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Classification of pyroptosis
patterns and construction of a
novel prognostic model for
prostate cancer based on bulk
and single-cell RNA sequencing

Jianhan Fu †, Guoqiang Li †, Ruixiang Luo, Zhijie Lu
and Yinhuai Wang*

Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
Background: Emerging evidence suggests an important role for pyroptosis in

tumorigenesis and recurrence, but it remains to be elucidated in prostate

cancer (PCa). Considering the low accuracy of common clinical predictors of

PCa recurrence, we aimed to develop a novel pyroptosis-related signature to

predict the prognosis of PCa patients based on integrative analyses of bulk and

single-cell RNA sequencing (RNA-seq) profiling.

Methods: The RNA-seq data of PCa patients was downloaded from several

online databases. PCa patients were stratified into two Classes by unsupervised

clustering. A novel signature was constructed by Cox and the Least Absolute

Shrinkage and Selection Operator (LASSO) regression. The Kaplan-Meier curve

was employed to evaluate the prognostic value of this signature and the single

sample Gene Set Enrichment Analysis (ssGSEA) algorithm was used to analysis

tumor-infiltrating immune cells. At single-cell level, we also classified the

malignant cells into two Classes and constructed cell developmental

trajectories and cell-cell interaction networks. Furthermore, RT-qPCR and

immunofluorescence were used to validate the expression of core

pyroptosis-related genes.

Results: Twelve prognostic pyroptosis-related genes were identified and used to

classify PCa patients into two prognostic Classes. We constructed a signature

that identified PCa patients with different risks of recurrence and the risk score

was proven to be an independent predictor of the recurrence free survival (RFS).

Patients in the high-risk group had a significantly lower RFS (P<0.001). The

expression of various immune cells differed between the two Classes. At the

single-cell level, we classified the malignant cells into two Classes and described

the heterogeneity. In addition, we observed that malignant cells may shift from

Class1 to Class2 and thus have a worse prognosis.
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Conclusion: We have constructed a robust pyroptosis-related signature to

predict the RFS of PCa patients and described the heterogeneity of prostate

cancer cells in terms of pyroptosis.
KEYWORDS

prostate cancer, pyroptosis, recurrence-free survival, tumor immune microenvironment,
single-cell sequencing
Introduction

Prostate cancer (PCa) is the most common cancer of the

genitourinary system among male patients and poses a great

burden both on individuals and society. An estimated 1.3 million

patients are newly diagnosed with PCa each year (1). The

Incidence of PCa vary from 6.3 to 83.4 per 100,000 people

across regions. In countries with a high/very high Human

Development Index (HDI), the incidence of PCa reached 37.5

per 100,000 people. In countries with a low/median HDI, the

incidence of PCa is 11.3 per 100,000 people. The highest rates

found in Northern and Western Europe (2). Patients at different

PCa stages show large differences in prognosis. For patients with

localized PCa, radical prostatectomy is the first-line treatment,

while radical radiation therapy is an option for patients with

surgical contraindications (3). An international collaborative

Randomized Controlled Trial sages suggested no significant

difference in the long-term survival between patients treated

with these two radical treatments (4). If diagnosed promptly, the

10-year survival rate of localized PCa is approximately 99% (5).

Although only 6% patients with PCa experience distant

metastasis, the 5-year survival rate of these patients is

approximately 30% (6). Foreman et al. predicted that PCa-

related mortalities will reach 927,780 in 2040 (7). Therefore,

early identification of patients with recurrence is critical to

reduce PCa mortality. However, the accuracy of commonly

used clinical features such as prostate specific antigen (PSA),

Gleason score and TNM staging are not satisfactory in

predicting recurrence (8). Exploring an effective and reliable

signature for predicting recurrence is thus important to help

urologists make clinical decisions.

Pyroptosis, an inflammatory form of programmed cell death

(PCD), is a sequence of processes involving the inflammasome,

caspase-1, and the gesdermin family (9). The main pyroptosis

pathways include the canonical pathway, the non-canonical

pathway, the granzyme-mediated pathway, and the caspase-3/

8-mediated pathway (10–13). In the canonical pathway,

intracellular signaling induced by microbial infection or tumor

proliferation, invasion, and metastasis (14) is recognized by

pattern recognition receptors (PPRs), resulting in the assembly

of the inflammasome (NLRP1, NLRP3, NLRC4, AIM2, and
02
pyrin) and the recruitment of pro-caspase-1 (15). When

inflammasome assembly is complete, caspase-1 is activated

and cleaves the executor protein gasdermin-D (GSDMD) at

Asp275 into two cleavage proteins: N-GSDMD and C-GSDMD.

N-GSDMD forms non-selective pores on the cell membrane,

causing an unbalanced osmotic potential and leading to water

influx and cell swelling (16). Furthermore, IL-1b and IL-18

mature with the help of caspase-1 leak from the N-GSDMD

pores, resulting in pyroptosis (17). The mechanisms of other

pyroptosis pathways are similar to that of the canonical pathway

but involve other inflammasomes, caspase families, and

gesdermin families.

Although early studies on pyroptosis focused on the innate

immune and inflammatory response to infection, increasing

studies have demonstrated that pyroptosis plays a crucial role

in cancer, especially in anticancer immunity (18). Jiang et al.

verified that miR-21-5p induced pyroptosis which released IL-1b
and IL-18 to suppress colorectal cancer growth (19). Another

study found that PD-L1 induced pyroptosis in breast cancer,

resulting an immune microenvironment unfavorable for tumor

growth (20). In the last few years, several drugs and compounds

and inorganic selenium have been proven to induce pyroptosis

in PCa cells and have antitumor potential (21–23). These

findings indicate that pyroptosis may be a potential

therapeutic target for PCa patients. However, the relationship

between the pyroptosis patterns, immune microenvironment

and prognosis in PCa patients remains unknown. Single-cell

sequencing (scRNA-seq) uses different types of individual

cells as the basic unit of transcriptome analysis, which

has unprecedented advantages in studying intra-tumor

heterogeneity and tumor immune microenvironment (24). The

application of scRNA-seq technology to study cancer cell

pyroptosis is promising.

Here, we characterized 2 distinct pyroptosis patterns (Class1

and Class2) based on bulk RNA-seq and scRNA-seq data of PCa

patients. On the basis of these patterns, we constructed a

prognostic signature and validated the robustness and

reliability of this signature. We further investigated the

different tumor immune microenvironment between the two

Classes. At the single-cell level, we find that the pyroptosis

pattern of malignant cells may shift from Class1 to Class2
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during the development of prostate cancer. In addition, we

constructed the potential ligand-receptor-target networks

between malignant cells and other cells.
Methods

Data collection

The RNA-sequencing (RNA-seq) data, phenotype data, and

survival data of 499 PCa patients and 52 patients with healthy

prostates of The Cancer Genome Atlas Prostate adenocarcinoma

(TCGA-PRAD) cohort were downloaded from UCSC Xena

(http://xena.ucsc.edu/). The RNA-seq data and corresponding

clinical features of validation cohorts were downloaded from the

Gene Expression Omnibus (GEO) repository (https://www.ncbi.

nlm.nih.gov/geo/,GSE157703) (25) and International Cancer

Genome Consortium (ICGC) database (https://dcc.icgc.org).

RNA-seq data were measured by fragments per kilobase of

exon model per million mapped fragments value and

normalized before further analyses.

We summarized 55 pyroptosis-related genes from the

Molecular Signatures Database v7.2 (https://www.gsea-msigdb.

org/gsea/msigdb/index.jsp) (26) and published reviews (27–30).

These genes are listed in Supplementary Table S1.
Identification of distinct pyroptosis
patterns in PCa patients

To investigate whether pyroptosis-related genes are associated

with the prognosis of prostate cancer, we first performed

univariate Cox analysis of 55 pyroptosis-related genes with all

patients in TCGA-PRAD cohort. Genes with a P<0.05 were

considered as prognostic genes. We used the STRING database

(version 11.0) (31) to construct a protein-protein interaction (PPI)

network for these prognostic genes. To further explore the

pyroptosis patterns, the “ConsensusClusterPlus” R package was

used to perform a consensus clustering analysis based on the

prognostic pyroptosis-related genes.
Differential expression analysis between
different consensus classes

The “DESeq2” R package was used to identify differentially

expressed genes (DEGs) between different consensus Classes.

Genes with |Log2(fold-change) | > 1 and P-adjusted< 0.05 were

defined as DEGs and selected for further analysis. On the basis of

the expression of DEGs, the “prcomp” function of “stats” R

package was used to perform principal component analysis. The
Frontiers in Endocrinology 03
“survival” R package was used to perform Kaplan–Meier survival

curve analysis and the Log-rank test.
Functional analyses of the DEGs

The DEGs between distinct consensus Classes were examined

by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses using “clusterProfiler” R package. The

Benjamini–Hochberg method was used to adjust P values and P-

adjusted<0.05 was selected as the statistical threshold.
Construction and validation of the
prognostic gene signature

We conducted univariate Cox analysis to identify genes with

prognostic value by screening the relationship between DEG

expression and recurrence-free survival (RFS). To construct an

optimal model, the least absolute shrinkage and selection

operator (LASSO) penalized Cox regression analysis was used

with R package “glmnet”. In this regression, the dependent

variables were RFS and the survival status of the patients and

the independent variable was the normalized candidate DEG

expression. The tenfold cross-validation was used to select the

penalty parameter (l) with the minimum criteria. The risk

scoring model was constructed according to each prognostic

DEG expression level and its LASSO coefficient. The formula was

as follows: risk score o
n

i=1
(Coefi*xi),.. = ere n ndicates the number of

genes in this model, Coefi s the LASSO coefficient, and xi the z-

score-transformed relative expression value of each selected gene.

We calculated the risk score of each patient in TCGA-PRAD

cohort, and patients were divided into high-risk and low-risk

groups according to the median value of the risk score. The

“survival,” “survminer” and “time-ROC” R packages were used

to compare the RFS between the distinct consensus Classes by

Kaplan–Meier analysis and generate a receiver operating

characteristic (ROC) curve. P<0.05 in two-sided log-rank test

was considered significant.

The ICGC-PRAD cohort was analyzed as an external

validation cohort. The risk scoring, Kaplan–Meier analysis and

ROC curve analysis were performed identically as with the

TCGA cohort.
Independent prognostic analysis of
consensus classes and the risk score

We collected the clinical data (age, T stage, Gleason

score, and PSA value in TCGA-PRAD cohort) of patients for

further analysis. These clinical variables were examined by
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univariate and multivariate Cox regression analyses along with

consensus Classes and the risk score. P<0.05 was considered

statistically significant.
Processing scRNA-seq data

We downloaded the scRNA-seq data of cancerous prostate

tissues from GEO database (https://www.ncbi.nlm.nih.gov/geo/,

GSE157703) (25). This single-cell transcriptome data was done

with 10X Genomics and had been processed into an expression

matrix. “Seurat” R package (Version 3.0) was used for subsequent

analysis (32). After we employed “harmony” R package to

integrate all samples (33), cells with more than 20% expression

of mitochondrial genes or fewer than 200 total expressed genes

were excluded. We used “NormalizeData” function to eliminate

the effect of cell sequencing depths, “FindVariableFeatures”

function to find top 2000 feature genes with the highest

variance and “ScaleData” function to scale and center features

in the dataset. After we conducted “RunPCA” function to reduce

the dimension by Principal Component Analysis (PCA), 15

components (PCs) were conserved. “FindNeighbors” and

“FindClusters” functions (resolution=0.5) were used to cluster

all the cells, while “RunTSNE” and “RunUMAP” functions were

used for further dimensionality reduction and visualization of the

data. “DoubletFinder” R package was used to detect and remove

doublets based on Poisson distribution with an officially

recommended DoubletRate(5.4% for 7000 cells) (34). All cells

were annotated by “SingleR” R package and Classical cell type

markers were checked manually (35). Malignant epithelial

cells were identified by “copykat” R package (36) with these

parameters : ngene.chr=5, win.s ize=25, KS.cut=0.1 ,

distance= “Euclidean”.
Further analysis between the two classes
at single-cell level

After we assigned malignant epithelial cells into Class1,

Class2 or Not Defined based on the result of “FindAllMarkers”

function, “FindMarkers” function was employed to find DEGs

between Class1 and Class2 (|Log2(fold-change) | > 0.25 and P-

adjust< 0.05).

The development trajectories of malignant epithelial cells were

constructed by “Monocle” R package (Monocle2) (37). After we

inputted the original counts matrix, Monocle2 placed individual

cells that are actually in different processes on a same pseudotime

corresponding to cell development. Visualization was done by

“plot_cell_trajectory” and “plot_pseudotime_heatmap” function.

The differentially enriched pathways between the two

Classes were identified by gene set enrichment analysis

(GSEA) with P< 0.05 and |normalized enrichment score

(NES)| > 0.3. The gene sets were downloaded from the KEGG
Frontiers in Endocrinology 04
database. As a method of Over Representation Analysis (ORA)

for functional enrichment, “clusterProfiler” R package was also

employed with cutoff = 0.5 (38).

Considering a poor prognosis in Class2 patients, cell-cell

interactions between Class2 malignant epithelial cells and other

cells were analyzed by NicheNet (39). The potential

ligand-receptor-target regulatory networks were predicted

by calculating DEGs between Class2 and other cells

and in combination with known ligand-receptor-target

regulatory networks.
RT-qPCR

RT-qPCR was used to detect the relative mRNA expression

of 12 prognostic pyroptosis-related genes: CASP8, GSDMB,

BAK1, BAX, CHMP4B, CHMP4C, CHMP6, TP53, TP63,

CASP9, GPX4 and PLCG1 in RWPE-1 and DU145 cell lines.

The total RNA was extracted using TRIzol (THERMO

TRIZOL#15596-026) and the cDNA was synthesized using the

HiFiScript cDNA Synthesis Kit (CWBIO#CW2569M). The

primers were designed by Primer5 software and synthesized by

Tsingke Biotechnology (Beijing, China). The primers were

shown in Supplementary Table S2. The UltraSYBR Mixture

(CWBIO#2601) was used as a part of the RT-PCR System. All

data were standardized with GAPDH and the relative mRNA

expression was calculated by 2-DDCt method.
Immunofluorescence

The different distribution and expression levels of

TP63 in RWPE-1 and DU145 cell lines was detected

by immunofluorescence. The cells were fixed by 4%

paraformaldehyde for 30 minutes and incubated with primary

anti-p63 antibody (1:50, Abcam#ab124762, Cambridge, UK) at 4°

C for a night and incubated with CoraLite488-conjugated

Affinipure Goat Anti-Rabbit IgG (H+L) (1:100, Proteintech#

SA00013-2, Rosemont, USA) at 37°C for 90 minutes. DAPI dye

was used to counterstain the cells for 10 minutes. All cells were

observed and photographed by microscope (Motic#BA210T).
Statistical analysis

In our study, the continuous variables were compared by

Student’s t-test and the categorical variables were compared by

Chi-squared test or Fisher’s exact test. P value adjusted by the

Benjamini–Hochberg method was used as the statistical

threshold of the GO and KEGG analyses. Kaplan–Meier

analysis with a two-side log-rank test was used to compare the

RFS between the two groups. Univariable and multivariable Cox

regression models was used to assess the prognostic value of the
frontiersin.org
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signature. All statistical analyses were performed using R

software (v4.1.0) and GraphPad Prism 8. If not specified,

P<0.05 was considered statistically significant.
Resuslts

Classification of PCa patients according
to different pyroptosis patterns

The workflow chart of this study is shown in Figure 1. We

examined data of 499 PCa patients and 52 patients with healthy

prostate in TCGA-PRAD cohort in the preliminary analysis. We

performed univariate Cox regression to examine the prognostic

value of 55 pyroptosis-related genes in PCa and identified twelve

pyroptosis-related genes that predicted RFS: CASP8, GSDMB,

BAK1, BAX, CHMP4B, CHMP4C, CHMP6, TP53, TP63, CASP9,

GPX4 and PLCG1 (P<0.1, Supplementary Table S3). RT-qPCR

was performed to validate the relative mRNA expression levels

of these twelve genes in normal prostate cell line RWPE-1 and

prostate cancer cell line DU-145. The results were mostly

consistent with the bioinformatic analysis (Supplementary
Frontiers in Endocrinology 05
Figure S1). The expression of these genes in PCa patients with

different clinicopathological characteristics is presented in

heatmaps and violin plots (Figures 2A, B, Supplementary

Figure S2). The interaction network and Pearson correlation

heatmap of these prognostic genes are shown in Figures 2C, D.

We found a high correlation between BAX and GPX4.

On the basis of the expression data of the twelve prognostic

pyroptosis-related genes, we identified distinct pyroptosis

patterns using the “ConsensusClusterPlus” R package. We

divided the 499 PCa patients into two pyroptosis patterns: 255

cases in consensus Class 1 (Class 1) and 244 cases in consensus

Class 2 (Class 2); the correlations between different Consensus

Classes were lowest when clustering variable (k) = 2 (Figure 3A).

The principal components analysis plot indicated that the PCa

patients in different Classes were distributed in two directions

(Figure 3B). The gene expression and clinical features of the two

Classes are shown in heatmaps (Figure 3C). Class 1 had a

significant lower expression of CHMP4C, while Class 2 had a

significant lower expression of TP63 (|Log2(fold-change) | > 0.5

and P-adjusted< 0.05, Supplementary Table S6) and these two

genes were defined as Class Markers for further analysis. RFS

was compared by Kaplan–Meier curve analysis and log-rank test
FIGURE 1

Workflow diagram. The workflow chart of data analysis.
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A

B

DC

FIGURE 2

Expressions of 12 prognostic pyroptosis-related genes(PPGs) and clinicopathological features. (A) The heatmap(navy:low exression level;red:high
expression level) of 12 PPGs between the tumor(blue) and the normal group(pink). P values were shown as: *P<0.05. (B) The violin plots of the
relationship between 12 PPGs expression and T stage. (C) The PPI network generated by STRING database showing the interactions of the
pyroptosis-related genes. (D) The Pearson correlation heatmap of these prognostic pyroptosis-related genes.
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between the two Classes; Class 1 had a longer RFS compared

with Class 2 (P = 0.0075, Figure 3D).
Identification of between the two classes
and functional analysis

A total of 1560 genes were identified as DEGs between the

two Classes based on the criterion |Log2(fold-change) | > 1 and

P-adjust< 0.05 (Supplementary Table S4). The volcano plot of

the DEGs is presented in Supplementary Figure S2.

To investigate the different functional pathways between the

two Classes and explore the potential mechanisms of pyroptosis

in PCa, we performed GO and KEGG analyses. The results

revealed that some immune-related functional pathways were

enriched, such as cytokine activity, humoral immune response

and IL-17 signaling pathway. Other signaling pathways were also

enriched, such as monooxygenase activity, cornification,
Frontiers in Endocrinology 07
cytoskeleton, Calcium signaling pathway and cAMP signaling

pathway (Figures 4A–D).
The distinct tumor immune
microenvironment between
the two classes

To further explore whether the impact of the immune system

is one of the reasons for the different prognosis of the two Classes,

we first used ssGSEA to calculate the enrichment scores of 28

types of immune cells. Surprisingly, the scores of 26 immune cells

were significantly different between the two Classes, implying a

distinct tumor immune microenvironment (Figure 5). We found

that most enrichments scores were higher in Class1 than in Class2

(except for activated CD8+ T cells and gamma delta T cells,

P<0.05), suggesting that immunosuppression may be responsible

for the poor prognosis in Class2 patients.
A B

DC

FIGURE 3

Tumor classification based on the prognostic pyroptosis-related genes. (A) 499 PCa patients were divided into two Classes. (B) PCA plot based
on the gene expression of the two Classes. (C) The heatmap and the clinicopathological characteristics of the two Classes. (D) Kaplan-Meier
RFS curve of the two Classes.
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The potential therapeutic drugs and
diverse sensitivity between the
two classes
Many compounds have been shown to be potential drugs for

prostate cancer, and it is clinically important to study the

different sensitivities of these drugs in the two Classes of
Frontiers in Endocrinology 08
patients. Hence, we obtained the sensitivity of 481 compounds

to 860 cancer cell lines from the Cancer Therapeutic Response

Portal (CTRP) database (40–42) and predicted the top 20

sensitive drugs for prostate cancer by “oncoPredict” R package

(43). Nine of the top20 compounds showed significant

differences in 50%inhibiting concentration (IC50) between the

two Classes (Figure 6), including Camptothecin, Staurosporine,

Rapamycin and many other anti-tumor drugs.
A B

DC

FIGURE 4

The functional enrichment between the two Classes based on DEGs. (A) Barplot graph of the Gene Ontology (GO) Molecular Functions
enrichment analysis. (B) Barplot graph of the GO Biological Processes enrichment analysis. (C) Barplot graph of the GO Cellular Components
enrichment analysis. (D) Barplot graph of the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways enrichment analysis.
FIGURE 5

The distinct tumor immune microenvironment between the two Classes. *:p<0.05; ***:p<0.001; ns, not significant.
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Construction and validation of a
prognostic signature using
TCGA-PRAD cohort

After excluding 19 patients without RFS data, 480 PCa

patients in TCGA-PRAD cohort were enrolled. We used

univariate Cox regression and screened all DEGs; we found that

286 of 1560 DEGs were RFS-related on the basis of the criterion of

P< 0.05 (Supplementary Table S4). The Kaplan–Meier curves of

the top six genes with the smallest P-value are presented in

Figure 7A. A lower expression of EFNA2, NAALADL2_AS2,

BRS3, AMH, and TMEM249 were related to a longer RFS.

We included the 286 RFS-related DEGs for LASSO-Cox

regression analysis to minimize the risk of overfitting and

removed redundant factors (44). Finally, 8 genes were selected

to construct a prognostic signature according to the optimal value

of l (Figures 7B–D). The coefficients of these genes are listed in

Supplementary Table S5. The risk score for each patient was

calculated according to the signature gene expression and

corresponding coefficient. Since there were overlapping patients

in the TCGA-PRAD cohort and the ICGC-PRAD cohort (total

overlapping 308 patients), this part of patients was excluded from

the survival analysis of the TCGA-PRAD cohort. Using the

median value of risk score, the remaining 172 patients in the
Frontiers in Endocrinology 09
TCGA-PRAD cohort were equally divided into two groups: the

high-risk group and the low-risk group. Patients in the high-risk

group had a significantly worse RFS than patients in the low-risk

group (Figure 8A, P=0.00097). The receiver operating

characteristic (ROC) curve showed a very good predictive

performance of the prognostic signature with the area under the

curve (AUC) of 0.852 (Figure 8B).

PCa patients in the ICGC-PRAD cohort were enrolled for

further analysis as an external validation to verify the robustness

and reliability of this model. These patients were also stratified

into two groups based on the median value of the risk score. The

probability of tumor recurrence was significantly higher in the

high-risk group (Figure 8C, P = 0.024). ROC curve showed a

good discrimination with an AUC of 0.613 (Figure 8D).
Independent prognostic value of
the risk score

We performed univariate and multivariate Cox regression of

other clinicopathological variables in TCGA-PRAD cohort to

determine whether the risk score could serve as an independent

prognostic factor for RFS in PCa patients. In the univariate Cox

regression, the risk score had a higher hazard ratio (HR) and was
FIGURE 6

The potential drugs and diverse drug sensitivity between the two Classes of PCa patients.The vertical coordinate represents IC50.
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significantly correlated with poor RFS in both TCGA-PRAD

cohort (HR=1.22, 95%CI=1.10–1.36, P<0.0001; Figure 9A).

While correcting for other confounding clinical factors,

multivariate Cox regression indicated that the risk score was still

an independent prognostic factor in the TCGA-PRAD cohort

(HR=1.26, 95%CI=1.05–1.52, P=0.014; Figure 9B).
Clustering malignant epithelial cells by
single-cell analysis

To study the different pyroptosis patterns in malignant cells,

we analyzed the transcriptome single-cell sequencing data of
Frontiers in Endocrinology 10
prostate cancer samples from 2 patients. A total of 6905 cells

were obtained after we removed the doublets, and the quality of

data was reliable (Supplementary Figure S3). We identified 16

clusters of cells (resolution=0.5) and annotated them into 8

distinct cell types (Figure 10A), including 1753 epithelial cells,

1351 endothelial cells, 963 smoothmuscle cells, 2270 T cells, 150 B

cells, 195 monocytes, 180 common myeloid progenitors (CMPs)

and 43 neurons. To verified the accuracy of cell annotation, we

examined the expression of acknowledged specific markers within

each cell type that annotated by “SingleR” R package (Figures 10B,

C). In all epithelial cells, we identified 1258 malignant epithelial

cells by “copykat” R package (Supplementary Figure S4) and

classified them into 4 clusters (Figure 10D, resolution=0.2).
A

B DC

FIGURE 7

Construction of a prognostic signature. (A) The K-M curves of RFS of the top 6 genes with the smallest P-value. (B) The forest plot of the top 20
genes with the smallest P-value. (C) Partial likelihood deviance was plotted against lag(lambda). The vertical botted lines indicate the lambda
value with minimum error. (D) The coefficients of the 8 genes in the signature.
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Characterization of malignant epithelial
cells based on pyroptosis-related
class Markers

The relative expression level of 12 prognostic pyroptosis-

related genes (PPGs) was shown in Figure 11A. To investigate

the pyroptosis pattern in prostate cancer at the single-cell level, we

used previously defined Class Markers (CHMP4C and TP63) to

re-assign each malignant epithelial cell to Class1, Class2 or Not

Defined. The “FindAllMarkers” function of “Seurat” R package

was conducted to find the DEGs for each cluster (P< 0.01,

Supplementary Table S7). The volcano plot shows that
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CHMP4C was significantly down-regulated in cluster3, and

TP63 was significantly down-regulated in cluster0 (Figure 11B).

To validate these two classifier genes in human cell lines, we

studied the distribution and expression of TP63 and the relative

mRNA expression level of CHMP4C and TP63 in normal prostate

cell line RWPE-1 and prostate cancer cell line DU-145

(Figures 11C, D). TP63 has a lower expression in prostate

cancer cells compared to normal prostate cells, indicating that it

may serve as a key molecule in fight against prostate cancer.

According to this result, we assigned malignant epithelial cells in

cluster 3 as Class1, malignant epithelial cells in cluster 0 as Class2,

other malignant epithelial cells as Not Defined (Figure 11E).
A B

D

C

FIGURE 8

Prognositc value of the gene signature. (A) Kaplan-Meier curves for the RFS of patients in the two subgroups in the TCGA-PRAD cohort. (B) AUC of
ROC curves demonstrated the prognostic value of the risk score in the TCGA-PRAD cohort. (C) Kaplan-Meier curves for the RFS of patients in the
two subgroups in the ICGC-PRAD cohort. (D) AUC of ROC curves demonstrated the prognostic value of the risk score in the ICGC-PRAD cohort.
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Pyroptosis pattern may shifts from class1
to class2

The development of malignant epithelial cells is a dynamic

process. We used Monocle 2 algorithm to speculate on the

possible developmental trajectory of malignant epithelial cells,

and found that the trajectory began with Class1 malignant cells

and ended with Class2 malignant cells (Figure 12A). We therefore

propose the hypothesis that in the development of prostate cancer,

the pyroptosis pattern may shifts from Class1 to Class2 and as a

result, a poor prognosis (see Figure 3D).

In addition, we found a dynamic change in the expression

of pyroptosis-related genes during the development of
Frontiers in Endocrinology 12
malignant epithelial cells (Figures 12B–D). For example,

GZMB expression increases with the development trajectory

while GZMA expression decreases.
Enrichment analysis between the two
classes of malignant epithelial cells

The different cellular behavior and biological process between

the two Classes of malignant epithelial cells could affect the tumor

immune microenvironment. Based on the DEGs between Class1

and Class2, several immune-related pathways were enriched by

Gene Set Enrichment Analysis (GSEA), such as chemokine
A B

FIGURE 9

Independent prognostic value of the risk score. (A) Univariate cox regression for the TCGA-PRAD cohort. (B) Multivariate cox regression for the
TCGA-PRAD cohort.
A B

DC

FIGURE 10

Identification of malignant epithalial cells and subgroups of two PCa patients at single-cell level. (A) The t-distributed stochastic neighbor
embedding (t-SNE) plot clustering all cells into different clusters. Each dot represents a cell and colored according to its celltype. (B) Violin plot
demonstrates the accuracy of cell annotation by showing specific markers. (C) Heatmap shows the top10 differential expressed genes of each
cell type (ordered by average log2|fold change|). (D) The uniform manifold approximation and projection (UMAP) plot clustering all malignant
epithalial cells into 4 clusters.
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A B

D EC

FIGURE 11

Identification of different pyroptosis patterns at single-cell level according to the expression of class markers (TP63 and CHMP4C). (A) Feature plot
shows the expressions of 12 PPGs in malignant epithalial cells. (B) The DEGs of the 4 clusters of malignant epithelial cells. TP63 was down-regulated
in cluster0 and CHMP4C was down-regulated in cluster3. (C) The distribution and expression of TP63 in normal prostate cell line RWPE-1 and
prostate cancer cell line DU-145. (D) The relative mRNA expression level of CHMP4C and TP63 in normal prostate cell line RWPE-1 and prostate
cancer cell line DU-145. (E) Re-annotation of all malignant epithelial cells into two different pyroptosis patterns. *:p<0.05; **:p<0.01.
A

B DC

FIGURE 12

The development trajectory and dynamic change of two Classes of maligant epithelial cells. (A) Pseudotime analysis reveals the development
trajectories of the two Class of maligant epithelial cells (From Class1 to Class2). (B) The dynamic change of the expression of pyroptosis-related
genes during the development of maligant epithelial cells (Timeline from left to right). (C) Heatmap shows pyroptosis-related genes involved in
the differentiation of maligant epithelial cells (branch point1). (D) Heatmap shows pyroptosis-related genes involved in the differentiation of
maligant epithelial cells (branch point4).
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A B

C

FIGURE 13

The functional enrichment between the two Classes at single-cell level. (A) Immune-related pathways were enriched by Gene Set Enrichment
Analysis (GSEA). (B) Circle plot presents GO Biological Processes. (C) Chord plot presents GO Biological Processes and involved genes.
A

B
D

C

FIGURE 14

The cell-cell interaction between malignant epithelial cells and other cells. (A) The regulatory potential of the prioritized cell ligard-receptor
pairs in the development of maligant epithelial cells. (B) The regulatory potential of the prioritized cell ligard-target pairs in the development of
maligant epithelial cells. (C) The expression of the prioritized receptors in the development of maligant epithelial cells. (D) The expression of the
prioritized targets in the development of maligant epithelial cells.
Frontiers in Endocrinology frontiersin.org14

https://doi.org/10.3389/fendo.2022.1003594
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Fu et al. 10.3389/fendo.2022.1003594
signaling and cytokine receptor interaction (Figure 13A). GO

analys i s a l so indicated a dis t inct tumor immune

microenvironment between the two Classes of malignant cells

(Figures 13B, C).
The potential cell-cell interaction
between malignant epithelial cells and
other cells

The “nichenetr” R package was used to predict the potential

ligand-receptor pairs and ligand-target gene pairs in the process

of malignant cells developing.

CCL2-ACKR1, APP- TNFRSF21, IL6-TNFRSF1A and IL1B-

IL1R1 were ligand-receptor pairs with strong regulatory

potential (Figure 14A), while CCL2, CCL3, CXCR4 and CTGF

were target genes that regulated by multiple pathways

(Figure 14B). Similar to the enrichment analysis, this result

demonstrates that many immune system components are

involved in the shift from Class1 malignant cells to Class2

malignant cells. The expression levels of these receptors and

genes also differed between the two Classes (Figures 14C, D).
Discussion

PCa is a heterogeneous disease not only in terms of clinical

features but also in terms of biological process, and the optimal

treatment differs from patient to patient depending on the stage

of the disease (45). Therefore, to improve the prognosis of

prostate cancer, all patients should undergo regular follow-up

to monitor the stage of the disease. However, the commonly

used three-tiered system for risk stratification (low-,

intermediate- and high-risk of recurrence) does not have a

satisfactory efficacy and reliability (46). A novel model to

predict the recurrence of PCa is of great importance.

Pyroptosis is a novel type of PCD, and many studies have

shown that pyroptosis has potential antitumor functions,

especially by affecting the tumor immune microenvironment

(19–23, 47). However, other studies showed that pyroptosis can

promote the development of cancer (48). The relationship

between pyroptosis and the prognosis of PCa is not clear.

Considering that PCa is accompanied by mutations that may

affect the process of pyroptosis and thus tumor development (49),

we aimed to identify different pyroptosis patterns in PCa samples

and construct a robust signature for predicting recurrence.

We screened pyroptosis-related genes in PCa samples and

Classified PCa patients into two Classes based on twelve

prognostic pyroptosis-related genes, with different RFS. We

further analyzed the DEGs between the two Classes and

constructed a prognostic gene signature. Two external

databases were used for validation. We demonstrated a

different immune microenvironment between the two Classes
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at the single-cell level. Importantly, the pyroptosis pattern may

shifts from Class1 to Class2, which has a worse prognosis.

In our study, twelve pyroptosis-related genes with

prognostic values were identified by univariate Cox regression

and a PPI network was constructed. Caspase-8 (encoded by

CASP8) is a member of the cysteine-aspartic acid protease

(caspase) family and plays a key role in PCD by switching

apoptosis, necroptosis and pyroptosis (50). Active caspase-8

induces GSDMD-mediated pyroptosis by cleaving GSDMD at

the same site as caspase-1 (51). In esophageal squamous cell

carcinoma, photodynamic therapy induces pyroptosis by

activating caspase-8, indicating caspase-8 as a new target for

esophageal squamous cell carcinoma (52). In our study, we

found a higher CASP8 expression in PCa patients at T3–T4

staging or with a higher Gleason score or a higher PSA value,

suggesting suppression of CASP8 may improve PCa prognosis.

BCL2 associated X (BAX), a Classic apoptosis regulator, has

been reported to mediate pyroptosis by binding the

mitochondrial outer membrane to execute apoptosis (53). A

study in 2021 demonstrated that BAX may be a novel target for

chemotherapy in colorectal cancer (54). Our results showed that

the HR of BAX was 2.8 and that chemotherapy targeting BAX

have the potential to be used in PCa patients. BCL2 Antagonist

Killer 1 (BAK1) also belongs to the BCL2 protein family. similar

to BAX, BAK1 has the ability to switch apoptosis to pyroptosis

(55) and can interact with the Tumor protein 53 (TP53) in

response to cell stress (56). TP53 is a tumor suppressor protein

that regulates a variety of biological processes such as apoptosis,

cell cycle, and DNA repair (57). In non-small-cell lung cancer,

p53-induced pyroptosis significantly suppressed tumor cell

proliferation and recurrence (58). While Tumor protein 63

(TP63) encodes a transcription factor of TP53 and plays a

crucial roles in tumorigenesis suppression (59), the HR of

TP53 and TP63 was 0.57 and 0.69, respectively, consistent

with previous studies. When the immune system is activated,

natural killer (NK) cells and cytotoxic T lymphocytes release

granzyme A (GzmA) to cleave Gasdermin-B (GSDMB), which is

a pore-forming protein that can trigger pyroptosis (60). Our

research showed that GSDMB expression increased markedly in

the PCa patients, indicating that GSDMB-dependent pyroptosis

may be one of the responses of the immune system to the

tumorigenesis of PCa. Glutathione peroxidase 4 (GPX4) protects

cells from oxidative damage by catalyzing the reduction of

organic hydroperoxides. Kang et al. found that the knockout

of GPX4 in myeloid lineage cells induces caspase-11-dependent

GSDMD cleavage and triggers macrophage pyroptosis in the

PLCG1-dependent pathway (61). The GO analysis enriched in

monooxygenase activity, suggesting that GPX4 may affect the

pyroptosis by activating enzymes related to oxidation. Charged

Multivesicular Body Protein (CHMP) family, including

CHMP4B, CHMP4C and CHMP6, are part of the endosomal

sorting complex required for transport (ESCRT). A study

published in 2020 shows that after pyroptosis, an ESCRT-
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mediated plasma membrane repair also occurs to avoid cell

death (62). In the current study, a higher expression of

CHMP4B, CHMP4C or CHMP6 increased the risk of

recurrence in PCa patients, suggesting that they may assist

PCa cells in escaping pyroptosis. Inhibitors of CHMP family

may be one of the possible therapeutic targets for PCa patients.

However, the specific molecular mechanisms by which the

proteins encoded by these pyroptosis-related genes affect the

prognosis of PCa should be further studied.

Several studies showed that genes associated with PCD can

predict the prognosis of PCa patients. An apoptosis-related gene

signature and ferroptosis-related gene signature had a

prognostic value in predicting RFS for PCa patients with an

AUC of 0.787 and 0.767, respectively (63, 64). The relationship

between different pyroptosis patterns and PCa prognosis

remains unclear. On the basis of the two Classes of PCa

patients identified by consensus clustering, we constructed a

pyroptosis-related prognostic model with an AUC of 0.852,

which had a better predictive performance compared with that

of other PCD prognostic models. PCa patients were distributed

into the high-risk group and the low-risk group according to the

median value of the risk score. We performed an external

validation using the ICGC-PRAD database.

The result of functional enrichment analysis at both bulk

RNA-seq level and single-cell level indicated the presence of

differences in the tumor immune microenvironment between

the two Classes, such as cytokine pathway, humoral immune

response and IL-17 signaling pathway. Programmed cell death

ligand 1 (PD-L1) inhibitors kill tumor cells by triggering

pyroptosis (65), while IL-17 promotes PD-L1 expression in

tumor cells by PD-1+ immune cell intratumor infiltration (66),

suggesting that IL-17 may be a potential target for enhancing the

performance of PD-L1 inhibitors by increasing pyroptosis of

tumor cells. We observed a higher infiltration of macrophages in

Class1, while it has been reported that macrophages can release

reactive oxygen species (ROS) and thus trigger pyroptosis (67).

The oxidation-related gene GPX4 could affect the prognosis of

PCa patients, suggesting the redox response may have an

interplay with pyroptosis in PCa. In addition, we found that

TNF is a ligand with high regulatory potential in the

development of malignant cells, and it is mainly secreted by

macrophages (68). The interplay between the cancer cell

pyroptosis and macrophages has yet to be elucidated.

This study has several limitations. First, our data were

collected from online databases such as TCGA and GEO.

Patients in public databases are heterogeneous in clinical

features such as treatments, Gleason score, and stage, which

may impair the accuracy of the signature. More real-world data,

especially ethnically diverse populations and metastatic prostate

cancer that collected prospectively with rigorous patient

stratification are needed to further validate the prognostic

value of this model. Second, experiments are needed to
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demonstrate the specific mechanism of pyroptosis in PCa,

especially how it affects the immune microenvironment. Third,

although the 10X Genomic platform has been widely used for

single-cell sequencing, it does not yield the full-length transcripts

and may lose some information. In addition, this model was

based only on different patterns of pyroptosis and excluded other

factors that may affect the prognosis of PCa.
Conclusion

We identified two pyroptosis patterns based on the prognostic

pyroptosis genes at both bulk RNA-seq level and single-cell level.

The DEGs between these two Classes were screened and we

constructed a novel prognostic gene signature. This signature

was validated by two external databases and was proven to be

an independent factor correlated with RFS of PCa patients.

Patients in the different Classes had a different immune

microenvironment. The technology of single-cell sequencing

offers a new perspective for understanding pyroptosis.
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