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Establishment of a integrative 
multi-omics expression database 
CKDdb in the context of chronic 
kidney disease (CKD)
Marco Fernandes & Holger Husi

Complex human traits such as chronic kidney disease (CKD) are a major health and financial burden in 
modern societies. Currently, the description of the CKD onset and progression at the molecular level is 
still not fully understood. Meanwhile, the prolific use of high-throughput omic technologies in disease 
biomarker discovery studies yielded a vast amount of disjointed data that cannot be easily collated. 
Therefore, we aimed to develop a molecule-centric database featuring CKD-related experiments from 
available literature publications. We established the Chronic Kidney Disease database CKDdb, an 
integrated and clustered information resource that covers multi-omic studies (microRNAs, genomics, 
peptidomics, proteomics and metabolomics) of CKD and related disorders by performing literature data 
mining and manual curation. The CKDdb database contains differential expression data from 49395 
molecule entries (redundant), of which 16885 are unique molecules (non-redundant) from 377 manually 
curated studies of 230 publications. This database was intentionally built to allow disease pathway 
analysis through a systems approach in order to yield biological meaning by integrating all existing 
information and therefore has the potential to unravel and gain an in-depth understanding of the key 
molecular events that modulate CKD pathogenesis.

Complex human disorders or traits such as chronic kidney disease (CKD) are nowadays a major health and 
financial burden in modern societies. Taking in account the last two decades the number of CKD-related deaths 
has risen by 82.3%, which is the third largest increase among the top 25 leading causes of death worldwide1. 
Moreover, the health costs associated with CKD morbidity as the treatment of end stage renal diseases (ESRD) in 
many developed countries can easily ascend to 3% of their internal health-care2.

The current CKD classification system comprehends five stages of decline of kidney function that is rou-
tinely assessed in the clinic through the measurement of the glomerular filtration rate (GFR) and also by the 
content of proteins found in urine and circulatory fluids; consequently this biochemical parameter can also be 
correlated with the degree of kidney damage3. Accordingly with the National Kidney Foundation, responsible 
for the establishment of the clinical assessment guidelines of Kidney Disease Outcomes Quality Initiative (NKF 
KDOQI), the current CKD classification system comprehends five stages of decline of kidney function (stage 1: 
GFR >​90 mL/min/1.73 m2, stage 2: GFR 60–89 mL/min/1.73 m2, stage 3: GFR 30–59 mL/min/1.73 m2, stage 4: 
GFR 15–29 mL/min/1.73 m2, stage 5: GFR <​15 mL/min/1.73 m2)3. Although, serum creatinine levels are being 
used as a biochemical parameter for GFR estimation and ultimately classification of the CKD stage, when it is 
used as a single parameter for diagnosis, it underestimates the presence of CKD at stage 3 or greater among older 
adults4. Therefore, we should reinforce the importance of finding novel biomarkers that could allow the distinc-
tion between CKD stages and in this way enabling an earlier assistance to patients.

During the past decade, major advances in the field of ‘omics technologies have led to an exponential growth 
in available experimental data. Most of the omics platforms provide high-throughput, detailed exploration of 
the genome, transcriptome, proteome and metabolome, through a variety of techniques including mRNA and 
miRNA arrays, next generation sequencing and mass spectrometry5.
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The intrinsic nature of ‘omic data being noisy and usually on a very large-scale causes additional problems 
during analysis and concomitantly gives rise to other layers of complexity that are added due to the biological 
context, which is often highly diverse. For these reasons, establishment of ‘omics databases is particularly relevant 
in order to provide standardization and structured storage of information that in this way facilitates further data 
analysis, cross comparison and integration on a greater scale6.

Finding value in complex biological data streams, such as in high-throughput ‘omic platforms seems to be the 
upcoming era for the use of a combinatorial integrative approach through systems biology and bioinformatics 
resources. Thus, the latter approach has the potential to promote an unbiased and knowledge-driven platform 
for hypotheses generation in the context of disease modelling. As a consequence, traditional approaches using 
hypothesis-driven investigations in the study of complex human disorders or traits such as CKD are converging 
to a hypothesis-free systems approach to exploit the potential to yield an unbiased and novel testable hypothesis 
as an end-result.

One of the main gaps of the current “panorama” is the disparity between the fast generation of large-scale data 
and their in-depth analysis. Hence, a high volume of ‘omic data has been generated with the goal of discovery of 
novel disease biomarkers and although it found its way into publicly available databases, no effort has been made 
to combine and consolidate this resources in order to offer an integrative view of all studies.

Publicly available databases containing differential expression of miRNAs, genes, proteins and metabolites 
measured in a defined disease or in multi-diseases are still scarce with some rare exceptions as the case of general 
scope transcriptomics repositories such as NCBI Gene Expression Omnibus (GEO)7 and EBI Expression Atlas8. 
However, the core source for publicly available ‘omic data still resides in peer-reviewed publications, therefore 
we aimed to develop a curated molecule-centric database with multi-omics studies retrieved from the literature 
that encompasses differential expression data in CKD and other related traits that can lead to this disease with the 
ultimate goal to build a molecular disease model through a system approach. Thus, a global molecular chronic 
kidney disease database (CKDdb) was generated with data extracted from the literature. Manual curation was 
done to ensure the highest quality of all retrieved data.

Results
Database structure, deployment and navigation.  The CKDdb database (Figures S1–S5) is based on 
pre-assembled and interlinked html files following a NoSQL database format, and all data is initially sourced 
from spreadsheets. There are 5 different spreadsheets relating to demographics (Figure S5), experimental setup, 
statistically found significant molecules, extended molecular information, and peptidomics data (peak profiling 
data). All of these tables follow the standard database nomenclature and structure, i.e. they are all linked to each 
other and to external databases (Figs 1 and 2) such as UniProt/SwissProt9, Chemical Entities of Biological Interest 
(ChEBI)10, NCBI gene11, miRbase12, Ensembl13 and Unigene11. Thus, in this way we emulated a database system 
by pre-assembling query outputs as e.g. grouping based on disease/tissue/molecule/etc.

For a matter of simplicity and usability, all collected data was stored in spreadsheets (but avoiding and solving 
issues such as automatic data transformation when entering data into spreadsheets e.g. gene names converted to 
dates, dealing with the maximum number of characters in a cell allowed, etc.) and then automatically converted 
to the deploy version of the database. The parsing of data from these tables to html was done via in-house built 
software. We also added interactive controls to the html tables such as sorting, pagination, multi-column sorting, 
search interface and data export to multiple formats by incorporating the Data Tables plugin for jQuery JavaScript 
library.

The database can be accessed by browsing by type of study, sample (page with clinical data), tissue and type 
of disease. Furthermore, browsing or searching across all the molecules from the entire database is possible, in 
which we provide an option of group view or detailed view (provides more molecular information e.g. sequences, 
mass-to-charge ratios, etc.).

The ability to browse the database through different page menus and jump to others is shown by starting for 
example in the tissue/fluid source index page (Figure S1) which encloses the disease/condition type, species, 
number of studies and number of molecules associated with each tissue/fluid source (kidney, urine, blood, etc.) 
and then jump to the associated omic studies detected in blood (Figure S2), afterwards we can select an experi-
ment dealing with human cohorts in chronic renal insufficiency (CRI) and detected in mononuclear cells. Then, 
we can navigate to the page for that particular experiment (Figure S3) which contains bibliometric data associated 
with the research article, a description of the sample characteristics with a link to the clinical data (Figure S5), the 
main steps in sample preparation, the detection platform used and a list of molecules identified. We can for exam-
ple select golgin-45 (BLZF1) that was detected increased in expression when compared with healthy subjects in 
a microarray experiment using peripheral blood mononuclear cells from CRI patients and compare their regula-
tion trend across all the studies, disease conditions, species, and tissue/fluid source from the database (Figure S4).

Database statistics.  The CKDdb database contains 49395 molecule entries (redundant), of which 16885 
are unique molecules (non-redundant) from 377 manually curated studies of 230 publications related with CKD 
(Table 1).

A summary of the total number of the detected molecules for the most common diseases, conditions and 
treatments for human studies within CKDdb, which goes across blood, kidney and urine samples, can be found 
in the Fig. 3. Alongside, the total number of molecules detected per acquisition method and per organism across 
blood, kidney and urine can be found in Figs 4 and 5. Functionality tag clustering of all the non-redundant data 
within the CKDdb database was performed (Figure S6) in order to obtain a global view of the content of the 
database on matter of molecular functionality, which promotes data stratification for an upcoming analysis at the 
system level.
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Hereafter data thresholding (Pvalue: <​0.05 and fold-change: down-regulated ≤​0.25 and up-regulated ≥​4)  
we used the Cytoscape14 plugin ClueGO v2.1.615 to identify the main associated biological processes using 
gene ontology (GO) of all the non-redundant data within the CKDdb database (Figures S7–S9). We also 
cross-compared blood, kidney and urine datasets from mRNA and protein studies and in this way identifying 
the involved pathway(s) terms from KEGG16 and WikiPathways17, splitting it by regulation trend (Figure S10).

Utility
The target public for the CKDdb are researchers in the ‘omics field and clinicians that want to perform 
cross-comparisons among studies and conditions related with CKD. This database can be the starting point for 
whom that needs to write-up systematic reviews and develop initial hypotheses for experimental testing. To our 
knowledge this database is the most comprehensive molecular information resource, either in the number of 
manually curated studies that it contains and as well on the level of detail applied in the description of the exper-
imental setup and linkage with clinical information. This resource is a pristine starting point for investigators 
who have particular needs of modelling and performing pathway analysis in CKD and associated traits based on 
molecular expression profiling.

The CKDdb database is able to automatically match orthologous and homologous human genes across a 
full array of animal models, a feature quite relevant in a systems biology analysis and of grown importance for 

Figure 1.  Stepwise description of the essential elements and main methodology used in the development of the 
database: from data-mining (A) till deployment (D). CKDdb database logo published under an Open Access 
license to Nature Publishing Group, a division of Macmillan Publishers Ltd.
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translation to clinical practice. The ultimate goal of the CKDdb database is to allow the development of pathway/
disease models in the framework of CKD.

As a show case of the potential use of the data contained within CKDdb, we first performed an exploratory 
analysis, based solely on the differential expression of molecules within several kidney diseases and conditions 
across all the data from the database.

Hereafter, a targeted approach was performed by selecting a specific disease term: chronic renal insufficiency 
(CRI), which is a synonym for CKD using the medical subject headings (MeSH) terminology as vocabulary control.  
We selected multiple tissues/fluid sources (blood, urine and kidney) that were characterised in a multitude of 
‘omics platforms (Table S1, dataspace description).

Exploratory analysis: statistical approach based on the expression profiles of the several  
disease/traits and conditions across the database.  Data pre-processing.  Redundant entries present 
within the same study were combined by first matching it to our unique identifier system and then using the mean 
of their expression ratios. Afterwards, we scaled all the data used in the analysis to the [0, 1] interval in order to 
balance both weight and effects of the fold-change variable from all the disparate number of data sets containing 
heterogeneous ‘omic platforms and methodologies retrieved from literature.

Clustering and Principal Components Analysis (PCA).  As a form of exploratory analysis of the database content 
we performed hierarchical clustering (Fig. 6) with linkage by group averaging of the Euclidean distances of the 
most representative traits and conditions present in the CKDdb database based on their expression profiles of 
the featured molecules (ratios, fold-changes as case against control) in several ‘omic studies. In a similar way, 
we performed dimensionality reduction by principal component analysis (PCA) of the data having as input the 
molecular features as rows and traits/conditions as columns (Fig. 7). Then this initial table was transformed into 
a triangular matrix based on dissimilarity measured as Euclidean distances.

Based on our exploratory approach we can identify datasets relating to acute kidney injury (AKI) and diabetes 
both measured in kidney tissue as outliers of the bulk of the data present within CKDdb (Figs 6 and 7, and labels Fig. 8)  
based on molecular differential expression. Moreover, through dimensionality reduction and based on PC1 and 

Figure 2.  General scheme overview of the database structure and organisation. 

No. of total entries with extended 
information: 12462

No. of unique (non-redundant) 
molecules: 16885

Total no. of samples in 
Demographics file: 187

No. of unique studies with 
extended information: 12

Total no. of studies in Study 
reference file/Table: 377

No. of unique samples in 
Demographics file: 187

Total no. of molecule entries 
(redundant): 49395 Total no. of unique studies: 377 No. of entries in Peptidomics 

file: 1396

Table 1.   Current stats of the CKDdb database.
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PC2 we can explain 69% of the variation of the CKDdb data (Fig. 7), and as well group datasets based on their 
molecular expression resemblance.

Targeted analysis: case study with a subset of the CKDdb database - CRI dataset.  Data 
pre-processing.  In order to get a focused overview of the associated biological processes and pathways associated 
with CRI, we used molecular information data detected in three tissues/fluid sources using a multitude of omic 
platforms captured in 19 human studies (Table S1, for dataspace description). Afterwards we started combining 
redundant entries (using our unique identifiers system; gene and protein clusters) within the same study by taking 
the mean of the expression ratios of repeated molecules. Then, we applied a global threshold of 1.3 as fold-change 

Figure 3.  Summary of the number of molecules per disease/condition/treatments and most common 
tissue/fluid sources (blood, kidney and urine) only for human associated data. 

Figure 4.  Summary of the number of associated molecules per proteomic and mRNA acquisition methods 
for the three most represented species within the CKDdb database and per tissue/fluid sources (blood, 
kidney and urine). 
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Figure 5.  Summary of the number of associated molecules per miRNA and metabolomic acquisition 
methods for the three most represented species across the CKDdb database and per tissue/fluid sources 
(blood, kidney and urine). 
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Figure 6.  Hierarchical clustering of the molecular expression of microRNA, gene, protein and metabolites 
by group averaging of the Euclidean distances between renal diseases from multiples tissue and fluid 
sources. The vertical line represents a level of resemblance of 20%, in which we are able to distinguish two major 
clusters.
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Figure 7.  PCA analysis with grouping using hierarchical clustering. K-AKI and K-Diabetes are more 
correlated with PC1 and PC2 respectively; both components account for more than 69% of the cumulative 
variation of the data.
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(a 30% increase or decrease of the molecular expression regarding case and control ratios) and a p-value <​0.05. 
Subsequently, a consistency check based on the directionality (down-regulated if <​0.77 and up-regulated if >​1.3)  
of the expression molecular profiles across different studies was applied, in order to remove entries with contra-
dictory regulation and merging consistent entries by averaging their ratios. Then, we bipartite the main dataset 
(5101 molecules/features) into a focused dataset which contains molecules reported more than twice and into an 
unfocused dataset that handles molecules reported only once in the CRI dataspace. This was done to limit the 
bias toward specific molecules frequently reported and to ensure than the least reported can have some represent-
ativity in our analysis.

Functionality tag clustering.  The molecular features found within both datasets are globally decreased in their 
expression levels, with a magnitude around three and two, respectively for the unfocused and focused datasets 
(Figures S11–S14).

When comparing both datasets based on counting the associated tags that have a certain functionality, we can 
observe that RIB: ribosome, TCR: T-cell receptor and IGG: Immunoglobulin functionality tags are missing in 
the focused dataset. The features with the functionality tags MET: metabolite, INH: inhibitor (protease, kinase, 
other enzymes, pathways) and DEV: development, cell growth, differentiation, morphogenesis within the focused 
dataset are mainly increased in expression, which follows the opposite overall trend of the dataset. Around 18 
and 10% of the total number of features, for the unfocused and focused datasets respectively are features without 
proper functional annotation, thereby the UK: unknown tag was applied. Functionality tags corresponding at 
least to 10% of the total number of features are described as ENZ: enzyme, enzymatic properties, UK: unknown 
and TF: transcription and translation, gene regulation for the unfocused dataset; ENZ: enzyme, enzymatic prop-
erties, TF: transcription and translation, gene regulation, TP: transport, storage, endocytosis, exocytosis, vesicles, 
CS: Cell shape (cytoskeleton, cell adhesion, morphology, cell junction, cellular structures, extracellular matrix) 
and UK: unknown regarding the focused dataset (Figures S11–S14). This primary approach is helpful in the way 
that it provides basic information characterising the functional role of the molecules within our datasets, since 
each molecule just has a unique tag. Therefore, it helps the data analyst to reinforce his strength towards particu-
lar areas e.g. regulatory networks (in case of transcriptional factors, miRNAs and their target genes), signalling 
pathways, metabolic pathways, etc.).

Gene ontology and pathway term clustering.  The use of multiple gene ontologies (GO) and pathway terms 
allowed us to identify based on the expression of our input genes/proteins from the focused dataset, significant 
down-regulated clusters modulating signalling (Thyroid-stimulating hormone: TSH and Brain-derived neuro-
trophic factor: BDNF) pathways, regulation of microtubule depolymerisation, aminoglycan metabolic processes 
and protein N-linked glycosylation (Figure S15). On the other hand, significant up-regulated clusters of processes 
related with binding and uptake of ligands by scavenger receptors and as well linked with complement and coag-
ulation cascades (Figure S15).

Molecular clustering based on protein-protein interactions (PPI’s).  Unfortunately, not every protein/gene 
has annotated functions; therefore in order to cover the not so well annotated molecules, we performed 
protein-protein interactions with both datasets (focused plus unfocused) with the representation of representing 
their respective molecular expression in GeneMania18 (Figure S16).

Afterwards, we used as input molecules the ones from the initial pathway term clustering of the TSH and 
BDNF signalling pathways (Figure S15) and performed as well PPI’s analysis (Figure S17) in GeneMania18, in 
order to potentially reveal newly connected molecules from the enrichment.

Figure 8.  Tissue/fluid source: B-blood, K-kidney, U-urine; Disease/conditions: CRI-chronic renal 
insufficiency, AKI-acute kidney injury, PKD-polycystic kidney disease. 
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Regulatory networks: miRNA-target genes.  We performed the association of down-regulated microRNAs 
and their up-regulated gene targets (Figure S18A) using miRNAs from both datasets and gene/proteins from 
the focused dataset via Cytoscape14 software and ClueGO+​CluePedia application14,15,19. Additionally, we 
did the linkage of miRNAs to target genes (Figure S18A) and their associated processes and pathways terms 
(Figures S18B and S18C). We found that the hsa-miR-200a-3p modulates both C4B (Complement C4-B) and 
TTR (Transthyretin) that are associated respectively, with complement and coagulation cascades and the metab-
olism of fat-soluble vitamins (Figures S18B and S18C). Interestingly, the other members of the miR-200 family 
(200b and 200c), and as well the hsa-miR-378a-5p were found to modulate TTR on the same way. The hsa-miR-
708-5p modulates IDS (Iduronate 2-sulfatase), FABP3 (Fatty acid-binding protein, heart) and AMBP (Protein 
AMBP), with the latter being associated with binding and uptake of ligands by scavenger receptors.

Interactome matching: gene-enzyme-reaction-metabolite.  Using our focused dataset having as input genes/
proteins and metabolites, we found an association with the Proteoglycan biosynthesis (Figure S19A), N-glycan 
biosynthesis (Figure S19B) and O-glycan biosynthesis (Figure S19C) via Cytoscape14 software and Metscape 
application14,20.

Mapping of the molecular features into existing pathway maps.  We mapped our molecules with their respective 
regulation ratios onto existing pathway maps using WikiPathways17 via PathVisio software21 and as well onto the 
AKI full pathway map22 and then merged both and removed the features not mapped. In first instance we mapped 
firstly our “focused” dataset to give emphasis to the most relevant pathways and then added the “unfocused” 
dataset with the purpose of gap-filling (Figure S20).

We found a general down-regulation of regulatory proteins involved in the cytoskeletal organisation, particu-
larly in the process of microtubule assembly and stability (e.g. APC, APC2, DPYSL2, MAPT, KIF4A, NEFM, and 
VIM). Moreover, regulatory proteins related with the assembly and stability of actin at the filopodia and lamel-
lipodia level was found down-regulated.

Know hallmarks for chronic kidney disease establishment and progression as extracellular matrix remodelling 
via degradation of collagenases by metalloproteinases can be observed in our merged pathway map and may serve 
as a positive control of our analysis.

The SMADs related intracellular proteins (in our case SMAD2 and SMAD7) were found both down-regulated, 
which can potentially lead to disruption of downstream gene transcription.

Additionally, decreased expression of BDNF and TSH receptor was found within our dataset, which at the first 
view seemed to be a mere artefact.

On the other hand, the metabolic cascades within the mapped molecules onto our pathway map had too many 
gaps and therefore our choice was to not include it in our analysis.

Merging results and overall interpretation.  Taking all together the results from gene ontology and pathway term 
clustering, plus the interactome based on PPIs, matching miRNAs to target genes and linking genes to metabo-
lites through the analysis of metabolic pathways, it leads to the description as a whole of the several individual 
datasets collected for CRI. Thereby, clustering based on GO and pathway terms, combined with the mapped 
molecules onto pathways lead to show how the regulation of microtubules and particularly actin assembly and 
stabilization were modulated taking into account the fold-change of the involved molecules. Microtubules have 
active roles in several biological processes, including cell division and intracellular transport. They are one of the 
principal cytoskeletal components of major podocyte processes, playing a key role in podocyte morphogenesis, 
podocyte process outgrowth, branching, and elongation. Here, we observed an inhibition of the regulation of 
microtubule disassembly, concomitantly with actin disassembly and stabilization at the filopodia and lamellipo-
dia level, with the latter leads to the decrease of cell motility and migration and therefore promoting focal adhe-
sion formation23,24.

A recent study made mention that BDNF has the potential to repair podocyte damage by an increase of actin 
assembly mediated in a regulatory way by miRNAs25. Concomitantly, it was reported that patients undergoing 
hemodialysis have lower levels of circulating BDNF26. Additionally, functional thyroid disorders seems to be 
more prevalent within patients with chronic renal failure undergoing hemodialysis when compared with healthy 
population27,28.

Discussion
Repositories of general scope for transcriptomics such as GEO7,29 and EBI Expression Atlas8 are a source of both 
raw and processed data, and as well metadata submitted by the research community. In the GEO case, it also pro-
vides tools for analysing and visualising data, the GEO2R, an R-based web-application.

Other initiatives as the Multi-Omics Profiling Expression Database (MOPED) stores and displays molecular 
expression data from transcriptomics and proteomics studies across organisms, tissues and conditions. The pro-
venience of the mRNA expression data is originally sourced from GEO raw files that are then reanalysed using 
their own analysis workflows and filtering criteria. On the other hand, proteomic raw data is usually acquired 
by free submission of the research community and then also being subjected to review and reanalysed by the 
MOPED team30.

The Urinary Protein Biomarker Database is focused in proteins found in urine that can potentially serve as 
biomarkers in a disease. The authors went through the existing literature in that particular subject and collected 
information of both proteins and diseases in humans and model organisms. To ensure the highest quality manual 
review of all extracted information was then performed31.

Specific databases regarding molecular expression profiling in renal diseases are still scarce, nevertheless initi-
atives like Nephroseq, a web-based platform that integrates gene expression data sets with clinical data for kidney 
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diseases more focused on data visualization is available at http://www.nephroseq.org. A similar database derived 
from data mining of GEO database is the Renal Gene Expression Database (RGED), which allows querying 
expression profiling of genes in the topic of kidney diseases32. The majority of these databases are only focused in 
one or maximum two ‘omic platforms, lacking a multi-omics database that unifies the bulk of the scattered single 
‘omics repositories. The Kidney and Urinary Pathway Knowledge Base (KUPKB) gave the first step to fill this gap, 
mining and collecting information of about 220 data sets across miRNA, mRNA, protein and metabolites in urine 
and kidney tissues33. Nevertheless, KUPKB only provides the molecular expression as nominal tags like ‘medium’, 
‘strong’, ‘up’, ‘down’, ‘absent’, and ‘present’ which raises additionally difficulties in a forward systems level analysis 
that requires numerical data. Likewise, relevant data descriptor fields are missing such as the description of the 
experimental setup, statistical scores, fold-change cut-offs, type of omic platform and association with clinical 
data.

Systems biology requires comprehensive data at all molecular levels, hence using a data-driven approach based 
in molecular expression profiling of a disease and/or disease states could be a promising approach to find poten-
tial body fluid-accessible biomarkers and therapeutic targets. Nevertheless, mining the increasing data across 
different labs in an efficient way is still a big challenge which affects the efficiency of selecting useful molecular 
candidates and it results in the accumulation of redundant and false identified molecules. And those will ulti-
mately populate the increasing medical literature and will become a source for biased information and thereby a 
burden for decision making with respect to candidate biomarkers.

The CKDdb (www.padb.org/ckdbd) was developed as a database to store; query and ultimately to pave the way 
in the development of disease models from publically available multi-omics data sets in order to bypass the chal-
lenges associated with handling and integration of heterogeneous big data. The database provides the researchers 
to have access to all the high-throughput data available from studies in both CKD and ‘omics platforms together 
with detailed information regarding molecular expression, functional annotation and as well linkage to clinical 
data.

CKDdb can be used extensively by researchers in the ‘omics field and by clinicians to cross-compare among 
studies and conditions, which facilitates the writing-up of systematic reviews and plays an important role in 
hypotheses generation. To our knowledge this database is the most comprehensive molecular information 
resource in characterising CKD-related experiments and model systems.

This database is primarily aimed to allow disease pathway analysis through a systems approach in order to 
yield biological meaning by integrating all existing information and therefore has the potential to unravel and 
gain an in-depth understanding of the key events that modulate CKD onset and progression.

Methods
Database construction.  Data mining.  The content of the database is based on manual extraction of data 
from available literature on the topic of CKD and ‘omics technologies. We used several strings in PubMed in order 
to cover the topic as much as possible (e.g. “Renal Insufficiency, Chronic” [Mesh] AND (miRNA OR genomic* 
OR proteomic* OR metabolomic*) NOT review). The initial effort in data gathering started to be specifically 
about CKD, however with the development of the database we realised that being dependent only on a unique 
trait such as CKD and having as a final goal the development of a disease/pathway model wouldn’t be adequate 
due to the multifactorial nature of CKD in which other disorders could play a crucial role in triggering this dis-
ease. Thus, we modified our search string (e.g. “Kidney Diseases” [Mesh] AND (miRNA OR genomic* OR pro-
teomic* OR metabolomic*) NOT (review OR neoplasms) in order to be broader, capturing this way other related 
traits that could contribute for CKD onset and progression (e.g. focal segmental glomerulosclerosis, diabetic 
nephropathy, fibrosis, nephrotic syndrome, etc.).

Data curation.  The step of data curation plays a central role in the mainstream of a database development, in 
which the quality of the collected data is verified by comparing it with similar studies and by assessing the rele-
vance of the parameters used in the detection of a molecule or molecule population (e.g. statistical thresholds, 
normalisation method, applied cut-offs, validation steps, reference databases used for matching, etc.).

As initially expected the number of redundant molecules seems to be directly proportional to the increase in 
the number of studies and then it reaches a plateau (which is equivalent to reach the point of the current knowl-
edge about the transcriptome, proteome and metabolome of a specific species).

Hereafter, data was converted to our internal identifiers: clustered sequences and orthologs (CluSO) and ort-
holog mapping resource (OMAP) from the Pan-omics Analysis Database (PADB) initiative. The CKDdb is fully 
integrated into other databases held within the PADB infrastructure. These internal identifiers allow us to deal 
with the high heterogeneity of the data sourced from multi-omic studies of available literature.

We only kept statistically significant and differently expressed molecules e.g. p-value <​0.05, and fold-changes 
(FC), in which the selected threshold is dependent on the detection method used by the authors i.e. transcriptom-
ics FC ≥​ 2; proteomics and metabolomics FC ≥​ 1.3.
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