the trait

heritability behind various genetic scenarios (S11 Fig). The results suggested that R2
expression� trait

increased with trait heritability (S12 Fig). Heritability of traits with R2
expression� trait = 1% were esti-

mated to be on average 1% (standard error (s.e.) = 0.059%) which were derived from multiple,

repeated random sampling. In contrast, the minor allele frequencies (MAF) of eQTLs had
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almost no effect on trait heritability. This suggested that trait heritability positively influenced

the strength of gene-trait associations in TWAS. In other words, if a trait was moderated by

genetic factors through differential gene expression, the greater a trait’s heritability is, the

stronger the associations were in TWAS.

Fig 3. Type I error rates of different TWAS methods in prioritizing genes of diverse tissue specificity properties. Type I error rate was the probability

that TWAS wrongly identified a gene-trait association as significant while there was not any signal simulated in the dataset. Association p-values were

controlled for the number of genes and tested tissues. X-axis is the number of gene-expressing tissues. Each column stands for the proportion of eQTLs that

are shared among tissues for a gene. Each row is the similarity of gene expression profiles across tissues which is estimated by correlation. Moving from the

top left to the bottom right is a gradient spectrum from tissue-specific genes to broadly expressed genes. The colors represent different TWAS methods and

y-axis is the type I error rate. All TWAS methods had controlled type I error rates (� 5%).

https://doi.org/10.1371/journal.pgen.1009464.g003
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Designing the TSA-TWAS analytic framework

Our simulation suggested an influence of tissue specificity on TWAS performance. Thus, we

designed a TSA-TWAS analytic framework to balance trade-offs among power and type I

error rates (S13 Fig). The idea was illustrated in Fig 5. When trait-related tissue(s) are known,

Fig 4. False positive rates of tissues among statistically significant results. False positive rates were the proportion of significant associations found in

trait-irrelevant tissues amongst all significant results. Association p-values were controlled for the number of genes and tested tissues. X-axis is the number

of gene-expressing tissues. Each column stands for the proportion of eQTLs that are shared among tissues for a gene. Each row is the similarity of gene

expression profiles across tissues which is estimated by correlation. Moving from the top left to the bottom right is a gradient spectrum from tissue-specific

genes to broadly expressed genes. Colors represent different TWAS methods and y-axis is the false positive rate of tissues among statistically significant

results. Single-tissue TWAS wrongly identified 5% and 77% trait-irrelevant tissues for tissue-specific genes and broadly expressed genes, respectively.

https://doi.org/10.1371/journal.pgen.1009464.g004
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we recommend single-tissue TWAS in the known related tissues only. Additionally, we recom-

mend using eQTLs identified by integrative tissue-based eQTL detection methods (for exam-

ple, group LASSO or MASHR-based eQTL databases), which showed slightly improved

power. In contrast, if trait-related tissue(s) are uncertain, it may be better to perform different

TWAS analyses for tissue-specific genes and for genes that are expressed in multiple tissues.

Single-tissue TWAS will have greater power to identify genes that are expressed in a single tis-

sue. Cross-tissue TWAS will provide overall equal or greater power, as well as controlled type I

error rates, for genes that are expressed in multiple tissues.

In real-world, natural data, we can expect a collection of genes that are tissue-specific and

another set of genes that are expressed in multiple tissues. We showed that our TSA-TWAS

approach had a consistent power of identifying complex-trait related genes in comparison to sin-

gle-tissue TWAS (SLR) or cross-tissue TWAS (GBJ tests), regardless of the proportion of tissue-

specific genes in an analysis (Fig 6 –blue bars). By using the TSA-TWAS framework, the optimal

method (Elastic Net-SLR) is used on the genes expressed in a single tissue while simultaneously,

the optimal method (Group Lasso-GBJ) is used on the genes expressed in multiple tissues.

TSA-TWAS replicated known associations

We applied TSA-TWAS to 37 baseline laboratory values from a combined dataset of five clini-

cal trials from AIDS Clinical Trials Group (ACTG) with available genotype data (N = 4,360;

Fig 7 and Table 2). We first imputed the GReX to distinguish genes whose GReX were only

expressed in one tissue versus multiple tissues. Genes expressed in just one tissue comprised

2,812 (23%) of 12,038 genes on which data were available. The remaining 9,226 (77%) genes

had GReX in multiple tissues. Genes expressed in one, and in more than one tissue were tested

for associations with baseline laboratory values using single-tissue, and by cross-tissue gene-

trait association approaches, respectively (see Methods). TSA-TWAS found in total 83 statisti-

cally significant gene-trait associations, comprising 45 distinct genes and 10 traits (Fig 8).

We also fine-mapped a credible set of potential trait-related genes (S3 Table). The credible

sets added twenty genes that were correlated with the statistically significant signals as a func-

tion of LD among SNPs and eQTLs. We further performed colocalization analysis to see if

there was supportive evidence to prioritize any of the statistically significant genes. Some of

the TSA-TWAS statistically significant genes were supported with a locus regional colocaliza-

tion probability (locus RCP) > 0.025 (S15 Fig). None of the additional genes that were identi-

fied by FOCUS [24] were supported by colocalization analyses.

TSA-TWAS replicated several previously reported risk genes for certain baseline lab

values (Table 3). The lowest p-values for association were observed between total plasma

Fig 5. A proposed TSA-TWAS analytic framework that leverages TWAS performance on genes of different tissue

specificity properties. The framework proposed based on our simulations is as follows: If trait-related tissue(s) are known

for a trait or disease of interest, run single-tissue TWAS, for example, PrediXcan. If trait-related tissue(s) are unknown, run

cross-tissue TWAS (UTMOST) on the genes that are expressed in more than one tissue and run single-tissue TWAS

(PrediXcan) on the genes that are expressed in one single tissue.

https://doi.org/10.1371/journal.pgen.1009464.g005
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bilirubin levels and several genes on chromosome 2, nearby or overlapping UGT1A1. These

includedMROH2A (p = 1.39×10−12), which has been previously reported by GWAS of various

populations [25–28], UGT1A6 (p = 2.78×10−15), UGT1A7 (p = 4.51×10−12) and UGT1A1
(p = 3.59×10−12) [25,26,28,29]. We replicated the well-known association between CETP and

high-density lipid-cholesterol levels (HDL-c; p = 4.49×10−12) [30]. Association was also found

between GPLD1 and plasma alkaline phosphatase levels (p = 1.08×10−11) [31]. GPLD1 encodes

Fig 6. Power of the TSA-TWAS framework when there were different proportions of tissue-specific genes in the data. The power of TSA-TWAS was

compared to only running single-tissue TWAS (elastic net-SLR) and cross-tissue TWAS (Group LASSO-GBJ test). TSA-TWAS had consistent power of

identifying complex trait-related genes and was robust to makeups of tissue-specific and multi-tissue genes in a dataset.

https://doi.org/10.1371/journal.pgen.1009464.g006
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a glycosylphosphatidylinositol-degrading enzyme that releases attached proteins from the

plasma membrane and engages in regulation of alkaline phosphate activities. Other replicated

discoveries included association between ALDH5A1 and plasma alkaline phosphatase levels

(p = 1.79×10−11) [32], C6orf48 and absolute basophil count (p = 1.69×10−12) [33], KCNJ15 and

plasma triglyceride levels (p = 3.18×10−13) [34].

We have additionally replicated several genes’ association with plasma viral loads in HIV-

positive adults, including A4GALT (p = 8.39×10−11) [35], ABCB4 (p = 1.07×10−11) [36], C4B
(p = 4.11×10−15) [37], GABBR1(p = 1.14×10−12) [38], and HLA-B (p = 1.15×10−11) [39].

Fine-mapping of potential baseline laboratory measure-related genes retrieved a proof-of-

concept association—SORT1 association with plasma low density lipoprotein-cholesterol lev-

els [40–42] (LDL-c; marginal posterior inclusion probability = 0.683, S3 Table).

Novel genes prioritized by the TSA-TWAS

In addition to the above replications, TSA-TWAS identified novel associations with plasma

viral load (Table 4). For instance, PRDX5 (p = 7.01×10−14, which encodes a member of the per-

oxiredoxin family of antioxidant enzymes) was associated with plasma viral load with great sig-

nificance. Several novel genes were first time reported to be associated with certain baseline

laboratory values, which were otherwise associated with other traits by previous studies. For

instance, ATF6B is a protein-coding gene that encodes a transcription factor in the unfolded

protein response (UPR) pathway during ER stress and it has been associated with HIV-associ-

ated neurocognitive disorders in previous research [43]. In our study, ATF6B associates with

plasma viral load (p = 2.83×10−9).

Several novel associations were further supported by colocalization analyses, for

example, the association between NLRC5 and fasting HDL (locus RCP = 0.0292 in adrenal

gland).

Fig 7. The TSA-TWAS analytic framework for the ACTG combined genotyping phase I-IV baseline laboratory traits. Approximately

2.2 million SNPs, 4,360 individuals, and 37 baseline laboratory traits survived the QC. UTMOST eQTL models were used to impute

GReX of a total of 12,038 genes in 49 tissues. 2,812 genes (23%) had GReX in one single tissue, and 9,226 genes (77%) had GReX in more

than one tissue.

https://doi.org/10.1371/journal.pgen.1009464.g007
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Table 2. Summary statistics of the ACTG genotyping phase I-IV baseline laboratories.

Trait Sample

Size

Mean Std.

Dev.

Min Max Transformation Unit Description

Albumin 1216 4.05 0.44 1.80 5.30 g/dL week 0 albumin (Alb, g/dL)

Bicarbonate 3971 26.01 2.94 12.00 35.00 mmol/L week 0 bicarbonate (Bicarb, mmol/L)

Calcium 1336 9.17 0.44 7.40 10.80 mg/dL week 0 calcium (Ca, mg/dL)

Chloride 4048 103.27 2.94 88.00 117.00 mmol/L week 0 chloride (Cl, mmol/L)

Cholesterol 4286 159.27 36.80 5.90 414.00 mg/dL week 0 cholesterol (Chol, mg/dL)

Creatinine 4100 0.91 0.20 0.05 2.80 mg/dL week 0 creatinine (Creat, mg/dL)

HDL-c 2376 37.31 12.78 3.90 148.00 mg/dL week 0 HDL-c (HDL-c, mg/dL)

Hemoglobin 4293 13.49 1.77 6.00 20.20 g/dL week 0 hemoglobin (Hgb, g/dL)

Absolute basophil

count

2526 1.44 0.32 0.00 3.39 Log10 cells/mm3 log10 transformed week 0 absolute basophil count (Baso,

cells/mm3)

Absolute eosinophil

count

3932 2.06 0.40 0.18 3.55 Log10 cells/mm3 log10 transformed week 0 absolute eosinophil count

(Eos, cells/mm3)

Alkaline phosphatase 4226 1.88 0.15 0.70 2.72 Log10 U/L log10 transformed week 0 alkaline phosphatase (AlkP, U/

L)

ALT 4233 1.48 0.27 0.04 2.81 Log10 U/L log10 transformed week 0 ALT (ALT, U/L)

Absolute lymphocyte

count

4149 3.11 0.24 0.92 4.03 Log10 cells/mm3 log10 transformed week 0 absolute lymphocyte count

(Lymph, cells/mm3)

Absolute monocyte

count

4116 2.58 0.21 0.66 3.69 Log10 cells/mm3 log10 transformed week 0 absolute monocyte count

(Mono, cells/mm3)

Amylase 1026 1.85 0.20 1.11 2.89 Log10 U/L log10 transformed week 0 amylase (Amyl, U/L)

Absolute neutrophil

count

4277 3.32 0.21 2.28 4.67 Log10 cells/mm3 log10 transformed week 0 absolute neutrophil count

(ANC, cells/mm3)

AST 4235 1.49 0.21 0.48 2.81 Log10 U/L log10 transformed week 0 AST (AST, U/L)

BUN 4221 1.08 0.15 -0.22 2.17 Log10 mg/dL log10 transformed week 0 BUN (BUN, mg/dL)

CK 1360 1.97 0.38 -0.05 3.79 Log10 U/L log10 transformed week 0 CK (CK, U/L)

Fasting glucose 3233 1.93 0.08 1.52 2.64 Log10 mg/dL log10 transformed week 0 fasting glucose (Gluc fasting,

mg/dL)

Glucose (Log10) 3031 1.93 0.08 1.70 2.77 Log10 mg/dL log10 transformed week 0 glucose (Gluc, mg/dL)

LDL-c 3539 1.95 0.16 0.00 2.57 Log10 mg/dL log10 transformed week 0 LDL-c (LDL-c, mg/dL)

Lipoprotein 1118 1.58 0.32 0.30 2.85 Log10 log10 transformed week 0 lipoprotein

Platelet count 4263 2.30 0.15 1.15 3.34 Log10 x10E9/L log10 transformed week 0 platelet count (Plat, x10E9/L)

Total bilirubin 4202 -0.31 0.21 -1.00 0.49 Log10 mg/dL log10 transformed week 0 total bilirubin (TBili, mg/dL)

Triglyceride 4318 2.07 0.25 1.08 3.45 Log10 mg/dL log10 transformed week 0 triglyceride (Trig, mg/dL)

White blood cell count 4279 0.62 0.16 -0.05 1.49 Log10 x10E3 cells/cu

mm

log10 transformed week 0 white blood cell count (WBC,

x10E3 cells/cu mm)

Hematocrit 4274 39.83 5.10 1.00 62.10 percent week 0 hematocrit (Hct, percent)

Phosphate 3261 3.44 0.61 0.80 7.70 mg/dL week 0 phosphate (Phos, mg/dL)

Potassium 4062 4.15 0.39 2.00 8.00 mmol/L week 0 potassium (K, mmol/L)

Sodium 4067 138.88 2.80 123.00 151.00 mmol/L week 0 sodium (Na, mmol/L)

CD4 count 4358 14.78 6.46 0.00 36.55 Square root cells/mm3 square root of absolute CD4 count at week 0

Viral load 4358 4.75 0.72 2.02 7.11 Log10 copies/dL week 0 viral load RNA

Fasting cholesterol 4136 158.42 36.24 6.10 414 mg/dL week 0 fasting cholesterol

Fasting HDL-c 4126 1.56 0.15 0.60 2.20 Log10 mg/dL log10 transformed week 0 fasting HDL-c

Fasting LDL-c 4042 1.95 0.15 0.85 2.57 Log10 mg/dL log10 transformed week 0 fasting LDL-c

Fasting triglyceride 3888 2.05 0.24 1.08 2.45 Log10 mg/dL log10 transformed week 0 fasting triglycerides

https://doi.org/10.1371/journal.pgen.1009464.t002
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Pleiotropic genes associated with baseline laboratory values

We also found several pleiotropic genes which were statistically significantly associated with

plasma viral load, triglyceride levels, and/or absolute basophil count (Fig 8). These included

ABCB4, ATAT1, C11orf74, C4B, C6orf48, CD2AP, CDK5RAP3, CNBD2, F2RL1, GPATCH4,

GPR22, KCNJ15, KCTD7, PARM1, PCDHB3, RPS28, TTI2, USP19. Some of them were located

on chromosome 6, surrounding the major histocompatibility complex (MHC) region, while

the rest scattered across the human genome. Meanwhile, we did not observe correlations

among plasma viral load, triglyceride levels, or absolute basophil count. The strongest

Fig 8. PhenoGram of statistically significant gene-trait associations identified by the TSA-TWAS analytic framework. We plotted the associations with p-

value< 1.12×10−7. Each association is arranged according to the SNP location on each chromosome and the points are color-coded by baseline laboratory values.

Diamonds represented previously reported or replicated associations, and circle represented novel associations identified in this study.

https://doi.org/10.1371/journal.pgen.1009464.g008
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correlation was observed between plasma viral load and triglyceride levels (r2 = 0.24), suggest-

ing only weak correlation, and correlations for the other pairs of laboratory values were

approximately 0. Overall, there were potential pleiotropic genes for plasma viral load, triglycer-

ide levels, and/or absolute basophil count in HIV-positive adults.

Table 3. Replicated associations related to HIV baseline laboratory values identified by TSA-TWAS.

Trait Gene Chromosome TSS P Colocalized Tissues Locus RCP

Alkaline phosphatase GPLD1 6 24428177 1.08E-11 Esophagus 0.1006

ALDH5A1 6 24494852 1.79E-11 Liver 0.1805

Fasting HDL CETP 16 56961850 4.49E-12 Adipose 0.0916

HDL CETP 16 56961850 4.49E-12 Artery 0.2837

Total bilirubin UGT1A6 2 233692866 2.78E-15

MROH2A 2 233775679 1.39E-12

UGT1A1 2 233760248 3.59E-12 Liver 0.1318

UGT1A7 2 233681938 4.51E-12

Triglyceride KCNJ15 21 38256698 3.18E-13

Viral load C4B 6 32014762 4.11E-15

GABBR1 6 29602228 1.14E-12

ABCB4 7 87401697 1.07E-11

HLA-B 6 31269491 1.15E-11

C6orf48 6 31834608 2.32E-11

A4GALT 22 42692121 8.39E-11

https://doi.org/10.1371/journal.pgen.1009464.t003

Table 4. Novel associations related to HIV baseline laboratory values identified by TSA-TWAS.

Trait Gene Chromosome TSS P Colocalized Tissues Locus RCP

Absolute basophil count KCTD7 7 66628767 3.08E-14

CNBD2 20 35955360 3.83E-13

CD2AP 6 47477789 7.27E-13

RP11-385F7.1 6 47477243 1.32E-12

C6orf48 6 31834608 1.69E-12

PARM1 4 74933095 1.84E-11

USP19 3 49108046 1.51E-10

GPATCH4 1 156594487 2.24E-10

GPR22 7 107470018 1.81E-09

HIST1H1E 6 26156354 2.19E-09

RPS28 19 8321500 2.87E-09

KCNJ15 21 38256698 4.72E-09

TTI2 8 33473423 6.35E-09

CDK5RAP3 17 47967810 1.05E-08

F2RL1 5 76818933 2.99E-08

C4B 6 32014762 8.92E-08

Absolute neutrophil count PMVK 1 154924734 3.63E-08 Adipose 0.0663

Alkaline phosphatase PCDHB3 5 141100756 7.44E-09 Artery 0.1294

KCNJ15 21 38256698 2.77E-08

Fasting HDL NLRC5 16 56989485 1.70E-09 Adrenal Gland 0.0292

Sodium CNBD2 20 35955360 7.71E-08

(Continued)
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Table 4. (Continued)

Trait Gene Chromosome TSS P Colocalized Tissues Locus RCP

Triglyceride PCDHB3 5 141100756 5.78E-14

GPATCH4 1 156594487 2.12E-12

CNBD2 20 35955360 7.21E-12

C6orf48 6 31834608 9.13E-12

PARM1 4 74933095 1.88E-11

TTI2 8 33473423 2.69E-11

USP19 3 49108046 9.69E-11

HIST1H1E 6 26156354 1.20E-10

CD2AP 6 47477789 1.04E-09

RP11-385F7.1 6 47477243 1.17E-09

C4B 6 32014762 1.23E-09

KCTD7 7 66628767 1.34E-08

RPS28 19 8321500 1.40E-08

C11orf74 11 36594493 1.94E-08

ATAT1 6 30626842 5.32E-08

Viral load PPP1R18 6 30676389 6.27E-14

PRDX5 11 64318088 7.01E-14

F2RL1 5 76818933 1.81E-12

CDK5RAP3 17 47967810 1.95E-12

RPS28 19 8321500 3.50E-12

USP19 3 49108046 3.60E-12

KCTD7 7 66628767 3.84E-12

TTI2 8 33473423 4.27E-12

TSTD1 1 161037631 4.57E-12

UBFD1 16 23557732 5.27E-12

RP11-385F7.1 6 47477243 1.05E-11

KCNJ15 21 38256698 1.08E-11

CD2AP 6 47477789 1.54E-11

CNBD2 20 35955360 1.70E-11

PARM1 4 74933095 1.86E-11

ATAT1 6 30626842 2.20E-11

HIST1H1E 6 26156354 8.44E-11

MTRF1L 6 152987362 1.14E-10

MLF1 3 158571163 1.23E-10

PCDHB3 5 141100756 2.42E-09

ATF6B 6 32115335 2.83E-09

GPR22 7 107470018 3.75E-09

RBM17 10 6088987 5.39E-09

PLA2G7 6 46704320 6.34E-09

GPATCH4 1 156594487 1.81E-08

NDUFS4 5 53560633 2.07E-08

C11orf74 11 36594493 2.14E-08

CSNK2B 6 31665391 2.76E-08

GPR18 13 99254714 4.10E-08

FEZ2 2 36531805 4.54E-08

https://doi.org/10.1371/journal.pgen.1009464.t004
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Discussion

Novel design of the simulation framework

In this report, we described a novel simulation framework for TWAS, and evaluated TWAS

gene prioritization performance for genes with various degrees of tissue specificity. Our simu-

lation results validated conclusions from several previous eQTL or TWAS studies [13–15,21],

and also generated new findings that warrant attention in future TWAS. First, TWAS methods

tested in this study all had well-controlled type I error rates (� 5%) for genes with any degrees

of tissue-specificity. Second, single-tissue TWAS tended to have higher false positive rates of

tissues. The phenomenon became more obvious when genes had more correlated expression

levels across tissues. For tissue-specific genes, false positive rates of tissues could be controlled

(� 5%) by adopting a more stringent multiple testing correction approach. However, for ubiq-

uitously expressed genes, false positive rates of tissues remained significant (~77%) even after a

stringent multiple testing adjustment. Third, TWAS gene prioritization power was improved

by eQTLs that were identified by jointly analyzing transcriptomic data across tissues. Fourth,

for tissue-specific genes, single-tissue and cross-tissue gene-level association approaches had

similar power. For ubiquitously expressed and similarly expressed genes, cross-tissue associa-

tion approaches had greater power.

We further tested our simulation designs for how they would translate to real-world data by

evaluating trait heritability in our simulated datasets. We found no apparent effect of MAF dis-

tribution on trait heritability under TWAS models. Instead, trait heritability increased with

R2
expression� trait. When R2

expression� trait = 1%, trait heritability was approximately 1% (s.e. = 0.059%). The

estimated trait heritability was within a reasonable range and supported our simulation design.

Associations in the clinical trials dataset

TSA-TWAS successfully replicated proof-of-concept gene-trait associations, including associa-

tions between CETP and HDL-c, and between GPLD1 and plasma alkaline phosphatase levels.

For total plasma bilirubin levels, our TSA-TWAS framework prioritizedUGT1A1 and genes near

UGT1A1. These genes span 1Mbp at the 2q37.1 locus and are within the same topologically asso-

ciating domain (TAD), which suggests that a regulatory mechanism may affect expression of the

entire KCNJ13-UGT1A-MROH2A gene region. Multiple associations at a risk locus suggested

possible transcriptional regulation that targets the whole genetic region. However, shared tran-

scriptional regulation of neighboring genes does not indicate the same phenotypic impact. While

many genes in the 2q37.1 locus have been associated with total bilirubin levels in numerous stud-

ies [25–28],UGT1A1 is the only known functional gene that encodes the hepatic protein to glu-

curonidates bilirubin in liver [29]. This discovery indicated that TWAS was likely to assign

statistical significance to neighboring genes as a result of shared transcriptional regulation or LD

structure [18]. Understanding of complex trait regulatory mechanisms is difficult to achieve with

GWAS and gene expression data alone. Functional genomics data, computational methods, and

validation experiments are required to identify causal genes and mechanisms for a risk locus.

TSA-TWAS has also identified several pleiotropic genes that linked plasma viral load, abso-

lute basophil count, and/or triglyceride levels, which were otherwise independent from each

other. Plasma viral load is a strong predictor of clinical outcome and is highly variable among

people living with HIV. Individuals vary in their ability in suppressing viral loads, in the absence

of antiretroviral treatments. Moreover, people living with HIV experience dyslipidemia to dif-

ferent degrees at baseline or after antiretroviral therapy (ART) and, thus, have higher risk of

developing cardiovascular diseases than those living without HIV. HIV-associated and ART-

induced dyslipidemia imposes challenges in clinical care of comorbid cardiovascular diseases
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risks for people living with HIV [44]. The discovery of pleiotropic genes demonstrates the com-

plexity of gene expression and genetic architecture of HIV baseline lab values. The complicated

inter-individual variability across multiple traits may be of interest for future research exploring

HIV pathogenesis and treatment responses. We also acknowledged that some of the pleiotropic

genes are located in the MHC region, which has a complicated LD structure. We defer this

question to future research with deep-genotyping or sequencing of specificHLA regions.

Limitations & future directions

Our simulations revealed high false positive rates of tissues for single-tissue TWAS. The high

false positive rates seen with single-tissue TWAS may be due to limited sample sizes for eQTL

discovery. GTEx analysis has shown that discovery of tissue-specific eQTLs is contingent on

the sample sizes of tissues [10]. Unfortunately, many tissues still have limited sample sizes for

the identification of tissue-specific eQTLs. Consequently, single-tissue TWAS may not have

ample power to prioritize potential trait-related tissues. Adopting stricter multiple testing

adjustment strategies for single-tissue TWAS is one practical approach to help reduce false

positive rates in prioritized tissues, but this will sacrifice power.

The evaluation of TWAS power and type I error rates estimated from this simulation

study might be limited due to the small sample sizes (N = 2,000 for association analyses).

We selected this sample size for simulation in order to make it comparable to the average sam-

ple size of the ACTG phase I-IV combined clinical traits interrogated in this study. TWAS

gene prioritization power can be improved with greater sample, but also under influence

of many other factors as shown in Veturi et al. [21] and this study. Thus, TWAS performance

can differ from dataset to dataset when using different TWAS methods. It was difficult to

take every factor into consideration in this work. We dedicated this study to explore tissue spe-

cificity’s impact on TWAS performance, and, for future TWAS studies, suggest customized

simulation to better understand TWAS performance on specific datasets and diseases of

interest.

Pinpointing complex trait-related genes remains a challenge that is beyond the scope of our

study here. The causes of this challenge are multi-faceted, including co-expression of neigh-

boring genes [45]), correlated SNPs or eQTLs at a locus (i.e. LD), bias and noises from trait-

irrelevant tissues [18], etc. Some of the issues were comprehensively described and discussed

in [18]. Our TSA-TWAS aimed at improving power to identify associated genes. For the pur-

pose of identifying trait-related genes, TSA-TWAS should be followed by a fine-mapping anal-

ysis (FOCUS [24]). FOCUS identifies credible sets of potential trait-related genes by

addressing the issues of LD and co-regulation of genes in TWAS. In our ACTG TSA-TWAS

analysis, we further performed colocalization analysis using fastENLOC [46] for all genes in

the FOCUS identified credible set to prioritize genes for future research. Some associations,

for example, UGT1A1-total bilirubin levels (locus RCP = 0.1318 in liver), were supported by

the colocalization results. However, many statistically significant associations were not sup-

ported by colocalization likely due to the conservative nature of colocalization [47].

Conclusions

Gene-level association studies offer the opportunity to better understand the genetic architecture of

complex human traits by leveraging regulatory information from both noncoding and coding

regions of the genome. This may expedite translation of basic research discoveries to clinical applica-

tions. We provide a comprehensive simulation algorithm to fully investigate TWAS performance

for diverse biological scenarios. Based on our simulation, we promote a TSA-TWAS analytic frame-

work. TSA-TWAS framework on ACTG clinical trials data ascribed statistical significance to proof-
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of-concept gene-trait associations, and also found several novel associations and pleiotropic genes,

suggesting the complexity of HIV-related traits that latest bioinformatics methods can reveal.

Additional work is needed to fully understand the tissue and genetic architecture underly-

ing complex traits. The simulation algorithm and schema developed for this study is versatile

enough to answer other questions regarding causal genes and tissues for complex traits. Over-

all, our work provides and tests a novel, flexible simulation framework and an TSA-TWAS

analytic framework for future complex trait studies.

Materials and methods

TWAS simulation design

The simulation study systematically evaluated how the tissue-specificity of eQTLs and gene

expression levels influences TWAS gene prioritization performance. We assumed additive

genetic effects of eQTLs on gene expression levels, and of gene expression levels on traits. The

TWAS simulation scripts are available in R programming language at GitHub (https://github.

com/RitchieLab/multi_tissue_twas_sim).

Genotype. We started by simulating genotypes for one gene in 1,500 individuals, which

include eQTL and non-eQTL SNPs. Genotypes are denoted as XN×M throughout this paper,

where N denotes the total number of individuals andM denotes the total number of SNPs in a

gene that include tissue-specific eQTLs, multi-tissue eQTLs and non-eQTL SNPs. These indi-

viduals were later stratified into an eQTL discovery dataset (NeQTL = 500) and a TWAS testing

dataset (NTWAS = 1000), sample sizes comparable to those of current GTEx and ACTG datasets

used in this analysis, respectively. Genotypes were simulated as biallelic SNPs and then con-

verted into allele dosages as is done in most eQTL detection methods. MAF assigned to SNPs

raged from 1% to 50% and were randomly drawn from a uniform distribution, U(0.01, 0.5).

Parameter settings of eQTLs in this simulation were drawn from observations in different

eQTL databases (S1–S3 Figs).

Gene expression level. We simulated one gene’s standardized expression levels at a time

such that it was expressed in a fixed number of tissues. Let P denote the number of tissues

where the gene is expressed, P = 1, 2, 5, or 10. If a gene is only expressed in a single tissue

(P = 1), then, only single-tissue eQTLs were simulated for this given gene and no multi-tissue

eQTLs were present.

A previous study showed that the number of eQTLs in a gene does not have as pronounced

an effect on the TWAS power in comparison to other parameters [21]. Hence, we assumed

that a given gene was regulated by the same total number of eQTLs in each of the P tissues,

which is denoted byMeQTLs (MeQTLs = 30). eQTLs can be tissue-specific or have effect across

multiple tissues. Here, we defined tissue-specific eQTLs as those that had effects in one and

only one tissue. Multi-tissue eQTLs were defined as those who had effects in all P tissues in

which the given gene is simulated to be expressed. We allowed multi-tissue eQTLs to have dif-

ferent effect sizes in different tissues. Assuming that a gene was expressed in P tissue(s) (say

P = 5), then, this gene is regulated by both, tissue-specific eQTLs and multi-tissue eQTLs, in

any of the P tissues. LetMts−eQTLs denote the number of tissue-specific eQTLs, andMmt−eQTLs

the number of multi-tissue eQTLs. A simulated gene had the sameMts−eQTLs across P tissues,

and the sameMmt−eQTLs across P tissues, such thatMts−eQTLs andMmt−eQTLs added up toMeQTLs

in each of the P tissues. Five different numbers ofMmt−eQTLs (0, 6, 12, 18, 24, corresponding

Mst−eQTLs = 30, 24, 18, 12, 6) were evaluated, except when a gene was simulated to be expressed

only in one gene, in which caseMmt−eQTLs always equaled 0.

Each gene was simulated under an additive genetic model per tissue. Let EN×P denote the

simulated gene expression levels for one gene, of N individuals, and across P tissues. For the
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given simulated gene, let Enp represent the simulated expression level of the nth individual in

the pth tissue, which is an aggregate of tissue-specific eQTLs, multi-tissue eQTLs and non-

eQTL effects in individual n for tissue p. The multivariate normal random effects model to

simulate one gene’s expression levels is then expressed as follows:

E ¼ Xts� eQTLsbts� eQTLs þ Xmt� eQTLsbmt� eQTLs þ ε1

where E is the N×Pmatrix of standardized gene expression levels for a gene in N individuals

across P tissues. Xts−eQTLs is the N×Mts−eQTLs matrix of standardized tissue-specific eQTL geno-

types. Similarly, Xmt−eQTLs is the N×Mmt−eQTLs matrix of standardized multi-tissue eQTL geno-

types. βts−eQTLs is aMts−eQTLs×Pmatrix of tissue-specific eQTL effects. βts−eQTLs,ip represents

the ith tissue-specific eQTL in the pth tissue, which could be a different eQTL across P tissues.

Each value in the βts−eQTLs is independent of the others. βmt−eQTLs is aMmt−eQTLs×Pmatrix of

multi-tissue eQTL effects wherein βmt−eQTLs,jp represents the jth multi-tissue eQTL in the pth

tissue. In contrast to tissue-specific eQTLs, βmt−eQTLs,j. denotes the same jth multi-tissue eQTL

in all P tissues, and is allowed to have similar or dissimilar effect sizes across P tissues

(explained later in this section). vecðbts� eQTLsÞ � Nð0Mts� eQTLs�P;S
ts� eQTLs
P�P � IMts� eQTLsÞ

where Sts� eQTLs
P�P ¼

h2
SNP� expression �

Mts� eQTLs

MeQTLs
; p ¼ p0

0; p 6¼ p0

8
><

>:
. The constant, h2

SNP� expression �
Mts� eQTLs
MeQTLs

,

represents the proportion of variation in gene expression that can be explained by tissue-spe-

cific eQTLs. vecðbmt� eQTLsÞ � Nð0Mmt� eQTLs�P;S
mt� eQTLs
P�P � IMmt� eQTLsÞ

where Smt� eQTLs
P�P ¼

h2
SNP� expression �

Mmt� eQTLs

MeQTLs
; p ¼ p0

cor tissuep; tissuep0
� �

� h2
SNP� expression �

Mmt� eQTLs

MeQTLs
; p 6¼ p0
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>>><

>>>:

. The constant,

h2
SNP� expression �

Mmt� eQTLs
MeQTLs

, represents the proportion of gene expression variation that can be

explained by multi-tissue eQTLs. cor(tissuep, tissuep0) represents the extent of similarity

between βmt−eQTLs,.p and βmt−eQTLs,.p0, i.e. the Pearson Correlation Coefficient between multi-

tissue eQTL effect sizes in the pth and p0th tissues, respectively. The simulation algorithm

allows multi-tissue eQTLs to have five different levels of cor(tissuei, tissuej) (0, 0.2, 0.4, 0.6, and

0.8). ε1 is theN×Pmatrix of residual errors that represent non-eQTL effects on a gene’s expres-

sion level and vecðε1Þ � Nð0N�P;S
e
P�P � InÞ

where Se
P�P ¼

1 � h2
SNP� expression; p ¼ p0

corðtissuep; tissuep0Þ � 1 � h2
SNP� expression; p 6¼ p0

(

. The constant,

1 � h2
SNP� expression, represents the proportion of gene expression variation that can be explained

by factors other than eQTLs that can also regulate a gene’s final transcription isoforms and lev-

els. We designed the error term to have such a covariance structure that the final aggregate

expression levels of the given gene in pth tissue (E.p) was correlated with that in the p0th tissue

(E.p0) due to multi-tissue eQTLs as well as other biological factors. These other biological fac-

tors (such as alternative splicing events, post-transcriptional modifications and regulation of

mRNA degradation) can either be shared or different across tissues. We adopted a simple

assumption that the more similar a gene’s expression levels are across tissues, the more likely

multi-tissue eQTLs (and non-eQTL biological factors) will share effect sizes across tissues.

Thus, correlation of gene expression across tissues (for example, correlation between E.p and E.

p0) is expected to be similar to, if not the same as, the correlation of multi-tissue eQTL effect

sizes (for example, correlation between βmt−eQTLs,.p and βmt−eQTLs,.p0) as well as the correlation
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between non-eQTL biological factors. All three random effect terms, i.e. βts−eQTLs, βmt−eQTLs,
and ε1 were simulated using the rmvnorm function from the R package,mvtnorm. We evalu-

ated the extent of bias between assumed combination of simulation parameters and those esti-

mated from the empirical distribution of simulated EN×P, which met the expectation (S14 Fig).

In the special case where a gene was simulated to be expressed only in a single tissue, the

model was equivalent to a univariate normal distribution with mean 0 and variance equal to

the expression heritability of that gene.

Tissue specificity of genes was characterized by the number of tissues in which genes are

expressed as well as the similarity of gene expression levels across tissues. Tissue specificity of

eQTLs was characterized by the proportion of multi-tissue eQTLs in a gene, the number of tis-

sues where multi-tissue eQTLs were effective, and the similarity of eQTL effect sizes across

tissues.

Phenotype. We assumed one and only one causal tissue for a phenotype and simulated

phenotype datasets for the TWAS testing dataset (N = 1,000). This design was adopted from

the simulation work of Dr. Yiming Hu et al. in the paper that described UTMOST [15]. Let

EeQTLs denote the standardized genetically regulated expression component in the causal tis-

sue. The model to simulate traits from gene expression levels can be expressed as Y =

EeQTLsb1+ε2, where Y is a 1000×1 vector of standardized responses for the 1,000 individuals in

the TWAS testing dataset, b1 is theMeQTLs×1 vector of gene expression effect drawn from a

normal distribution with mean zero and variance R2
expression� trait, and ε2 is the vector of nor-

mally-distributed errors with mean zero and variance 1- R2
expression� trait. R

2
expression� trait was assigned

values in 0.001%, 0.05%, 0,5% and 1%, to represent different strengths of gene expression

level-trait relations. To evaluate type I error rates, R2
expression� trait = 0% corresponded to the null

model where gene and trait were unrelated.

eQTL detection. We adopted two types of eQTL detection methods, 1) elastic net (imple-

mented in PrediXcan [5]) and 2) group LASSO (implemented in UTMOST [15]). For ease of

parallel computation, these two algorithms were adapted and integrated into the TWAS simu-

lation tool scripts. eQTLs detected in a single tissue context (elastic net) and those detected in

an integrative tissue context (group LASSO) were then used to impute GReX, and for gene-

trait association analyses.

Imputation of GReX. Expression level of a gene can be imputed using a linear model as E
= Xβ, where E is the N×1 vector of imputed gene expression levels of the gene, X is the N×M
matrix of genotypes, and β is theM×1 vector of eQTLs’ estimated regulatory effects on the

gene, and can be obtained by either elastic net or group LASSO.

Association analysis. Single-tissue gene-trait associations were then estimated using SLR

model, i.e., lm function in R. Cross-tissue gene-trait association analyses were also conducted

in R but using PC Regression (implemented in MulTiXcan [16]) and GBJ test (implemented

in UTMOST [15]).

Measures of TWAS performance. Each combination of simulation parameters was

repeated 100 times independently to assess power and type I error rates at α = 0.05. Estimation

of TWAS power was calculated as the percentage that a simulated causal gene was successfully

identified as statistically significant in the causal tissue in the hundred simulations. Estimation

of TWAS type I error rates were calculated as the percentage that a gene was falsely identified

as statistically significant when there was no gene-trait signal simulated in the hundred simula-

tions. We assumed that a gene is related to a trait in a single tissue, which is often the case for

non-pleiotropic genes. In the simulation, we knew the causal tissues for the simulated traits.

We calculated the false positive rates of tissues by counting the proportion of statistically sig-

nificant results that were in non-causal tissues.
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The entire process was repeated 20 times for each combination of simulation parameters to

avoid sampling variability and to determine distributions of power, type I error rates, and false

positive rates of tissues. We further evaluated the statistical significance of the differences in power

and type I error rate between every pairs of TWAS methods using Wilcoxon Signed-rank test.

Evaluation of simulated genetic scenarios

Trait heritability assessment validated and supported our design of simulation parameters. We

designed a Monte Carlo simulation approach to randomly generate eQTL-gene-trait relations

using the aforementioned simulation tool. Each replication simulated one genotypic dataset

and one subsequent GReX profile for a gene. We simulated 30 non-eQTL and 30 eQTL SNPs

for 5,000 individuals in which MAF followed a uniform distribution of 1–50% and eQTLs

explained 30% of gene expression variation. The GReX profile was then used to generate 50

different traits using different random seeds. Thus, each simulated genotypic dataset had 50

estimated trait heritability values available; we took the average of these as the point estimate

of the trait h2 for each genotypic dataset. GCTA [48] was not appropriate for our simulation as

it assumes genome-wide genotypic data. Instead, we used the R package, regress, to estimate

trait heritability in the simulated datasets. The entire process was repeated 30 times to generate

a distribution of estimated trait heritability for a given combination of simulation parameters.

To determine the influence of MAF on trait heritability, we designed different ranges of

MAF distributions. MAF of SNPs followed a uniform distribution of 1–50% as in the primary

TWAS performance evaluation, and also 1–20% and 1–5%. We also simulated traits where

R2
expression� trait = 0% (negative control), 2%, or 5% (positive controls) to support the estimation of

trait heritability when R2
expression� trait = 0.001%, 0.05%, 0.5%, and 1%.

AIDS Clinical Trials Group studies

The ACTG is the world’s largest HIV clinical trials network. It has conducted major clinical

trials and translational biomedical research that have improved treatments and standards of

care for people living with HIV in the United States and worldwide. In this study, we used data

from four separate genotyping phases of specimens from ACTG studies in a combined dataset

that comprises HIV treatment-naïve participants at least 18 years of age enrolled in random-

ized treatment trials [49–55]. Participants enrolled into ACTG protocols A5095, A5142,

ACTG 384, A5202 or A5257. Informed consent for genetic research was obtained under

ACTG protocol A5128. Clinical trial designs and outcomes, and results of a genome-wide

pleiotropic study for baseline laboratory values have been described elsewhere [25,26].

Genotypic data and quality control

A total of 4,411 individuals were genotyped in four phases. Phase I (samples from study A5095)

was genotyped using Illumina 650Y array; Phase II (studies ACTG384 and A5142) and III (study

A5202) were genotyped using Illumina 1M duo array; Phase IV (study 5257) was genotyped using

Illumina HumanCoreExome BeadChip. Preparation of genotypic data included pre-imputation

quality control (QC), imputation, and post-imputation QC. Pre- and post-imputation QC fol-

lowed the same guidelines [56] and used PLINK1.90 [57] and R programming language. Imputa-

tion was performed on the combined ACTG phase I-IV genotype dataset after pre-imputation

QC, which used IMPUTE2 [58] with 1000 Genomes Phase 1 v3 [59] as the reference panel. Com-

bined ACTG phase I-IV imputed data comprised 27,438,241 variants. The following procedures/

parameters were used in the post-imputation QC by PLINK1.90: sample inclusion in the ACTG

genotyping phase I-IV phenotype collection, biallelic SNP check, imputation score (> 0.7),
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concordance of genetic and self-reported sex, genotype call rate (> 99%), sample call rate

(> 98%), MAF (> 5%), and relatedness check (p̂ > 0.25; one individual was dropped from each

related pair). Subsequent principal component analysis (EIGENSOFT [60]) projected remaining

individuals onto the 1000 Genomes Project Phase 3 sample space to examine for population strati-

fication. Based on percent of variance explained, the first three principal components estimated

by SmartPCA in EIGENSOFT were used as covariates to adjust for population structure in the

subsequent analyses. The final QC’ed ACTG phase I-IV combined imputed data comprised

2,185,490 genotyped and imputed biallelic SNPs for 4,360 individuals.

Phenotypic data and QC

Data for 37 baseline (i.e., pre-treatment) laboratory measures were available from 5,185 HIV

treatment-naive individuals in the ACTG genotyping phase I-IV datasets. We assembled these

laboratory traits using a MySQL database and applied QC using R. We retained only individu-

als with available genotype data, and traits that were normally distributed and met the criterion

of phenotype missing rate < 80%. Frequency distributions of traits were inspected using hist_-
plot.R that facilitates manual inspection of continuous traits by providing fast, high-through-

put visualization along with necessary summary statistics of each visualized traits[61].

hist_plot.R is part of the CLARITE [61], which is available at https://github.com/HallLab/

clarite. We also cross-referenced the retained traits to other published work that analyzed the

same traits using these clinical trials datasets [25,26]. Non-fasting serum lipid measures were

retained based on data from several studies [62–64]. The final combined dataset for ACTG

genotyping phases I-IV comprised 37 baseline laboratory traits (Table 2).

Description of a general TSA-TWAS analytic framework

The TSA-TWAS analytic framework has the following general steps.

1. Impute the GReX for the gene based on the input eQTL database(s) and the genotypic

dataset.

2. Determine whether the gene is predicted to be expressed in only one tissue or in multiple

tissues.

3. If the gene is predicted to be expressed in only one tissue, perform single-tissue TWAS

using simple linear or logistic regression depending on the trait.

4. If the gene is predicted to be expressed in multiple tissues, perform cross-tissue TWAS

using the GBJ test.

5. Repeat step 2–4 for the next gene.

6. (Optional) If there is more than one trait, repeat step 1–5 for the next trait.

Imputation of GReX for genes

We used GTEx v8 MASHR-based eQTLs models [65] to impute gene expression levels in a tis-

sue-specific manner. MASHR-based eQTLs models selected variants that have biological evi-

dence of a potential causal role in gene expression, and estimated these variants’ effect sizes on

gene expression levels in 49 tissues, using GTEx v8 as the reference dataset (available at http://

predictdb.org/). The GTEx v8 MASHR-based eQTLs models were downloaded from their

website on October 31, 2019. The QC’ed ACTG phase I-IV combined imputed data was used

to impute the individual-level GReX in 49 human tissues.
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Statistical analysis for gene-level associations

We tested for single-tissue gene-trait associations by performing association tests on imputed

GReX and ACTG baseline lab traits using PLATO [66,67] in 49 tissues, separately. All baseline

laboratory traits were continuous and thus were modeled by linear regression with covariates.

Covariates included age, sex, and the first three principal components calculated by EIGENSOFT

to adjust for sampling biases and underlying population structure. For cross-tissue association

analyses, we adapted the UTMOST script in R programming language and performed the GBJ

test for the individual-level ACTG data. The lowest p-value that can be generated by GBJ test in

R is approximately 1×10−15. No obvious inflation was observed in the TSA-TWAS framework.

ACTG phenome-wide TWAS results were visualized using PhenoGram [68], a web-based, versa-

tile data visualization tool to create chromosomal ideograms with customized annotations, avail-

able at http://visualization.ritchielab.org/phenograms/plot. Supplementary manhattan plot was

created by hudson, a R package available at https://github.com/anastasia-lucas/hudson.

We further identified the credible set of baseline laboratory measure-associated genes to

capture the full pool of possible causal genes. The analyses were done using the FOCUS [24]

with the GWAS summary statistics of the 38 baseline laboratory measures and recommended

multiple tissue, multiple reference panel eQTL databases that are provided on the FOCUS

GitHub repository. LD information was computed from the quality-controlled genotype data

of the ACTG participants.

We then performed colocalization analyses to see if any genes in the credible set colocalized

with eQTL signals in any tissues. We first performed statistical fine-mapping of likely causal

variants and calculated GWAS posterior inclusion probability (PIP) by applying a Bayesian

method, TORUS [69], on the ACTG GWAS summary statistics. Then, we estimated the proba-

bility of colocalization between each of the GWAS and cis-eQTL signals using fastENLOC

developed by Pividori et al. [46], following the guideline on the fastENLOC GitHub repository

(https://github.com/xqwen/fastenloc). The locus RCP for each signal cluster of interest was

calculated automatically by fastENLOC.

Statistical correction

Two strategies to correct for multiple testing were implemented in the ACTG analysis,

method-wise and family-wise Bonferroni significance thresholds. The method-wise approach

ascribes significance to statistical tests by controlling for the number of tests conducted in one

type of method. For single-tissue gene-trait associations, the method-wise Bonferroni signifi-

cance threshold was corrected for the number of genes (n = 483) and traits (n = 37), which

resulted in a ¼ 0:05

2;812�37
� 4:8� 10� 7. For cross-tissue gene-trait associations, the method-wise

Bonferroni significance threshold corrected for the number of genes and traits, which gave

a ¼ 0:05

9;226�37
� 1:46� 10� 7. The family-wise approach assigns significance to tests by account-

ing for all tests performed in this study to control for FWER. Hence, single-tissue and cross-

tissue association tests shared the same family-wise Bonferroni significance threshold,
0:05

12;038�37
� 1:12� 10� 7. The significance threshold for interpreting results, by default, referred

to the family-wise threshold. All results reported are exact p-values and thus, can be easily

compared to either multiple testing threshold.

Supporting information

S1 Fig. MAF distribution of GTEx v7 eQTLs. MAF of eQTLs closely resembled a uniform

distribution, ranging between 1% to 50%, with a spike around 20–25%.

(TIF)
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S2 Fig. Distribution of number of eQTLs for a gene from (A) GTEx v7, (B) PredictDB eQTL

datasets and (C) UTMOST eQTL datasets.

(TIF)

S3 Fig. eQTL weight distribution for genes of different levels of tissue specificity. (A) and

(B) For tissue-specific genes, likeHBB, PrediXcan and UTMOST both identified eQTLs pre-

dominantly in a single tissue and eQTL weights followed a normal distribution. (C) and (D)

For genes that are differentially expressed in multiple tissue, like APOE, PrediXcan and

UTMOST both estimated normally distributed eQTLs weights. However, UTMOST was able

to identify more eQTLs that are functioning across tissues. (E) and (F) For genes that are ubiq-

uitously expressed in all tissues, like USP40, eQTL weights estimated from PrediXcan and

UTMOST were both normally distributed. And again, UTMOST was able to identify more

eQTLs that are effective in more than one tissues.

(TIF)

S4 Fig. Statistical difference of gene prioritization power of different TWAS methods.

Power was the proportion of successfully prioritized gene-trait associations in the causal tissue

out of all associations under the same simulation setting. X-axis is the number of gene-express-

ing tissues. Each column stands for the proportion of eQTLs that are shared among tissues for

a gene. Each row is the similarity of gene expression profiles across tissues which is estimated

by correlation. Moving from the top left to the bottom right is a gradient spectrum from tis-

sue-specific genes to broadly expressed genes. The colors represent different TWAS methods

and y-axis is the power. For tissue-specific genes at the top left, single-tissue TWAS (Elastic

Net-SLR) and cross-tissue TWAS (Group LASSO-GBJ) had similar power. For broadly ex-

pressed genes at the bottom right, cross-tissue TWAS (Group LASSO-GBJ) had greater power.

The difference in power among different TWAS methods were statistically evaluated (� p-

value < 0.05, �� p-value < 0.01, ��� p-value < 0.0001).

(TIF)

S5 Fig. TWAS gene prioritization power when R2
expression� trait = 0.5%.

(TIF)

S6 Fig. TWAS gene prioritization power when R2
expression� trait = 0.05%.

(TIF)

S7 Fig. TWAS gene prioritization power when R2
expression� trait = 0.001%.

(TIF)

S8 Fig. Statistical difference of type I error rates of different TWAS methods. Type I error

rate was the probability that TWAS wrongly identified a gene-trait association as significant

while there was not any signal. Association p-values were controlled for the number of genes

and tested tissues. X-axis is the number of gene-expressing tissues. Each column stands for the

proportion of eQTLs that are shared among tissues for a gene. Each row is the similarity of

gene expression profiles across tissues which is estimated by correlation. Moving from the top

left to the bottom right is a gradient spectrum from tissue-specific genes to broadly expressed

genes. The colors represent different TWAS methods and y-axis is the type I error rate. All

TWAS methods had controlled type I error rates (� 5%). The difference in type I error rates

among different TWAS methods were statistically evaluated (� p-value < 0.05, �� p-

value < 0.01, ��� p-value < 0.0001).

(TIF)
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S9 Fig. Power when single-tissue associations were not adjusted for the number of tested

tissues and R2
expression� trait = 1%.

(TIF)

S10 Fig. False positive rates when single-tissue associations were not adjusted for the num-

ber of tested tissues.

(TIF)

S11 Fig. Trait heritability estimation design and workflow.

(TIF)

S12 Fig. Estimation of trait heritability for simulated datasets.

(TIF)

S13 Fig. Tissue distribution of predicted GReX. X-axis is the number of tissues that a gene was

predicted to be expressed in based on GTEx v8 MASHR-based eQTL models. Y-axis is the count

of genes. Genes tended to express in few numbers of tissue according to GTEx v8 prediction.

(TIF)

S14 Fig. Empirical distribution simulated EN×P at five cor(tissuep, tissuep0) (0, 0.2, 0.4, 0.6,

0.8). The number of tissues were five in this evaluation. Five thousand rounds of simulations

were repeated for each value of cor(tissuep, tissuep0). In each repetition, we obtained one mean

variance and one mean off-diagonal correlation across the five simulated tissues. (A) The

empirical mean variance of EN×P were approximately one in any situations. The empirical

mean off-diagonal correlations equaled 0, 0.186, 0.373, 0.563, and 0.756, for cor(tissuep, tissuep0)
= 0 (B), 0.2 (C), 0.4(D), 0.6 (E), 0.8 (F).

(TIFF)

S15 Fig. Distribution of locus RCP on the ACTG data. To evaluate for an appropriate locus

RCP cutoff, we inspected locus RCP statistics for colocalization tests of 49 tissues, 10 statisti-

cally significant phenotypes, and ~20K genes. Approximately 10M were present in the figure.

Y-axis were cut out at count of 100 for the ease of visualization. We took locus RCP > 0.025 as

a cut-off based on the locus RCP distribution.

(TIFF)

S16 Fig. Alternative TWAS analytic framework based on simulation results.

(TIF)

S17 Fig. The advantage of our tissue specificity-aware TWAS analytic framework (top) in

comparison to a regular single-tissue TWAS (bottom). X-axis is the genomic location and y-

axis is the -log10 transformed p-values. Colors denote different ACTG baseline laboratories.

The significance threshold was 1.12×10−7 for both top and bottom TWAS frameworks. While

single-tissue TWAS were able to find multiple significant gene-trait associations, the signifi-

cant tissues did not necessarily connect to the traits of interest pathology-wise. Our tissue spec-

ificity-aware TWAS framework was able to retain all significant associations that were

identified through regular single-tissue TWAS.

(TIF)

S1 Table. Pairwise Comparison of power across all pairs of TWAS methods.

(XLSX)

S2 Table. Pairwise Comparison of type I error rates across all pairs of TWAS methods.

(XLSX)
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S3 Table. Credible sets of baseline laboratory trait-related genes.

(XLSX)
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