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Tumor recurrence is one of the most important risk factors that can negatively affect
the survival rate of colorectal cancer (CRC) patients. However, the key regulators
dictating this process and their exact mechanisms are understudied. This study aimed
to construct a gene co-expression network to predict the hub genes affecting CRC
recurrence and to inspect the regulatory network of hub genes and transcription
factors (TFs). A total of 177 cases from the GSE17536 dataset were analyzed
via weighted gene co-expression network analysis to explore the modules related
to CRC recurrence. Functional annotation of the key module genes was assessed
through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses.
The protein and protein interaction network was then built to screen hub genes.
Samples from the Cancer Genome Atlas (TCGA) were further used to validate the
hub genes. Construction of a TFs-miRNAs–hub genes network was also conducted
using StarBase and Cytoscape approaches. After identification and validation, a total of
five genes (TIMP1, SPARCL1, MYL9, TPM2, and CNN1) were selected as hub genes.
A regulatory network of TFs-miRNAs-targets with 29 TFs, 58 miRNAs, and five hub
genes was instituted, including model GATA6-MIR106A-CNN1, SP4-MIR424-TPM2,
SP4-MIR326-MYL9, ETS1-MIR22-TIMP1, and ETS1-MIR22-SPARCL1. In conclusion,
the identification of these hub genes and the prediction of the Regulatory relationship
of TFs-miRNAs-hub genes may provide a novel insight for understanding the underlying
mechanism for CRC recurrence.

Keywords: colorectal cancer, tumor recurrence, hub genes, transcription factors, weighted gene co-expression
network analysis

INTRODUCTION

Colorectal cancer (CRC) ranks as the third most common type of tumor around the world and
accounts for more than 7% of overall cancer-related death in China (Liu et al., 2015; Siegel et al.,
2020). Despite the massive progress in understanding its genetic mechanism and improvement
of surgical techniques, the overall survival time of CRC patients is still not remarkably improved,
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which could be ascribed primarily to the high recurrence
rates (Yu et al., 2017; Ha et al., 2019; Mirgayazova et al.,
2019). Therefore, identifying the key regulators involved in
CRC recurrence and deciphering their underlying mechanisms
are critical for CRC prognosis and the development of novel
therapeutic drugs.

With the recent developments in bioinformatics, a number
of well-designed and effective methods are now available for
the comprehensive identification of biomarkers in cancer and
the prediction of cancer-related signaling pathways (Carter
et al., 2004; Carey et al., 2005; Liu et al., 2007). Among them,
the weighted gene co-expression network analysis (WGCNA)
approach provides a systematic biology strategy to identify
modules of highly correlated genes and construct a co-expression
gene network (Langfelder and Horvath, 2008). By utilizing the
WGCNA algorithm, genes with similar co-expression patterns
are classified into a set of modules, in which the most central
genes could be further identified as hub genes. Compared with
the other methodologies applied to analyze the high-throughput
sequencing data, WGCNA implements methods for both
weighted and unweighted correlation networks and provides a
more effective mean to explore the potential association between
modules and sample traits.

In recent years, WGCNA has been widely used to uncover
the potential biomarkers associated with clinical parameters in
various cancer types (Liang et al., 2020; Wang et al., 2020). In
terms of CRC, PIGU was identified as a key modulator that
is closely related to KRAS mutant CRC patients (Zhang M.
et al., 2020), while FBXW4 was reported to be associated with
chemotherapy resistance and prognosis of CRC (Zhang Y. et al.,
2020). With the help of WGCNA, a set of four long non-coding
RNAs (lncRNAs) were found to be significantly correlated with
the carcinogenesis and progression of colon adenocarcinoma
(COAD) (Jiang et al., 2019). In addition, some efforts have also
been taken to identify the crucial regulators associated with
the tumor recurrence of CRC patients through WGCNA (Qiu
et al., 2020; Wu et al., 2020). However, the number of hub
genes identified in the existed studies is relatively low, and the
important upstream mediators of these hub genes remain to be
fully investigated.

In the current study, WGCNA was constructed based on the
GSE17536 dataset containing gene expression profiling results
from 177 CRC patients. The specific module associated with the
recurrence status of CRC was identified. More importantly, hub
genes that play essential roles during CRC recurrence were dug
out, and their upstream miRNAs and transcription factors (TFs)
were also explored.

MATERIALS AND METHODS

Data Collection and Pre-processing
The mRNA expression profiling dataset GSE17536 of human
CRC with patient clinical information was downloaded from
Gene Expression Omnibus (GEO) online database (Smith
et al., 2010). GSE17536 dataset was performed on platform
GPL570 Affymetrix Human Genome U133 Plus 2.0 Array

(HG-U133_Plus_2). GSE17536 was used to construct a
co-expression network then distinguishing hub genes, which
included 177 CRC samples. R packages were used to annotate the
original data, generate an expression matrix, and match probes
to target gene symbols. Median absolute deviations (MADs)
were arranged from large to small, and the expression of the
top 25% genes with the greatest differences in samples was
selected for WGCNA.

Construction of WGCNA
R package “WGCNA” was conducted (Langfelder and
Horvath, 2008). Firstly, a similarity matrix was constructed
by calculating the correlation of all gene pairs. Secondly,
using the pickSoftThreshold function in R language, a
suitable soft thresholding power was determined, and the
parameters that provide appropriate soft threshold power
(β) for network construction were acquired (Botía et al.,
2017). After choosing the appropriate β = 4, subsequently,
the adjacency of the gene network was transformed into a
topological overlap matrix (TOM) followed by a calculation
of corresponding dissimilarity (1-TOM). Subsequently, a
hierarchical clustering method is used to classify genes with
similar expression profiles into the same modules, and,
by default, the minimum number of genes for the genes
dendrogram is set to 30. To further analyze the module, the
dissimilarity of module eigengenes (ME) was calculated the
dynamicTreeCut algorithm of WGCNA, and some highly
similar modules with the height of ME in the clustering
lower than 0.25 were merged. Finally, the characteristic gene
network was visualized.

Identification of Modules Associated
With Clinical Features
In this study, two methods were used to identify key modules
associated with CRC recurrence. ME are the first principal
component of a given module and could be considered as a
representative of gene expression profile in a module. Module
membership (MM) represents the correlation between genes and
ME. Gene significance (GS) refers to the correlation between
the genes and clinical data, and the average GS for all the
genes in a module was defined as module significance (MS),
and the module with the highest absolute MS value was
regarded as the module with the most significant association
with clinical information. Finally, the dissimilarity of the ME
was calculated using the moduleEigengenes function in the
R WGCNA package. GS was calculated by linear regression
between gene expression and CRC recurrence, and MS related to
clinical CRC recurrence was obtained.

Functional Enrichment Analysis of the
Key Module Genes
Gene Ontology enrichment analysis has become a widely used
method in functional gene annotation. To further investigate
the function of differentially expressed genes (DEGs) in the
key module, clusterProfiler R package (Yu et al., 2012)1 with

1http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
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a strict cut-off of FDR < 0.05 was used to present GO and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis. Then, a “ggplot2” R package was used to perform the
first 10 enrichment terms of GO analysis and KEGG pathway
analysis. The cutoff criterion of P < 0.05 was considered to be
statistically significant.

Protein–Protein Interaction of the Key
Module Genes
Search Tool for the Retrieval of Interacting Genes (Szklarczyk
et al., 2019) (STRING, Version: 11.02) was employed to identify
protein–protein interactions (PPIs) with a medium confidence
interaction score of 0.4 (the turquoise module). In addition,
Cytoscape software (Shannon et al., 2003) was applied to visualize
the PPI networks3. The Molecular Complex Detection (MCODE)

2http://string-db.org/
3http://cytoscape.org/

plug-in of Cytoscape tool was used to visualize the significant
gene modules in CRC, as default, with degree cut-off = 2,
node score cut-off = 0.2, k-core = 2, and max.depth = 100.
Furthermore, the criteria for selecting the top four significant
modules were set as follows: MCODE scores ≥8 and number
of nodes ≥10. In addition, STRING was used to present the
co-expression analysis of hub genes.

Identification and Validation of Hub
Genes
Based on the MCODE analysis, the genes of the top clusters
were selected as candidate genes for further analysis. The
GEPIA (Tang et al., 2017)4 is a webserver for analyzing
gene expression profiles of 9736 tumors and 8587 normal
samples from the Cancer Genome Atlas (TCGA) and the
genotype-tissue expression (GTEx) projects. In this study, the

4http://gepia.cancer-pku.cn/

FIGURE 1 | Flow chart of strategy for data preparation, processing, analysis, and validation used in this study.
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Kaplan–Meier plotter was used to plot survival analyses of
the top module genes, then the GEPIA webserver was used
to confirm outcomes of survival analyses. For each gene,
cancer patients were divided into two groups according to
the median values of mRNA expression. Moreover, TCGA
data of CRC were used to validate the mRNA expression of
identified hub genes comparing with normal colon tissues.
Therefore, we can verify the transcriptional levels of hub
genes in CRC tissues. P < 0.01 was considered to be
statistically significant.

The Human Protein Atlas5 was applied to validate the
hub genes by immunohistochemistry (IHC). The cBio Cancer

5http://www.proteinatlas.org

Genomics Portal6version: 2.2.0) is an open-access tool that
provides analysis, visualization, and downloading of cancer
genomics data sets for multiple tumor types. By using the
cBioPortal tool, complex cancer genome profiles can be accessed,
and this enables us to compare the genetic variations of the
selected hub genes in CRC.

Construction of TFs-miRNAs–Hub Genes
Network
StarBase (Li et al., 2014)7, a database for exploring microRNA-
mRNA interaction maps, was used to predict miRNAs that

6http://www.cbioportal.org/
7http://starbase.sysu.edu.cn/index.php

FIGURE 2 | Analysis of co-expressing genes modules. Topological overlap matrix plot of all genes. Genes in the rows and columns are sorted by the clustering tree.
Different colors of the horizontal axis and vertical axis represent different modules. The brightness of yellow in the middle represents the degree of connectivity of
different modules.
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bind to hub genes based on the screening criteria that CLIP
Data ≥1 and expression was present in at least one tumor
sample. Then, miRNAs with most intersections in seven
databases (PITA, RNA22, miRmap, microT, miRanda, PicTar,
and TargetScan) were selected. A co-expression network on
account of correlation analysis of hub genes and cancer-
related miRNAs was constructed by Cytoscape software. Then,
the plugin iRegulon of Cytoscape is applied to forecast TF
regulation networks.

RESULTS

Data Pre-processing and Quality
Assessment
The flow diagram of the study design is depicted in Figure 1.
In general, a total of 177 samples in the GSE17536 dataset
were downloaded from the GEO database. After the primary
quality control by the WGCNA R package, one outliner sample
(Supplementary Figure 1) was removed and a total of 176
qualified CRC samples with clinical data (Supplementary
Table 1) were included (Supplementary Figure 2A, the
upper panel). Clinical characteristics of tumor pathological
stage, histological grade, recurrence, and differentiated

status of CRC patients were denoted (Supplementary
Figure 2A, the lower panel). After screened by MADs arranged
from large to small, the expression of the top 25% genes
(5044 genes) with the greatest differences in samples were
analyzed by WGCNA.

WGCNA Construction and Identification
of Key Modules for CRC Recurrence
“WGCNA” package in R was applied to classify the DEGs with
similar expression patterns into modules by average linkage
clustering. As a result, a total of 19 modules were identified
by merging similar modules when the MedissThres was set
at 0.25 (Supplementary Figure 3). The network heatmap is
presented in Figure 2. The relevance between the key module
and CRC recurrence was tested using two methods. Our results
indicated that the ME of the turquoise module possessed the
highest correlation with tumor recurrence [(P = 9 × 10−5,
R2 = 0.29), Figure 3]. Furthermore, we also showed that
the MS of the turquoise module was the highest among all
modules (Supplementary Figure 4), which was considered
to be more associated with tumor recurrence. Therefore, we
identified the turquoise module to be a clinically significant
module of interest in connection with CRC recurrence in the
training set. The correlations between module members and

FIGURE 3 | Identification of modules associated with the clinical status of CRC. Heatmap of the correlation between module eigengenes (ME) and clinical traits of
CRC. Numbers represent correlation (numbers in brackets are P-values). The turquoise module was most positively correlated with CRC recurrence.
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GS in the turquoise module is demonstrated by scatter plots in
Supplementary Figure 5.

GO and KEGG Analyses of the Turquoise
Module
To investigate the potential function of the genes in the turquoise
module, GO and KEGG pathway analyses were performed.
As shown in Figure 4A, genes in the turquoise module were
predicted to exert their functions in the fields of extracellular
structure organization, collagen-containing extracellular matrix,

and extracellular matrix structural constituent, etc. In addition,
these genes were found to be significantly associated with
cellular pathways including the PI3K-Akt signaling pathway and
regulation of actin cytoskeleton (Figure 4B).

PPI Network Construction and Key
Clusters Analysis of the Turquoise
Module
Using the STRING database and Cytoscape software, a total
of 926 DEGs of the turquoise module were mapped into the

FIGURE 4 | Functional enrichment analysis of all the genes in the turquoise module. (A) GO enrichment analysis for biological process, molecular function, and
cellular component. (B) KEGG pathway enrichment analysis. The colored dots represent term enrichment, blue indicates low enrichment, and red indicates high
enrichment. The sizes of the dots represent the number of genes in each GO category and KEGG pathways.
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PPI network, including 926 nodes and 7045 edges. The top
four significant clusters within PPI network were selected using
MCODE plug-in in Cytoscape software (Clusters 1, MCODE
score = 24.435; Clusters 2, MCODE score = 20; Clusters 3,

MCODE score = 11.562, Clusters 4, MCODE score = 8.958).
The functions of each module were further analyzed (Figure 5).
Pathway enrichment analysis demonstrated that Module 1
consisted of 47 nodes and 562 edges (Figures 5A,B), which

FIGURE 5 | Identification of the top four modules (159 genes in total) and correlated pathways from the PPI network. (A,B) Module 1 (47 genes) and its top 10
enriched KEGG pathways. (C,D) Module 2 (30 genes) and its top 10 enriched KEGG pathways. (E,F) Module 3 (33 genes) and its top 10 enriched KEGG pathways.
(G,H) Module 4 (49 genes) and its top 10 enriched KEGG pathways.
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were mainly associated with protein digestion and absorption,
focal adhesion, PI3K-Akt signaling pathway, ECM-receptor
interaction, proteoglycans in cancer, and bladder cancer. Module
2 consisted of 30 nodes and 290 edges (Figures 5C,D),
which were mainly associated with the PI3K-Akt signaling

pathway, ECM-receptor interaction, focal adhesion, and small
cell lung cancer. Module 3 consisted of 33 nodes and 185
edges (Figures 5E,F), which were associated with focal adhesion,
PI3K-Akt signaling pathway, ECM-receptor interaction, dilated
cardiomyopathy, proteoglycans in cancer, regulation of actin

FIGURE 6 | Survival analysis of the seven hub gene candidates identified by the Kaplan–Meier plotter and GEPIA successively. (A–G) Overall survival of the seven
candidate hub genes in CRC based on Kaplan–Meier plotter. (H–N) Overall survival of the seven candidate hub genes in CRC obtained from the GEPIA database.
P < 0.05 was considered to indicate a statistically significant difference. TIMP1, metallopeptidase inhibitor 1; VEGFC, vascular endothelial growth factor C; F8,
coagulation factor VIII; SPARCL1, SPARC Like 1; MYL9, myosin light chain 9; TPM2, tropomyosin 2; CNN1: calponin 1.
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FIGURE 7 | The mRNA level of five hub genes in CRC. Validation of the mRNA expression levels of (A) TIMP1, (B) SPARCL1, (C) MYL9, (D) TPM2, and (E) CNN1 in
CRC tissues compared with normal colon tissues from GEPIA database. These five box plots are based on 275 CRC samples (marked in red) and 41 normal
samples (marked in gray). *P < 0.01 was considered statistically significant. CRC, colorectal cancer. VEGFC and F8 were filtered out according to the P-value of the
mRNA expression levels.

FIGURE 8 | The translational differences of five hub genes in CRC. The expression of (A) TIMP1, (B) SPARCL1, (C) MYL9, (D) TPM2, and (E) CNN1 on translational
levels in CRC tissues compared with normal colon tissues from The Human Protein Atlas database (immunohistochemistry).
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cytoskeleton, and small cell lung cancer. Module 4 consisted of
49 nodes and 215 edges (Figures 5G,H), which were associated
with the relaxin signaling pathway, vascular smooth muscle
contraction, apelin signaling pathway, chemokine signaling
pathway, and platelet activation.

Multiple Identification and Validation of
Key Genes With Poor Prognosis for CRC
Recurrence
Based on our findings above, a total of 159 genes (47 in Cluster 1,
30 in Cluster 2, 33 in Cluster 3, and 49 in Cluster 4, respectively)
were identified as potential hub genes. To reduce the scope and
further validate these observations, CRC patient survival analysis
using Kaplan–Meier plotter was first conducted to unveil the
prognostic information of these genes. After the above validation,
only genes with significantly deteriorated survival curves were
further validated by survival analysis with GEPIA. As shown in

Figure 6, the higher expression of seven candidate hub genes
was significantly correlated with poor CRC patient survival.
Subsequently, in order to further verify the genes identified by the
above methods, the expression level of seven specific genes was
evaluated by GEPIA. As a result, elevated expression of TIMP1
was observed in CRC samples as compared to normal colon
samples, while reduced expressions of SPARCL1, MYL9, TPM2,
and CNN1 were found in CRC samples as compared to normal
control (Figure 7). Unexpectedly, VEGFC and F8 were filtered
out according to the P-value of the mRNA expression levels. To
further confirm these results, the protein level of these five hub
gene candidates was checked using IHC staining data obtained
from The Human Protein Atlas database. Consistent with the
GEPIA results, IHC data also showed the dysregulated protein
level of these genes in CRC tissues (Figure 8). In summary, five
candidate genes (TIMP1, SPARCL1, MYL9, TPM2, and CNN1)
were finally characterized as the hub gene associated with tumor
recurrence in CRC.

FIGURE 9 | Genetic alteration information and co-expression analysis of the five poor prognostic genes in CRC. (A) A visual summary across a set of CRC (data
from colorectal adenocarcinoma, TCGA, Nature 2012) showed the genetic alterations connected with the five hub genes which were altered in 49 (22.7%) of 212
sequenced patients (212 in total). (B) An overview of changes in the five hub genes in the genomics datasets of CRC in TCGA database. Summary for rectal
adenocarcinoma: gene altered in 31.48% of 54 cases, mutation 5.56% (3 in 54 cases), amplification 25.93% (14 in 54 cases). Summary for colorectal
adenocarcinoma: gene altered in 23.68% of 38 cases, mutation 13.16% (5 in 38 cases), amplification, 5.26% (2 in 38 cases), multiple alterations5.26% (2 in 38
cases). Summary for colon adenocarcinoma: gene altered in 16.67% of 120 cases, mutation, 0.83% (1 in 120 cases), amplification, 15% (18 in 120 cases), deep
deletion 0.83% (1 in 120 cases). (C) The co-expression analysis of five hub genes using the STRING online database.
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We next sought to compare the genetic alterations of the
selected five hub genes in CRC from cBioPortal. As presented
in Figure 9A, amplification or missense mutation of the MYL9
gene was observed in 15% of CRC patients, while the genetic
alteration level of the other hub genes was relatively low.
A combined analysis revealed that genetic alteration of five
hub genes was found in over 30% of patients with rectal
adenocarcinoma, more than 20% in colorectal adenocarcinoma,
and over 15% in COAD (Figure 9B). The gene co-expression
analysis of the five hub genes was then performed using
STRING database. The result in Figure 9C showed that these
genes might be actively interacted with each other, especially
for MYL9 and TPM2.

Construction of TFs-miRNA–Hub Genes
Network Associated With CRC
Recurrence
We next sought to establish the transcriptional regulatory
network of hub genes, miRNAs, and TFs by starBase. As revealed
in Figure 10, a total of 29 TFs, 58 miRNAs, and five hub
genes were involved in this network, such as models GATA6-
MIR106A-CNN1, SP4-MIR424-TPM2, SP4-MIR326-MYL9,
HSF1-MIR424-TPM2, ETS1-MIR22-TIMP1, and ETS1-MIR22-
SPARCL1. To further understand the regulatory relationship,
central regulatory biomolecules (TFs and miRNAs) were detected
using topological parameters (Table 1). A large number of TFs

FIGURE 10 | The transcriptional regulatory network of the five hub genes, miRNAs, and TFs. miRNAs, microRNAs; TFs, transcription factors. A green hexagon node
represented the TFs, and a pink diamond node represented regulated miRNA, a light blue circular node represented the hub gene, their interaction was represented
by an arrow. The numbers of arrows in the networks demonstrate the contribution of one TFs to miRNAs or one miRNA to the hub genes, and the higher the degree
the more central the nodes were within the network.
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and miRNAs that could regulate hub gene expression may reflect
the complexity of the mechanisms that lead to CRC recurrence.

DISCUSSION

It is generally accepted that CRC recurrence is possibly the most
important factor that influences the survival of CRC patients
(Zare-Bandamiri et al., 2017). By performing the effective
WGCNA approach, a total of five hub genes were identified to
be significantly associated with CRC recurrence in this study.
Among them, MYL9 and CNN1 were previously characterized
by other groups as CRC recurrence-correlated genes (Qiu et al.,
2020), while the others (TIMP1, SPARCL1, and TPM2) have
never been reported before.

As a member of the tissue inhibitor of the metalloproteinase
(TIMP) family, metallopeptidase inhibitor 1 (TIMP1) was
originally discovered as a serum protein that plays a role in
collagenase inhibition and erythroid progenitor cell growth
(Eckfeld et al., 2019). It has been reported that overexpression of
TIMP1 could increase the phosphorylation of the c-Kit and thus
promotes proliferation and migration of CRC cells (Nordgaard
et al., 2019). Since TIMP1 was expressed mainly in the serum
which could be easily detected, its potential role as a CRC
diagnostic biomarker has been widely studied (Vocka et al.,
2019; Yang et al., 2019). In this study, we further unveiled
the association between TIMP1 and CRC recurrence, which
may strengthen the clinical relevance of this biomarker in the
diagnosis and prognosis of CRC.

TABLE 1 | Summary of top 10 regulatory biomolecules (TFs and miRNAs) of the
five hub genes in CRC identified from TFs-miRNAs-hub genes interactions.

Number Symbol Degree Feature References

TFs

1 POLR2A 14 Afflicted with cancer Xu et al., 2019

2 SP4 10 Afflicted with CRC Meng et al., 2020

3 TEAD4 10 Afflicted with CRC Kim et al., 2020

4 HMGA1 8 Afflicted with CRC Yang et al., 2020

5 GATA6 8 Afflicted with CRC Lai et al., 2020

6 HSF1 7 Afflicted with CRC Song et al., 2020

7 NR3C1 7 Afflicted with CRC Sun et al., 2020

8 ATF1 5 Afflicted with CRC Zhao et al., 2020

9 PDLIM5 5 Afflicted with CRC Shi et al., 2020

10 ETS1 5 Afflicted with CRC Xu et al., 2020

11 TBP 5 Afflicted with CRC Wei et al., 2020

miRNAs

1 MIR106A 18 Afflicted with CRC Liu et al., 2020

2 MIR424 17 Afflicted with CRC Di et al., 2020

3 MIR497 16 Afflicted with CRC Bai et al., 2020

4 MIR326 16 Afflicted with CRC Xian et al., 2020

5 MIR212 15 Afflicted with CRC Mou et al., 2019

6 MIR193A 14 Afflicted with CRC Hejazi et al., 2020

7 MIR214 11 Afflicted with CRC Liu et al., 2019

8 MIR22 11 Afflicted with CRC Cong et al., 2020

9 MIR193B 10 Afflicted with cancer Tian et al., 2020

10 MIR182 6 Afflicted with CRC Lin et al., 2020

Secreted protein acidic and rich in cysteine-like 1 (SPARCL1)
belongs to the SPARC-associated family of matricellular proteins
and is frequently found to be decreased in a number of
cancer types (Gagliardi et al., 2017). Till now, the role of
SPARCL1 in CRC is still controversial. Some studies indicated
SPARCL1 as a potential CRC suppressor gene that is associated
with a good prognosis (Kotti et al., 2014; Han et al., 2018),
while others identified SPARCL1 as a potential oncogene
in CRC (Zhang et al., 2011). This discrepancy was also
observed from our results, in which higher SPARCL1 expression
predicts poorer CRC patient survival through Kaplan–Meier
analysis, but down-regulated SPARCL1 protein level was
observed in CRC tissues using GEPIA and Human Protein
Atlas database.

Beta-tropomyosin (β-tropomyosin, TPM2) encodes a
thin filament-associated protein which has been proved to
play a crucial role in the regulation of muscle contraction
(Karpicheva et al., 2016). Single-cell multiomics sequencing
revealed TPM2 as one of the fibroblast-specific biomarkers
representing a poorer prognosis of CRC (Zhou et al., 2020).
Another research suggested that down-regulation of TPM2 was
associated with RhoA activation and proliferation of CRC cells
(Cui et al., 2016). In the current study, strong interaction was
predicted between TPM2 and myosin light chain 9 (MYL9),
which deserves to be further investigated to unveil its potential
impact on the tumor recurrence of CRC.

In this study, a regulation network of TFs-miRNAs-hub
genes was constructed using StarBase and Cytoscape. We first
established the regulatory network of TFs-miRNAs-target genes
for the recurrence of CRC, involving 29 TFs, 58 miRNAs,
and five hub genes, such as models GATA6-MIR106A-CNN1,
SP4-MIR424-TPM2, SP4-MIR326-MYL9, HSF1-MIR424-
TPM2, ETS1-MIR22-TIMP1, and ETS1-MIR22-SPARCL1.
Interestingly, TFs and miRNAs with high connective degrees in
regulatory networks have been reported to be closely related to
CRC, shown as in Table 1.

CONCLUSION

Our current study identified a number of five hub genes including
TIMP1, SPARCL1, MYL9, TPM2, and CNN1, which may play
vital roles during CRC recurrence. Their PPI network and
upstream TF and miRNA regulators were also investigated to
unveil the underlying mechanism by which these hub genes
modulate the progression of CRC recurrence. It is anticipated
that targeting these hub genes solely or combined therapy
with currently available anti-cancer drugs may be served as an
alternative method to benefit patients diagnosed with CRC. In
general, this study may pave a novel way for the diagnosis,
prognosis, and treatment strategies of the devastating disease.
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