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Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model
for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM)
optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date,
the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output
power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component
Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend
component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results
of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained.
The predictionmodel is tested with actual data, and the results show that the power predictionmodel based on the EMD and ABC-
SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM
prediction model without optimization.

1. Introduction

With the increasing scale of grid-connected PV systems, the
adverse effects of intermittent and uncertain characteristics of
the PV system on the public grid are becoming increasingly
important [1–3]. If the changes in the PV system power
generation can be accurately predicted, a reasonable power
grid scheduling and balanced power load configuration can
be achieved to protect the security and stability of the public
grid system. Currently, there are two methods to predict the
output power of PV systems: the indirect and direct predic-
tion methods. The crux of the indirect method is to predict
the solar radiation intensity of the PV installation site, predict
the solar radiation intensity at a certain time, and substitute
it into the corresponding output model, thus obtaining the
predicted output power value of the PV system [4]. Direct

prediction methods do not require solar irradiance data and
can predict the power output of PV power generation systems
in the next time period by using only the historical PV
system data and public weather information [5–8]. Some
studies have shown that the influence of meteorological
factors on the output power of PV systems is significant. If the
meteorological conditions are similar in two time periods, the
power output curves will have a great similarity. Therefore, it
is possible to predict the output power of the grid-connected
PV system by selecting a date with similar data [9].

The direct prediction method predicts the future power
output by using the historical data of the output power based
on a mathematical statistics prediction theory and method.
The indirect prediction method is also called the step-by-
step prediction method. In this method, the solar irradiance
is forecasted, and the output power is then calculated based
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on the photoelectric conversion model. This method cannot
obtain the output power directly, so it is called the indirect
prediction method.

The above PV power prediction methods have their own
characteristics and associated limitations in their application
[10]. At present, the PV power prediction error resulting from
a single prediction method is large, generally 15% to 30%,
because the output power of a PV system is largely affected by
meteorological factors. Furthermore, there are intermittent
problems and uncertainties in photovoltaic power generation
systems. The limitations of the prediction methods are also
a key factor that causes a relatively large error. Numerous
studies have shown that the accuracy of a single prediction
method cannot meet the prediction accuracy requirements
for the power generation of PV systems. Combined pre-
diction methods can synthesize the advantages of multiple
prediction approaches and improve the prediction accuracy
of generated power of the PV system.

The empirical mode decomposition (EMD) has been
largely and successfully combined to predict the nonlinear
stochastic time series. This prediction method first decom-
poses the time series into multiple series of different fre-
quencies, establishes prediction models for different series to
reduce the interaction among the information about different
characteristics, and finally reconstructs the prediction results
to obtain the predicted value of the original series.

In this paper, a combined prediction model is introduced
and applied to PV power prediction. The advantages of
different algorithms are combined to establish and test the
prediction model for the output power of grid-connected
PV systems based on the EMD and ABC-SVM. This model
effectively overcomes the defects, such as poor generalization
performance, low prediction accuracy, and unstable predic-
tion results, that are observed when a single model is adopted
and successfully applies the artificial bee colony optimization
algorithm and EMD method to predict the output power of
grid-connected PV systems.

Support vector machine (SVM) is a novel machine learn-
ing method that is based on statistical learning theory and
minimized structural risk. It has been successfully applied
in nonlinear regression predictions in various fields, such
as wind speed forecasting, short-term load forecasting, and
tourist flow forecasting [11–13]. These results have proven
that the SVM can successfully solve prediction problems
with small samples, nonlinearity, and high dimensionality.
However, the parameter optimization in SVM plays a crucial
role in improving the prediction accuracy and stability.
Therefore, it is vital to select the most appropriate parameter
value for the SVM. Determining the optimal parameters for
SVM is very important.

The artificial bee colony (ABC) technique is an optimiza-
tion algorithm based on the intelligent foraging behavior of
a honey bee swarm. The unique mechanism of division of
labor and collaboration in the ABC algorithm makes bees
collaborate in accordance with different search strategies
to complete the task of seeking the optimization, showing
strong global optimization seeking ability. The algorithm
has been shown to be superior to the performance of the
genetic algorithm, ant colony algorithm, and particle swarm
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Figure 1: 15-minute average output power output under different
weather conditions.

algorithm in related research [14–18]. Therefore, the artificial
bee colony technique is used to search for the optimal
parameters of the SVM in this paper.

2. Clustering Selection Method of Similar Days
for the Output Power of a PV System

It is found that the influence of meteorological factors on
the output power of photovoltaic power generation system
is significant. Under the same conditions, the size and the
changing tendency of the output power will differ because of
the varying weather types. Figure 1 shows the change in the
15-minute output power of a 10 kWPV systemunder different
weather types, sunny, sunny to cloudy (cloudy to sunny),
cloudy, and overcast, in August 2014. Figures 2 and 3 show 15-
minute average irradiance and temperature of the solar panels
under different weather conditions similar to Figure 1.

The 10 kW PV array consists of 51 photovoltaic mod-
ules (PLUTO195-ade). These modules are connected both
in series and in parallel to obtain a larger output power.
Seventeen modules are connected in series, and 3 strings of
series-connected modules are connected in parallel (17 ∗ 3 ∗975W= 9.945 kW).

The manufacturer specifications for one module are as
follows: open-circuit voltage (𝑉oc) is 45.4V, short-circuit
current (𝐼sc) is 5.52A, and the voltage and current at
maximum power (𝑉mp and 𝐼mp) are 37.6V and 5.19 A,
respectively.

When the output power of the grid-connected PV system
is predicted, finding reasonably similar days from the actual
historical data can greatly improve the prediction accuracy of
the output power of the PV system.

To find days that have similar weather and seasonal types
and thereby determine temperature and humidity of the
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Figure 2: 15-minute average irradiance under different weather
conditions.
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Figure 3: 15-minute average temperature of the solar panels under
different weather conditions.

prediction day, we first classify the weather and seasonal
types. The weather types are classified as sunny, sunny to
cloudy (cloudy to sunny), cloudy, overcast, and rainy (snowy)
which are represented by 1, 2, 3, 4, and 5, respectively. The
seasonal types are classified as follows:March, April, andMay
for spring; June, July, and August for summer; September,
October, and November for fall; and December, January,

and February for winter. Then, the classification is combined
with the historical data according to the seasonal types of
the prediction day, and fuzzy clustering is carried out using
the fuzzy 𝐶-mean algorithm. Finally, days similar to the
prediction day are found. The general steps are as follows.

(1) Identify the clustering indexes. The weather type is𝑤,
the daily highest temperature is 𝑇h and the lowest is 𝑇l, and
the daily maximum humidity is 𝐻h and the minimum is 𝐻l.
To increase the comprehensiveness of the clustering samples,
we take the historical meteorological data of the same season
two years before as the clustering sample set. Assuming that
the data set has𝑁 days, the sample set can be written as 𝐷 ={𝑑𝑗 | 𝑗 = 1, 2, . . . , 𝑁}, where 𝑑𝑗 = {𝑤𝑗, 𝑇h

𝑗 , 𝑇l
𝑗, 𝐻h
𝑗 , 𝐻l
𝑗}. At

the same time, the number of clusters, 𝐶, the fuzzy weighting
parameter, 𝑚, the threshold value, 𝜀, and the initial iteration
step, 𝐿, are determined.

(2) According to the determined 𝐶, vectors of 𝐶 are
randomly selected as the clustering center; that is, Vo = {V𝑖 |𝑖 = 1, 2, . . . , 𝐶}.

(3) Calculate the membership matrix 𝑈𝐿 = |𝜇𝑖𝑗|𝐶×𝑛,
where 𝜇𝑖𝑗 represents the membership of vector 𝑑𝑗 on class V𝑖
and 𝜇𝑖𝑗 satisfies the following:

𝜇𝑖𝑗 = {{{{{

𝐶∑
𝑘=1

( 𝑟𝑖𝑗𝑟𝑘𝑗)
2/(𝑚−1) , if 𝑟𝑖𝑗 ̸= 1

1, if 𝑟𝑖𝑗 = 1,
(1)

where 1 ≤ 𝑖 ≤ 𝐶, 1 ≤ 𝑗 ≤ 𝑛, 𝑟𝑖𝑗 represents the similarity
between 𝑑𝑗 and the clustering center V𝑖, and 𝑠 is the vector
dimension.

(4) Calculate the clustering center 𝑉𝐿+1 according to the
following:

V𝑖 = ∑𝑛𝑗=1 (𝜇𝑖𝑗)𝑚 𝑥𝑗
∑𝑛𝑗=1 (𝜇𝑖𝑗)𝑚 , 1 ≤ 𝑖 ≤ 𝐶. (2)

(5) Determine whether the termination condition is
satisfied. If ‖𝑉𝐿+1 − 𝑉𝐿‖ ≤ 𝜀, the algorithm is terminated
and the partition matrix, 𝑈, and the clustering center, V,
are obtained. Otherwise, return to step (4) to continue the
calculation until the termination condition is satisfied.

After the clustering is complete, the prediction day in
the same class and its similar historical date can be obtained
according to the partition matrix 𝑈.
3. Decomposing the Output Power Signal of
the Grid-Connected PV System by EMD

The essence of EMD is to smooth the nonlinear and nonsta-
tionary signals based on local characteristic scale. The EMD
also decomposes different scales of fluctuations or trends
step-by-step from the original complex signals to form a
series of intrinsic mode function (IMF) characteristics with
different scales and a trend component [19–23]. Compared
with the wavelet transform, the empirical mode decomposi-
tion (EMD) not only has the characteristic of multiresolution
but also overcomes the difficulty in determining the scale
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of decomposition in the wavelet transform and selecting the
wavelet base.

The empirical mode decomposition of 𝑥(𝑡) and the time
series of the PV output power are performed as follows.

(1) Identify all maximum points in the signal sequence
composed of the PV output power in multiple similar days,
and the upper envelope line 𝑒ℎ(𝑡) of the sequence is fit by
interpolating the cubic spline function. Identify all minimum
points in the output power time series, and the lower envelope
line 𝑒𝑙(𝑡) of the sequence is fit by interpolating the cubic spline
function.

(2) The average values of the upper and lower envelope
lines are calculated as the average envelope line 𝑒V(𝑡); a new
data sequence ℎ1(𝑡) is obtained using the original power
output time series 𝑥(𝑡)minus the average envelope line 𝑒V(𝑡).
In general, ℎ1(𝑡) is a nonstationary time series that should
be processed again based on the above discussion. Assuming
that ℎ1𝑘(𝑡) satisfies the IMF conditions after𝐾 treatments, the
first IMF component imf1(𝑡) is obtained, where imf1(𝑡) =ℎ1𝑘(𝑡), and it contains the shortest variable cycle component
in the original output power time series.

(3) An output power time series 𝑟1(𝑡) that removes the
high-frequency component is acquired using the original
output power time series 𝑥(𝑡)minus the first IMF component
imf1(𝑡). We can obtain all of the IMF components and a
trend component Res, as shown in the following formula,
after continuing the above-mentioned smoothing treatment
on 𝑟1(𝑡).

𝑟2 (𝑡) = 𝑟1 (𝑡) − imf2 (𝑡)
𝑟3 (𝑡) = 𝑟2 (𝑡) − imf3 (𝑡)

...
Res (𝑡) = 𝑟𝑀−1 (𝑡) − imf𝑀 (𝑡) .

(3)

Finally, the form of the decomposed PV output power
time series 𝑥(𝑡) is obtained:

𝑥 (𝑡) = 𝑀∑
𝑖=1

imf 𝑖 (𝑡) + Res (𝑡) , (4)

where imf 𝑖(𝑡) represents the intrinsic mode function com-
ponent of the PV output power time series 𝑥(𝑡) and Res(𝑡)
represents the average trend component of the original signal
sequence.Thus, the original PV output power time series can
be decomposed into the sum of a series of intrinsic mode
function components and an average trend component.

Taking the actual output power of the 10 kW grid-
connected PV system of the new energy grid-connected
PV power generation engineering technology center at a
university of Henan Province as an example, the EMD
decomposition of the output power time series with 15-
minute intervals in 50 similar days is performed, and the
results are shown in Figure 6.The output power time series is
decomposed into seven IMF components and a trend com-
ponent. IMF1 and IMF2 are the high-frequency components
and have strong nonlinear and randomchange characteristics

caused by abrupt changes in the weather. The frequencies of
IMF3–IMF7 become significantly lower and show a strong
periodicity, which is affected by meteorological factors; this
is the main component of the output power. The residual
component Res shows relatively gentle changes, has small
amplitude, and is the minor component of the output power.

4. Artificial Bee Colony Algorithm and
Support Vector Machine

4.1. Artificial Bee Colony Algorithm. The artificial bee colony
(ABC) algorithm is a group intelligent optimization algo-
rithm that simulates the process of bee colonies gathering
honey [24]. The bees in the artificial bee colony algorithm
can be divided into three types: employed bees, scout bees,
and onlooker bees. The three types of bees cooperate with
each other to complete different stages of the tasks in the
honeymining process and identify the position of the optimal
nectar source by collecting and sharing nectar sources. In
the artificial bee colony algorithm, the optimal nectar source
position corresponds to the optimal solution of a problem,
and the amount of nectar contained in the nectar source
corresponds to the fitness value of the solution.

After the initialization is complete, the employed bees
search the neighborhood of the corresponding known nectar
source (the original solution to a problem) and find a new
nectar source (a new solution to the problem).The position of
the new nectar source (the parameter value of the optimized
problem) is determined according to the following:

V𝑖𝑗 = 𝑥𝑖𝑗 + 𝜙𝑖𝑗 (𝑥𝑖𝑗 − 𝑥𝑘𝑗) , (5)

where 𝜙𝑖𝑗 is a random number within [−1, 1] that controls the
generation range of the 𝑥𝑖𝑗 neighborhood, 𝑘 ∈ {1, 2, . . . , SN}
and 𝑗 ∈ {1, 2, . . . , 𝐷} are randomly selected subscripts, and 𝑘
is not equal to 𝑖.

SN employed bees return to the hive after completing the
search task and share the searched nectar source information
with the scout bees. The scout bees select the nectar source
based on the amount of nectar in each source (fitness function
value of a solution) and in accordance with the following:

𝑝𝑖 = fit𝑖∑𝑁𝑛=1 fit𝑛 . (6)

Subsequently, the scout bees will search near the selected
nectar source and determine the position of a new nectar
source per formula (5). They will use the method to select
or not select a new nectar source, similar to nectar-gathering
bees to determine whether to replace the old nectar source
with the new one. If the nectar source 𝑥𝑖 cannot be improved
after it is updated for limit times, this nectar source will be
discarded.The corresponding employed bees will also change
to onlooker bees, which will reidentify a new nectar source in
accordance with the following:

𝑥𝑖 = 𝑥min + rand (0, 1) (𝑥max − 𝑥min) . (7)

The unique mechanism of dividing the labor and collab-
oration in the ABC algorithmmakes bees work together with
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different search strategies to complete the task of seeking the
optimized solution by showing a strong global optimization
seeking ability.

4.2. Regression Model of SVM. Support vector machine can
minimize the expected error and overcome the problem of
overfitting because it is based on structural riskminimization
principle. According to previous research, SVM can provide
better resolutions for both classification and regression in
different fields: fault classification, electricity load forecasting,
wind speed forecasting, prediction of the air quality, and so
on.The basic principle of SVM to solve regression prediction
problems is described as follows. The sample set is normally
denoted as

𝑋 = {(𝑥𝑖, 𝑦𝑖) | 𝑥 ∈ 𝑅𝑛, 𝑦 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛} . (8)

The regression model defines the functional relationship
between 𝑥𝑖 and 𝑓(𝑥𝑖) as

𝑦 = 𝑓 (𝑥𝑖) = 𝑤 ⋅ 𝑥𝑖 + 𝑏, (9)

where 𝑤, 𝑏 are the weight vector and threshold, respectively.
Furthermore, the coefficients𝑤 and 𝑏 can be found by solving
the following convex quadratic programming problem:

min
𝑤,𝑏,𝜉(∗)
𝑖

{12 ‖𝑤‖2 + 𝐶 𝑙∑
𝑖=1

(𝜉∗𝑖 + 𝜉𝑖)} (10)

S.t. 𝑦𝑖 − 𝑤 ⋅ 𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖
𝑤 ⋅ 𝑥𝑖 − 𝑦𝑖 + 𝑏 ≤ 𝜀 + 𝜉∗𝑖
𝜉∗𝑖 , 𝜉𝑖 ≥ 0; 𝑖 = 1, 2, . . . , 𝑛,

(11)

where 𝐶 is penalty coefficient, 𝜉(∗)𝑖 is slack variable and 𝜀 is
the insensitivity coefficient. 𝜉(∗)𝑖 guarantees the satisfaction of
constraint condition; 𝐶 controls the equilibrium between the
complexity of model and training error; 𝜀 is a preset constant
for controlling tube size. If 𝜀 is set too small, it will lead to
overfitting; otherwise, it is easy to lead to the underfitting.

For nonlinear regression, assume that there is such a
transform: Φ : 𝑅𝑛 → 𝐻, 𝑥 → Φ(𝑥), making 𝐾(𝑥, 𝑥󸀠) =Φ(𝑥) ⋅ Φ(𝑥󸀠), where 𝐾(𝑥, 𝑥󸀠) is called kernel function
and (⋅) denotes inner product operation. When 𝐾(𝑥, 𝑥󸀠)
satisfies the Mercer condition, it corresponds to the inner
product of a transform space according to the functional
theory. By introducing the Lagrange multipliers 𝑎𝑖, 𝑎∗𝑖 ,
the nonlinear regression function can be determined (the
detailed derivation procedure is shown in the supporting
information in Supplementary Material available online at
https://doi.org/10.1155/2017/7273017):

𝑦 = 𝑓 (𝑥) = 𝑙∑
𝑖=1

(𝑎∗𝑖 − 𝑎𝑖)𝐾 (𝑥𝑖, 𝑥) + 𝑏 (12)

S.t. 𝑙∑
𝑖=1

(𝑎∗𝑖 − 𝑎𝑖) = 0
0 ≤ 𝑎(∗)𝑖 ≤ 𝐶, 𝑖 = 1, . . . , 𝑙.

(13)

In this study, we chose Gaussian radial basis function as
the kernel function:

𝐾(𝑥, 𝑥󸀠) = exp (− 󵄨󵄨󵄨󵄨󵄨𝑥 − 𝑥󸀠 󵄨󵄨󵄨󵄨󵄨2)2𝜎2 , (14)

where 𝜎2 is the kernel parameter, and it precisely defines the
structure of high dimensional feature space.

The penalty coefficient 𝐶, the insensitivity coefficient 𝜀,
and the kernel function parameter 𝜎2 in SVM determine the
accuracy and generalization performance of the algorithm.

5. Constructing a PV Power Prediction Model
Based on EMD and ABC-SVM

The strong nonlinear and nonstationary power sequence
signals by the grid-connected PV system are decomposed by
the EMD to obtain several basic modal components that have
little influence on each other. This simplifies the interference
or coupling of the characteristic information in the signal
sequence and reduces the nonstationarity of the signal. Using
this approach, an output power prediction model of a grid-
connected PV system is proposed in this paper to optimize
the support vector machine (SVM) with the artificial bee
colony algorithm.

5.1. Optimal Parameter Selection for the SVMModel Based on
ABC Algorithm. The penalty coefficient 𝐶, the insensitivity
coefficient 𝜀, and the kernel function parameter 𝜎2 in the
SVM determine the accuracy and generalization perfor-
mance of the algorithm. However, the selection of these three
parameters still lacks an effective solution. To address this
problem, this paper adopts the artificial bee colony algorithm
to optimize the selection of the SVM parameters. The flow
diagram of this method is shown in Figure 4.

It is found from several tests that the EMD-SVM pre-
diction model can achieve the ideal prediction accuracy
and generalization ability when the parameters of the ABC
algorithm are initialized as follows in predicting the PV
system output power. The colony size is 𝑁 = 160, the
numbers of nectar-gathering and observing bees are both 80,
the number of the initial nectar sources (the initial solutions
to the optimized problem) is 80, the maximum number of
updates of the nectar source is 90, and themaximum number
of algorithm loops is 150.

5.2. Constructing a Power Prediction Model for a Grid-
Connected PV System. First, the 15-minute output power
time series of similar days is constructed based on theweather
forecast data of the prediction day. Then, the output power
time series is decomposed using the empiricalmode to obtain
the intrinsic modal component IMF𝑛 and the trend compo-
nent Res at different scales.The corresponding support vector
machine prediction models are established for each IMF
component and trend component. The input of the model
includes the weather type 𝑤, the maximum temperature 𝑇h,
the minimum temperature 𝑇l, the maximum humidity 𝐻h,
and theminimumhumidity𝐻l of the prediction day aswell as

https://doi.org/10.1155/2017/7273017
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Initialize the parameters of the ABC 

According to formula (6), bees find a
new optimal solution and calculate 

the fitness function value of the 
solution

The onlooker bees select a high-
quality solution according to

formula (5) and produce a new 
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value according to formula (6)
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Figure 4: Program flow chart of the SVM parameter optimization using the ABC algorithm.

the corresponding IMF components or corresponding values
of the trend component Res for similar days within the last
5 days of the prediction day. The output of the model is the
predicted power value. The ABC algorithm optimization of
SVM parameters is carried out. Finally, the prediction results
of eachmodel are reconstructed to obtain the predicted value
of the output power of the grid-connected PV system. The
flow chart is shown in Figure 5.

6. Simulation Results of the Case Study

6.1. Data Preprocessing. To verify the performance of the
output power prediction model for a PV system based on
EMDandABC-SVM, theMatlab software is used to complete
the model construction. The prediction model is tested and
analyzed on a test platform of the 10 kW grid-connected PV
system operating in the engineering technology center of a
university in Henan province. The sample data sets used in
this study are the measured values of the output power of
the grid-connected PV system and the local weather data
records. In the test, the actual power data in the whole year of
2014 are selected as the research object.The data are classified
into five categories according to the weather types, sunny,
sunny to cloudy, overcast, and rainy (snowy) and are recorded

every 15 minutes. In this example, one day is one period.
According to the local sunshine characteristics of Anyang,
the summer PV system outputs power for approximately 11
hours per day on average. In this paper, 11 h is chosen for
each period, the generated power data are sampled once every
15min, the meteorological parameters for each period are
the temperature and weather type, and the input variable of
the model obtained is 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), where 𝑛 is 228,𝑥1 ∼ 𝑥220 represent 220 pieces of data sampled once every 15
minutes on 5 similar days that is closest to the prediction day,𝑥221 ∼ 𝑥224 represent the maximum temperature, minimum
temperature, maximum humidity, and minimum humidity
of the similar day, and 𝑥225 ∼ 𝑥228 represent the maximum
temperature, minimum temperature, maximum humidity,
and minimum humidity of the prediction day. The output
variables of the model are 44 output power values within the
prediction day.

According to the method described above, the clustering
analysis of similar days is carried out for the weather types
in 2014. These days are divided into five typical weather and
four seasonal types. In our study, there are 340 sets of sample
data (actually, there are 365 sets of data, but 15 of them are
bad data) including 208 sets in sunny days, and we will focus
on these 208 sets of data firstly. The data of 200 similar days
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time series with similar days

IMF1 IMF2 IMFn Res

Use EMD method to process 
signal sequences

ABC-SVM1 ABC-SVM2 ABC-SVMn

Prediction results
reconstruction

Prediction result 
output

Construct the 15 min output power 

· · ·

· · · ABC-SVM (n + 1)

Figure 5: PV system output power forecasting model construction based on the EMD-ABC-SVM.

with a sunny weather type is taken as the training data set,
and the 8 sets were used as test data: February 24, February
27, May 26, May 28, August 30, August 31, November 25,
and November 29. We will establish 4 forecasting models
under 4 seasonal types separately and take summer type as
an example to introduce the establishment and forecasting
process of the model in detail.

The model operates according to the construction
method for the EMD-ABC-SVM power prediction model
in the previous section. First, the EMD decomposition is
conducted for the output power sequence of 50 similar days
under summer type to obtain seven IMF components and
one Res component, as shown in Figure 6. IMF1 and IMF2
are the high-frequency components and have strong non-
linear and random change characteristics caused by abrupt
changes in the weather. The frequencies of IMF3–IMF7
become significantly lower and show a strong periodicity,
which is affected by meteorological factors; this is the main
component of the output power.The residual component Res
shows relatively gentle changes, has small amplitude, and is
the minor component of the output power.

A SVM power prediction model is constructed for each
component, and the parameters of each SVM model are
optimized using the artificial bee colony algorithm.The steps
are shown in Figure 4. The performance test of the SVM
model after parameter optimization can be testedwith the test
set.

6.2. Experiment Results and Discussion. The EMD-ABC-
SVM, EMD-SVM, and single SVM models are used to
predict the output power of the grid-connected PV system

on February 24, February 27, May 26, May 28, August 30,
August 31, November 25, and November 29. The prediction
results are shown in Figures 7 and 8. Due to limited space,
we only give detailed data for two days: August 30th and
August 31st, as shown in Tables 1 and 2. In the three models,
the EMD-ABC- SVM is several SVM prediction models that
have been optimized by the ABC algorithm and constructed
by multiple IMF components and an Res component that
are obtained through EMD decomposition of the original
signal. To verify the effectiveness of the ABC algorithm, we
also established an EMD-SVM of the SVM parameters that
had not been optimized. The single SVM model predicts the
original sequence directly.

By comparing the three types of prediction models, we
can see that the EMD-ABC-SVM has the highest accuracy,
which indicates that the IMF components after the EMD
decomposition reduce the influence of the nonstationarity
and randomness in the SVM models and that the parameter
optimization of the ABC algorithm gives the best perfor-
mance for the SVM models. The prediction error in the two
periods 7:00 am∼9:00 am and 16:00 pm∼18:00 pm is relatively
large, but the actual amount of electricity generated in the
morning and evening is smaller than the total amount of
electricity generated throughout the day, indicating that these
errors do not affect the practical application of the prediction
model.

To fully verify the performance of the model, we have the
output power of the grid-connected PV systemunder the four
different weather types: sunny, sunny to cloudy, cloudy, and
overcast. The performance of the models is compared and
judged with the MAPE and RMSE. The comparison results
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Figure 6: Decomposition graph of the output power sequence of 50 similar days with the EMD.
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of the MAPE and RMSE for different prediction models are
shown in Table 3.

Thedata given in Table 3 show that theweather types have
different effects on the various prediction models. For sunny
days, the three models all have good performance, but the
EMD-ABC-SVMhas the best prediction effectwith anMAPE
and RMSE of only 6.35% and 7.59%, respectively. In addition,
the single SVM model without the EMD decomposition
has a prediction error below 15%. For cloudy and sunny to
cloudy days, the prediction effects are not ideal. The RMSE
of the EMD-ABC-SVM model is up to 14.16%, and the
maximum error of the single SVM model without the EMD
decomposition is 21.27%. These results are mainly because
the cloudy and sunny to cloudy weather conditions change
frequently and increase the randomness of the data.The three
prediction models have different performances under the
same weather type. The prediction error of the EMD-ABC-
SVM model is the smallest under the various weather types.
The fundamental reason is that the original output power
sequence establishes different ABC-SVM models after the
EMDdecomposition, which reduces the random interference
of the power signal and reduces the mutual influence of the
characteristic information in the power signal. Additionally,
the parameters of the SVM models are optimized with the
ABC algorithm to achieve the best working conditions.
Therefore, even in cloudy and sunny to cloudy weather
conditions with strong randomness, its performance is better
than that of the EMD-SVM with nonoptimized parame-
ters and the single SVM that is not decomposed by the
EMD.

Grid search and cross validation are usually adopted to
optimize parameter of SVM and EMD-SVM. But the grid
search is an exhaustive search method and it will take a
long time when the range of parameters is large. Optimal
parameter selection for EMD-ABC-SVM uses the artificial
bee colony algorithm and cross validation. Artificial bee
colony algorithm is a heuristic search algorithm, so it did not
need all data within the scope of traversal parameters in the
group. Furthermore, in the process of optimization, it can use

their own individual experience or exchange of experience to
change the search strategy, so it can save a lot of time.

In order to apply the PV power prediction method to
the practical photovoltaic power generation system, we have
developed a PV power forecasting system. The system is
developed on Eclipse platform, using Struts2 framework
based on MVC model and data persistence framework
Hibernate to implement the Web application, using Apache-
Tomcat5.5 as Web server. The system mainly includes system
management module, data management module, and power
prediction module based on EMD-ABC-SVM. The system
management module is mainly responsible for the manage-
ment of the basic user information of the system, such as user
information modification, adding or deleting user, and user’s
rights management. The data management module realizes
themanagement of the power andweather data of the system,
such as data import and export, data query, and display.
The power prediction module based on EMD-ABC-SVM
realizes the short-term prediction of photovoltaic power
generation system and saves the prediction results into the
database.

At present, the system is running normally, and the
practical application proves that the system is practical and
the prediction accuracy can meet the actual demand.

The predicting system has played an important role in
application. First, the accurate power forecasting can help
power dispatching department to make overall arrangements
on the optimal combination of conventional power genera-
tion and photovoltaic power generation, effectively mitigate
the adverse impact of PV power fluctuations on the power
grid, and ensure the security and stability of the public grid
system. Second, the predicting system can increase utilization
efficiency of grid-connected photovoltaic system and help
to reduce the spare capacity of the rotating equipment in
the thermal power plant and reduce the fuel consumption.
Third, the prediction data can provide reference for us to
arrange maintenance and overhaul for the photovoltaic array
and inverter properly and improve the economic benefits of
photovoltaic power station.
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Table 1: Comparisons of predicted results using three models about output power data of August 30 and 31.

Number Observed value (kW) EMD-ABC-SVM (kW) EMD-SVM (kW) SVM (kW)
1 0.0683 0.0696 0.0657 0.0757
2 0.1382 0.1420 0.1317 0.1555
3 0.6275 0.6243 0.6521 0.5683
4 1.3239 1.2890 1.3952 1.1614
5 1.8403 1.8726 1.7653 1.9942
6 2.4590 2.5307 2.5803 2.6949
7 3.0621 3.1141 3.2043 2.6729
8 3.5830 3.5301 3.4405 3.9371
9 4.1412 4.1757 3.9426 4.5710
10 4.1223 4.0149 4.0081 4.4794
11 4.5165 4.4380 4.6674 4.8161
12 4.9385 5.0365 4.7940 5.3263
13 5.7823 5.8514 6.0638 6.0453
14 6.1282 6.0760 6.3411 5.6505
15 5.9762 6.0834 5.7404 5.7478
16 7.0898 7.1569 6.7795 6.4695
17 6.8198 6.8784 7.2080 7.3588
18 6.8953 7.0247 7.0808 7.5045
19 7.0273 7.1157 6.6779 6.6845
20 7.3684 7.4928 7.1133 6.9091
21 7.1951 7.1152 7.4001 6.8981
22 7.4464 7.3458 7.2335 7.2037
23 7.5219 7.6221 7.8194 7.7988
24 7.3848 7.2940 7.1768 7.1231
25 7.1722 7.0326 7.4188 7.5909
26 7.1411 7.0819 6.9770 7.3482
27 6.9242 6.9742 7.2109 7.2068
28 6.6868 6.7990 6.8926 6.4834
29 6.6450 6.6780 6.4818 6.5732
30 6.7188 6.5734 6.5100 6.2542
31 6.2262 6.1659 6.3334 5.8241
32 5.8366 5.9725 6.1233 6.1434
33 5.8367 5.7635 5.6231 5.3474
34 5.2529 5.1492 5.3918 5.6716
35 4.8899 4.9357 4.6674 4.5165
36 4.5304 4.4036 4.7096 4.9729
37 4.0192 4.1235 4.2186 4.4935
38 3.4722 3.5371 3.3074 3.6159
39 3.0201 3.0917 3.1672 3.3319
40 2.5275 2.4921 2.6674 2.2997
41 1.9505 1.8951 1.8598 1.7173
42 1.3713 1.3998 1.4510 1.2572
43 0.8438 0.8691 0.8766 0.9380
44 0.2911 0.2892 0.2753 0.3263
45 0.0710 0.0719 0.0689 0.0649
46 0.1209 0.1186 0.1150 0.1055
47 0.4057 0.3958 0.4239 0.3581
48 0.9364 0.9579 0.9669 0.8624
49 1.4869 1.4462 1.5598 1.6322
50 2.0503 1.9971 2.0131 1.8001
51 2.5964 2.5070 2.6832 2.2883
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Table 1: Continued.

Number Observed value (kW) EMD-ABC-SVM (kW) EMD-SVM (kW) SVM (kW)
52 3.0432 3.0052 2.9090 2.8849
53 3.5690 3.6520 3.5014 3.9870
54 4.1105 4.1658 3.9154 4.4732
55 4.5235 4.4440 4.7406 4.0573
56 4.9307 4.8474 4.6929 5.3496
57 5.3317 5.3907 5.1662 4.9708
58 5.5464 5.4451 5.3218 5.8648
59 5.8247 5.9263 5.6195 6.1471
60 6.0815 6.1966 5.8291 6.4295
61 6.2005 6.1257 6.4180 5.7553
62 6.4994 6.4375 6.8183 6.8420
63 6.3893 6.2739 6.7277 6.0532
64 6.5374 6.6386 6.8621 6.0958
65 7.2982 7.1788 7.0188 7.6870
66 7.1500 7.2463 7.3755 6.7295
67 7.1444 7.0291 6.8737 6.6131
68 7.1668 7.2924 7.3184 7.5403
69 7.1329 7.0655 6.9848 7.6720
70 6.9410 6.8737 6.6731 7.3374
71 6.8850 7.0130 7.1719 6.3297
72 6.6407 6.7612 6.9030 6.1948
73 6.3970 6.2742 6.6972 6.1108
74 6.1954 6.2463 5.9181 5.7215
75 5.8939 5.8214 6.1064 6.1097
76 5.6886 5.5888 5.5214 5.2973
77 5.2085 5.2400 4.9992 4.7936
78 4.7334 4.8256 4.8872 4.4592
79 4.3456 4.3096 4.5047 4.1997
80 3.7633 3.8380 3.9432 3.4130
81 3.3305 3.2800 3.4314 3.5489
82 2.8878 2.8068 3.0318 3.2491
83 2.3862 2.4197 2.2780 2.1935
84 1.8173 1.8728 1.8669 1.5836
85 1.3833 1.4221 1.3180 1.5195
86 0.9191 0.9363 0.9614 1.0168
87 0.4481 0.4326 0.4613 0.4160
88 0.1267 0.1237 0.1320 0.1121

7. Conclusions

In this paper, the artificial bee colony optimization algorithm
and empirical mode decomposition method are combined
and successfully applied to the field of short-term prediction
of the output power of a grid-connected PV system. Similar
days of the same season are filtered with the fuzzy 𝐶-mean.

The EMD method is used to conduct the empirical modal
decomposition of the output power series, producing the
intrinsic modal component IMF under 𝑛 different scales
and one trend component Res. The corresponding SVM
prediction model is established for each component, and
the optimizing pretreatment using the artificial bee colony
algorithm is done for the SVM model parameters. Finally,
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Table 2: Comparisons of the three models about forecast accuracy
using output power data of August 30 and 31.

Number
EMD-ABC-

SVM
(%)

EMD-SVM
(%)

SVM (%)

1 1.893 −3.873 10.729
2 2.725 −4.746 12.530
3 −0.518 3.921 −9.442
4 −2.636 5.385 −12.277
5 1.755 −4.077 8.363
6 2.919 4.933 9.595
7 1.697 4.642 −12.710
8 −1.478 −3.977 9.881
9 0.834 −4.796 10.379
10 −2.607 −2.772 8.662
11 −1.739 3.340 6.633
12 1.985 −2.925 7.853
13 1.194 4.867 4.548
14 −0.851 3.474 −7.795
15 1.795 −3.946 −3.821
16 0.946 −4.376 −8.750
17 0.859 5.691 7.903
18 1.877 2.691 8.834
19 1.258 −4.973 −4.879
20 1.689 −3.462 −6.233
21 −1.110 2.850 −4.127
22 −1.350 −2.859 −3.259
23 1.332 3.954 3.681
24 −1.230 −2.817 −3.544
25 −1.946 3.439 5.839
26 −0.829 −2.299 2.900
27 0.723 4.141 4.082
28 1.678 3.077 −3.042
29 0.497 −2.455 −1.079
30 1.893 −3.873 10.729
31 −2.165 −3.108 −6.915
32 −0.968 1.722 −6.458
33 2.328 4.912 5.256
34 −1.254 −3.659 −8.383
35 −1.974 2.644 7.970
36 0.937 −4.550 −7.637
37 −2.799 3.956 9.768
38 2.594 4.962 11.800
39 1.870 −4.746 4.138
40 2.369 4.870 10.324
41 −1.401 5.536 −9.013
42 −2.842 −4.651 −11.955
43 2.074 5.810 −8.320
44 2.991 3.880 11.157

Table 2: Continued.

Number
EMD-ABC-

SVM
(%)

EMD-SVM
(%)

SVM (%)

45 −0.660 −5.452 12.081
46 1.322 −3.001 −8.557
47 −1.917 −4.930 −12.766
48 −2.434 4.487 −11.730
49 2.301 3.256 −7.906
50 −2.741 4.900 9.771
51 −2.597 −1.815 −12.205
52 −3.446 3.341 −11.868
53 −1.249 −4.409 −5.201
54 2.326 −1.894 11.712
55 1.346 −4.745 8.824
56 −1.758 4.800 −10.306
57 −1.689 −4.823 8.495
58 1.108 −3.103 −6.769
59 −1.828 −4.050 5.740
60 1.744 −3.524 5.535
61 1.893 −4.150 5.723
62 −1.206 3.507 −7.180
63 −0.953 4.906 5.270
64 −1.805 5.296 −5.260
65 1.549 4.967 −6.754
66 −1.636 −3.828 5.328
67 1.346 3.154 −5.882
68 −1.614 −3.790 −7.437
69 1.753 2.116 5.213
70 −0.945 −2.076 7.558
71 −0.969 −3.859 5.712
72 1.859 4.166 −8.065
73 1.816 3.950 −6.715
74 −1.920 4.693 −4.474
75 0.821 −4.477 −7.649
76 −1.229 3.606 3.662
77 −1.754 −2.940 −6.879
78 0.605 −4.019 −7.967
79 1.948 3.249 −5.795
80 −0.827 3.661 −3.358
81 1.987 4.782 −9.306
82 −1.515 3.029 6.557
83 −2.804 4.987 12.512
84 1.406 −4.533 −8.073
85 3.059 2.732 −12.86
86 2.807 −4.719 9.852
87 1.865 4.598 10.621
88 −3.470 2.945 −7.167
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Table 3: Prediction error and running time comparison between different models and different weather types.

Weather types EMD-ABC-SVM EMD-SVM SVM
MAPE/% RMSE/% MAPE/% RMSE/% MAPE/% RMSE/%

Sunny 6.35 7.59 9.73 10.46 12.89 13.74
Sunny to cloudy 12.38 13.05 15.26 17.03 18.44 20.63
Cloudy 13.55 14.16 17.03 18.52 19.68 21.27
Overcast 10.89 12.07 13.95 14.83 16.66 18.72

the results of each prediction model are integrated and
reconstructed to obtain the predicted values of output power
from the PV system. The results acquired from the test
using measured data show that the effect of the EMD-
ABC-SVM prediction model is superior to those of the
single SVM prediction model and the unoptimized EMD-
SVM prediction model. The proposed method improves the
prediction accuracy of output power of the grid-connected
PV system, reduces the influence of randomness of the PV
generated power on the safe and reliable operation of the
public power grid, and provides an effective method for the
optimal scheduling of the output grid power.
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