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Abstract: The synthesis in water of new sulfone derivatives under microwave irradiation is 

described. This eco-friendly process leads to the expected products in good yields by 

reaction of various substituted sulfinates (commercially available or obtained by reduction 

of the corresponding sulfonyl chlorides) with 4-chloromethyl-2-methyl-5-nitro-1,3-

thiazole. In order to evaluate the antiproliferative effect of these compounds, several sulfone 

derivatives are also dichlorinated on the Cα next to the sulfonyl group. An evaluation on 

different cancer cell lines reveals promising selective in vitro antiproliferative activity 

toward HepG2 human cell lines by dihydrogenated sulfones, suggesting further research 

should be to explore their anticancer potential in the treatment of liver cancer. 

Keywords: 5-nitrothiazole; sulfones; microwave irradiation; in vitro antiproliferative; 

HepG2 cell line; activity cellular specificity 
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1. Introduction 

Recent years have seen major advances in research and development concerning new small 

molecules whose antiproliferative activity appears promising for the treatment of cancer [1,2]. Among 

chemical compounds already developed as potential anticancer agents, some sulfones [3,4] such as 

celecoxib [5], and heterocyclic molecules such as thiazole derivatives [6,7], have recently been 

reported to display promising antiproliferative activity.  

Thiazoles are one of the most prevalent heterocyclic nuclei, among compounds displaying 

biological activities [8], such as β-lactams [9–11], urate-lowering drugs (febuxostat) [12], or 

antiparasitic agents [13–15]. Furthermore, sulfonylmethyl groups are well-known to be useful in 

synthetic methodologies and they can be used further for the preparation of various functionalized 

products. For example, the expected acidity of the C-Hα next to sulfonyl groups offers the opportunity 

to carry out various reactions at this position [16–18]. 

In continuation of our research program centered on the design and synthesis of novel molecules, 

we focused our work on the synthesis and the evaluation of some new heterocyclic compounds 

displaying diverse biological activities [19–24]. In this context, we decided to explore the 

antiproliferative potential of new sulfonyl derivatives in the 5-nitro-1,3-thiazole series. We report 

herein the synthesis of such molecules from the reaction in water of 4-chloromethyl-2-methyl-5-nitro-

1,3-thiazole (1) with various sulfinate anions under microwave irradiation. This is in continuation of 

our research program directed towards the study of electron transfer reactions in heterocyclic series [25,26] 

and microwave-assisted [27,28] eco-friendly processes [29,30]. The antiproliferative activity both of 

sulfones and of some α-dichlorinated sulfonyl derivatives was comparatively evaluated on the CHO 

and HepG2 cell lines, and results confirmed the promising antiproliferative effect of dihydrogenated 

sulfones towards the HepG2 cell line. 

2. Results and Discussion 

2.1. Chemistry 

The required starting material, 4-chloromethyl-2-methyl-5-nitro-1,3-thiazole (1), was prepared in 

62% overall yield by sequential condensation between 1,3-dichloroacetone with thioacetamide [31], 

cyclization using ZnCl2 in refluxing methanol, and nitration of 2-methyl-4-chloromethyl-1,3-thiazole 

hydrochloride [32] (Scheme 1). 

Scheme 1. Preparation of 4-chloromethyl-2-methyl-5-nitro-1,3-thiazole (1) [32]. 
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The synthesis of 2-methyl-5-nitro-4-phenylsulfonylmethyl-1,3-thiazole (2a) by reaction of 1 with 

sodium phenylsulfinate in anhydrous methanol, under SRN1 conditions [33,34] (inert atmosphere (Ar) 

and 60 W lamp irradiation), at room temperature (rt) for 24 h [32] has already been described. Based on 

a number of reports suggesting that chemical reactions using water as a solvent in conjunction with 

microwave heating [35–37] were more eco-friendly, we adapted this alternative method to the 

synthesis of 2a. Water is an attractive alternative to traditional organic solvents due to its practical 

advantages: it is inexpensive, non-flammable, non-toxic, and environmentally sustainable as it 

removes the problem of pollution by organic solvents. Water has also proven to be an excellent solvent 

for microwave-promoted synthesis [38–40]. Furthermore, as well as being energy efficient, 

microwaves can also enhance reaction rates, and in many cases, improve yields [41–44]. 

Based on previous results for reduction reaction using microwave promotion, an initial irradiation 

of 500 W at a temperature of 100 °C was applied [45]. We subsequently tried reducing the irradiation 

power, finally establishing that the optimal experimental conditions to carry out the reactions under 

microwave irradiation were 200 W and a temperature held at 100 °C until the completion of the 

reaction (Scheme 2). In order to evaluate the efficiency of these latter experimental conditions versus 

classical heating as previously described, we compared the synthesis of 2-methyl-5-nitro-4-

phenylsulfonylmethyl-1,3-thiazole (2a) by the two methods (classical heating in methanol [32] versus 

microwave irradiation in water). As expected, it proved more convenient to carry out the reaction in 

water and using microwave technology (Table 1 entry 1). Indeed, it took only 30 min to complete the 

reaction with an excellent yield (96%) under these conditions, while the classical heating conditions 

required a reaction time of 24 h to synthesize 2a in a lower yield (84%). The reaction rate was thus, 

accelerated up to 48 times, and led to higher yields. 

Scheme 2. Preparation of sulfones 2a, 2b, 2c by reaction of the corresponding 

commercialized sulfinate salts with 4-chloromethyl-2-methyl-5-nitro-1,3-thiazole (1). 
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2a Ar- = C6H5- (96%)
2b Ar- = p-CH3-C6H4- (86%)
2c Ar- = p-Cl-C6H4- (76%)  

Following these excellent first results, we extended the study to p-tosyl and p-chlorophenyl 

sulfinate anions, with a view to exploring the chemical and biological influence of the electron-

donating or -withdrawing character of the substrates. These reagents led to 2-methyl-5-nitro-4-

(tosylmethyl)-1,3-thiazole (2b) and 4-[(4-chlorophenylsulfonyl)methyl]-2-methyl-5-nitro-1,3-thiazole 

(2c), respectively (Table 1 entries 2 and 3). Similar good results were observed, which confirmed that 

the microwave-assisted method led to a more rapid and efficient synthesis of original sulfones. 
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Table 1. Classical heating method versus microwave-assisted synthesis of sulfones 2a to 2c. 

Entr
y 

Ar- Product 
Product 
number 

Classical heating 
conditions a 

Microwave irradiation 
conditions b 

Time (h) Yield (%) Time (h) Yield (%) 

1 
C6H

5- 
N

S CH3O2N

S
O

O

 

2a 24 
84 

[32] 
0.5 96 

2 

p-

CH3-

C6H4

- 

N

S CO2N

S
O

O
H3C

 

2

b

2

4

5

7 

0

.

5 

8

6

3 

p-

Cl-

C6H4

- 

N

S CHO2N

S
O

O
Cl

 

2c 24 69 0.5 76 

 

a This method was performed using 1 equivalent (equiv.) of 4-chloromethyl-2-methyl-5-nitro-1,3-thiazole (1) 

and 2 equiv. of sodium arylsulfinate derivative in anhydrous methanol (10 mL), under inert atmosphere (Ar) 

and 60 W lamp irradiation, at rt. b This method was performed using 1 equiv. of 4-chloromethyl-2-methyl-5-

nitro-1,3-thiazole (1) and 2 equiv. of sodium arylsulfinate derivative in water (20 mL). An initial microwave 

irradiation of 200 W was used, the temperature being ramped up from r.t. to 100 °C and then held at 100 °C 

until the end of the reaction. 

Next, to further diversify the chemical substituents on the sulfonyl group and to evaluate their 

influence on the antiproliferative activity of the corresponding products, these microwave-assisted 

operating conditions were used to synthesize new sulfonyl derivatives of 1 by reactions with various 

substituted sulfinate substrates. As such sulfinate salts are not commercially available, we performed 

the sodium-mediated reduction of sulfonyl chloride derivatives into the corresponding sulfinate anions, 

in aqueous conditions [46,47] and under microwave irradiation. Then, we investigated the above 

method using a mixture of sodium sulfite, sodium bicarbonate and sulfonyl chloride derivatives [48] 

and adapted it to the microwave methodology. Thus, the reduction of sulfonyl chloride derivatives was 

conducted with 3.4 equiv. of Na2SO3, 3.4 equiv. of NaHCO3, and 1 equiv. of the sulfonyl chloride 

derivative, in water at 100 °C, under microwave irradiation for 0.42 h. The compound 1 was directly 

added to the crude mixture, which was stirred for 0.5 h under the above conditions (MW 200 W, 100 °C) 

to give the corresponding sulfones 2d to 2l (Scheme 3) in moderate to good yields in a one-pot 

protocol (Table 2).  
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Scheme 3. Preparation of sulfones 2d to 2l. 
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Table 2. Microwave mediated preparation of several sulfones derivatives of  

4-chloromethyl-2-methyl-5-nitro-1,3-thiazole (1). 
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Table 2. Cont. 

R- Product Product number Yield (%) 

2-bromothiophenyl- N

S CH3O2N

S
O

OSBr

 

2k 58 

2-naphthyl- N

S CH3O2N

S
O

O

 

2l 90 

All the reactions were performed using 2 equiv. of sulfonyl chloride, 3.4 equiv. of sodium sulfite, 3.4 equiv. 

of sodium carbonate in water (30 mL). An initial microwave irradiation of 200 W was used, the temperature 

being ramped up from r.t. to 100 °C, where it was held for 0.42 h. 1 equiv. of 4-chloromethyl-2-methyl-5-

nitro-1,3-thiazole (1) was then added to the crude mixture, which was subsequently heated for 0.5 h. 

To assess the importance of the methyl group next to sulfonyl for the biological activity, we then 

evaluated a group of α-dichlorinated sulfonyl derivatives 3a to 3e. These compounds were prepared by 

reaction of sulfonyl derivatives with hypochlorite-based bleach (2.6% active chlorine) under lower 

microwave irradiation conditions (75 W, 40 °C) [49] (Scheme 4). Dichlorinated analogs were obtained 

in good yields (Table 3).  

Scheme 4. Preparation of dichlorinated sulfones 3a to 3e. 
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Table 3. Microwave-mediated preparation of dichlorinated sulfone derivatives. 
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Table 3. Cont. 

R- Product Product number Yield (%) 

p-Br-C6H4- N

S CH3O2N

Cl

S Cl

O

O

Br

 

3d 79 

p-F-C6H4- N

S CH3O2N

Cl

S Cl

O

O

F

 

3e 88 

All the reactions were performed using 1 equiv. of sulfonyl derivative (2a to 2f) in 10 mL of sodium 

hypochlorite. A microwave irradiation of 75 W was used, the temperature being ramped up from r.t. to 40 °C, 

where the mixture was then held for 1 to 3.75 h.  

The structure of compound 3c was unambiguously confirmed by X-ray structure analysis (Figure 1) 

(CCDC 908240). The other structures were assigned by analogy and spectral comparison. 

Figure 1. X-Ray structure of compound 3c. 

 

2.2. In Vitro Biological Evaluation 

The antiproliferative activity of the synthesized compounds was evaluated against two different 

cancer cell lines, CHO and HepG2, employing the MTT method [50] and doxorubicin as a reference 

drug. The cytotoxic activity in vitro was expressed as CC50 (µM), the concentration of compound that 

inhibits proliferation of cells by 50% as compared to untreated cells. The results of substance screening 

are summarized in Table 4. 

All dihydrogenated sulfonyl derivatives displayed substantial antiproliferative activity towards 

HepG2 cells (7.7 µM ≤ HepG2 CC50 ≤ 25.6 µM) compared with doxorubicin used as reference drug 

(HepG2 CC50 = 0.2 µM), except compounds 2i and 2j for which no activity was observed on either of 

the cell lines. These data show that neither an elongation of the carbon chain at the p-position of the phenyl 

substituent nor an alkyl substituent on the sulfonyl group appears to favour the antiproliferative effects.  
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Table 4. Antiproliferative activity of compounds 2a to 3e. 

Product Number 
Cancer cell toxicity a (µM) 

CHO CC50
 HepG2 CC50

 

2a 322.9 (± 4.66) 24.6 (± 0.78) 
2b 237.3 (± 5.55) 7.7 (± 1.42) 
2c >62.5 c 13.4 (± 1.47) 
2d >500 c 11.7 (± 2.09) 
2e 229.3 (± 4.02) 19.3 (± 1.21) 
2f 321.1 (± 3.23) 23.6 (± 0.58) 
2g 138.6 (± 2.64) 25.6 (± 2.13) 
2h 136.8 (± 4.26) 20.6 (± 0.74) 
2i >500 c 238.9 (± 2.27) 
2j >250 c >250 c 

2k 47.3 (± 2.28) 13.8 (± 1.07) 
2l 106.2 (± 4.90) 8.5 (± 1.52) 
3a 2.5 (± 0.23) 1.2 (± 0.09) 
3b 1.2 (± 0.11) 1.0 (± 0.24) 
3c 1.4 (± 0.06) 1.1 (± 0.17) 
3d 1.3 (± 0.04) 1.2 (± 0.22) 
3e 1.3 (± 0.04) 1.2 (± 0.34) 

Doxorubicin b 0.6 0.2 
a CC50 (µM) indicates the compound concentration that inhibits the proliferation of cells by 50% as compared 

to control untreated cells. The values are means ± SD of three independent experiments. b Doxorubicin was 

used as reference drug compound for cell toxicity. c No toxicity at the highest tested concentration. 

Furthermore, this series was generally inactive on CHO cells, with CC50 values of between 47.3 and 

≥500 µM, compared with doxorubicin (CHO CC50 = 0.6 µM). HepG2 is a commonly used human-derived 

hepatocarcinoma cell line expressing many of the hepatocyte-specific metabolic enzymes. The aim of 

this assay using HepG2 in addition to CHO cells was to evaluate the impact of metabolic activation of 

the tested compounds on cell viability [51]. Our results indicate that dihydrogenated sulfonyl 

derivatives, apart from 2i and 2j, need to be modified by a metabolic pathway to offer promising 

antiproliferative activity. Compounds 2b and 2d in particular displayed an antiproliferative effect 31 

and 43 times higher respectively toward the HepG2 than toward the CHO cell line, which confirmed 

their high specificity for human liver tumor cells.  

Dichlorinated sulfones 3a to 3e were much more cytotoxic toward both the cell lines  

(1.0 µM ≤ CC50 ≤ 2.5 µM) than their dihydrogenated analogs, compared with doxorubicin used as 

reference of cellular toxicity. This result highlights the lack of cellular specificity of dichlorinated 

derivatives, confirming that the methyl group next to sulfonyl plays a key role in the antiproliferative 

activity of this series on human liver tumor cells. 
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3. Experimental  

3.1. General 

Melting points were determined on a Büchi B-540 and are uncorrected. Elemental analyses were 

carried out on an Interscience Flash EA 1112 series (Thermo Finnigan, San Jose, CA, USA) elemental 

analyzer at the Spectropole, Faculté des Sciences et Techniques de Saint-Jérome. Both 1H- and 13C-NMR 

spectra were determined on a Bruker Avance 200 spectrometer (operating at 200 MHz for 1H and  

50 MHz for 13C). 1H and 13C-NMR shifts (δ) were reported in parts per million (ppm) with respect  

to CDCl3 7.26 ppm for 1H and 77.0 ppm for 13C and DMSO-d6 2.50 for 1H and 39.7 ppm for 13C. 

Multiplicities were represented by s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). 

Coupling constants (J) are in Hertz (Hz). The following adsorbent was used for column 

chromatography: silica gel 60 (Merck, Darmstadt, Germany, 230–400 mesh). Thin-layer 

chromatography was performed with Merck 60F-254 silica gel (0.25 mm layer thickness) in an 

appropriate solvent. All the reactions involving microwave instrumentation used the ETHOS Synth 

Lab station multimode reactor (Ethos Start, Milestone Inc., Rockford, IL, USA). The multimode 

microwave had a 25 twin magnetron (2 × 800 W, 2.45 GHz) with a maximum delivered power of 1,000 W 

in 10 W increments (pulsed irradiation). The multimode microwave featured a built-in magnetic stirrer 

(Teflon-coated stirring bar), direct temperature control of the reaction mixture with the aid of IR30 

sensor on the reactor wall and software that enabled on line temperature control by regulation of 

microwave power output. 

3.2. General Procedure for the Reaction of Compound 1 and Sodium Arylsulfinates to Synthesize 

Products 2a to 2c and Using Classical Heating Conditions 

The corresponding sodium arylsulfinate (2 equiv.) was added to a solution of 1 (1 g, 5.2 mmol) in 

anhydrous methanol (10 mL). The reaction mixture was stirred at r.t., for 24 h, under an inert 

atmosphere (Ar) and 60 W lamp irradiation. After removal of the reaction mixture under reduced 

pressure, purification by chromatography on silica gel, elution with ethyl acetate and recrystallization from 

isopropanol (i-PrOH), the corresponding 4-arylsulfonylmethyl-2-methyl-5-nitro-1,3-thiazole was obtained. 

3.3. General Procedure for the Reaction of Compound 1 and Sodium Arylsulfinates to Synthesize 

Products 2a to 2c and Using Microwave Irradiation 

The corresponding sodium arylsulfinate (2 equiv.) was added to a solution of 1 (1 g, 5.2 mmol) in 

water (20 mL). The reaction mixture was irradiated in a microwave oven (200 W, 100 °C, 0.5 h).  

A precipitate appeared and was filtered after cooling, washed with water (3 × 20 mL) and dried in a 

vacuum drying oven. Recrystallization from i-PrOH gave the corresponding sulfonyl derivative. 

2-Methyl-5-nitro-4-(tosylmethyl)-1,3-thiazole (2b): Yellow solid; m.p. 179 °C (i-PrOH); 1H-NMR 

(CDCl3) δ: 2.43 (s, 3H, CH3), 2.70 (s, 3H, CH3), 5.02 (s, 2H, CH2), 7.31 (d, J = 7.9 Hz, 2H, 2 × CH), 

7.68 (d, J = 7.9 Hz, 2H, 2 × CH); 13C-NMR (CDCl3) δ: 20.4 (CH3), 21.7 (CH3), 56.7 (CH2), 128.3 (2 × CH), 

129.9 (2 × CH), 135.8 (C), 143.3 (C), 145.4 (C), 169.3 (C), C-NO2 not visible under these conditions; 

Anal. Calcd for C12H12N2O4S2: C, 46.14; H, 3.87; N, 8.97. Found: C, 46.41; H, 3.89; N, 9.07. 
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4-[(4-Chlorophenylsulfonyl)methyl]-2-methyl-5-nitro-1,3-thiazole (2c): Yellow solid; m.p. 180 °C  

(i-PrOH); 1H-NMR (CDCl3) δ: 2.70 (s, 3H, CH3), 5.04 (s, 2H, CH2), 7.51 (d, J = 8.8 Hz, 2H, 2 × CH), 

7.76 (d, J = 8.8 Hz, 2H, 2 × CH); 13C-NMR (CDCl3) δ: 20.4 (CH3), 56.7 (CH2), 129.6 (2 × CH), 129.9 

(2 × CH), 137.3 (C), 141.2 (C), 142.8 (C), 169.5 (C), C-NO2 not visible under these conditions; Anal. 

Calcd for C11H9ClN2O4S2: C, 39.70; H, 2.73; N, 8.42. Found: C, 39.95; H, 2.69; N, 8.55. 

3.4. General Procedure for the Reaction of Compound 1 and Variously Substituted Sulfinate Salts to 

Synthesize Products 2d to 2l and Using Microwave Irradiation 

Sodium sulfite (3.4 equiv.) and sodium bicarbonate (3.4 equiv.) were added to a solution of sulfonyl 

chloride (600 mg, 1 equiv.) in water (30 mL). The reaction mixture was irradiated in a microwave 

oven and reaction was carried out under irradiation at 100 °C at 200 W for 0.42 h. Then, compound 1 

(300 mg, 1.56 mmol) was added in situ. The reaction mixture was irradiated for 0.5 h under the same 

conditions. After cooling down, the mixture was then extracted with chloroform (5 × 15 mL). The 

organic layers were dried over anhydrous sodium sulfate and removed under vacuum. Purification by 

column chromatography on silica gel, eluting with the appropriate solvent (2d and 2e: CHCl3/EtOAc, 

80/20; 2f, 2g, 2h, 2l: CHCl3/Et2O, 80/20; 2j: EtOAc; 2k: CHCl3/petroleum ether/EtOAc, 50/25/25) and 

recrystallization from i-PrOH gave the corresponding target product. 

4-[(4-Bromophenylsulfonyl)methyl]-2-methyl-5-nitro-1,3-thiazole (2d): Yellow solid; m.p. 184 °C  

(i-PrOH); 1H-NMR (DMSO-d6) δ: 2.65 (s, 3H, CH3), 5.23 (s, 2H, CH2), 7.68 (d, J = 8.7 Hz, 2H, 2 × CH), 

7.87 (d, J = 8.7 Hz, 2H, 2 × CH); 13C-NMR (DMSO-d6) δ: 20.1 (CH3), 56.2 (CH2), 128.8 (C), 130.3  

(2 × CH), 132.6 (2 × CH), 138.0 (C), 143.3 (C), 170.4 (C), C-NO2 not visible under these conditions; 

Anal. Calcd for C11H9BrN2O4S2: C, 35.02; H, 2.40; N, 7.43. Found: C, 35.05; H, 2.34; N, 7.40. 

4-[(4-Fluorophenylsulfonyl)methyl]-2-methyl-5-nitro-1,3-thiazole (2e): Yellow solid; m.p. 183 °C  

(i-PrOH); 1H-NMR (DMSO-d6) δ: 2.65 (s, 3H, CH3), 5.22 (s, 2H, CH2), 7.48 (m, 2H, 2 × CH), 7.83 

(m, 2H, 2 × CH); 13C-NMR (DMSO-d6) δ: 20.1 (CH3), 56.3 (CH2), 116.8 (d, J = 23.5 Hz, 2 × CH), 

131.6 (d, J = 7.0 Hz, 2 × CH), 135.1 (d, J = 4.7 Hz, C), 143.5 (C), 165.5 (d, J = 253.8 Hz, C-F), 170.4 

(C), C-NO2 not visible under these conditions; Anal. Calcd for C11H9FN2O4S2: C, 41.77; H, 2.87; N, 

8.86. Found: C, 41.75; H, 2.83; N, 8.85. 

4-[(3-Fluorophenylsulfonyl)methyl]-2-methyl-5-nitro-1,3-thiazole (2f): Yellow solid; m.p. 154 °C  

(i-PrOH); 1H-NMR (DMSO-d6) δ: 2.64 (s, 3H, CH3), 5.27 (s, 2H, CH2), 7.57–7.69 (m, 4H, 4 × CH); 
13C-NMR (DMSO-d6) δ: 20.1 (CH3), 56.0 (CH2), 115.3 (d, J = 24.3 Hz, CH), 121.7 (d, J = 20.3 Hz, 

CH), 124.6 (d, J = 3.4 Hz, CH), 132.0 (d, J = 8.0 Hz, CH), 140.8 (d, J = 7.0 Hz, C), 143.2 (C), 161.8 

(d, J = 248.8 Hz, C-F), 170.4 (C), C-NO2 not visible under these conditions; Anal. Calcd for 

C11H9FN2O4S2: C, 41.77; H, 2.87; N, 8.86. Found: C, 41.36; H, 2.73; N, 8.67. 

2-Methyl-5-nitro-4-{[3-(trifluoromethyl)phenylsulfonyl]methyl}-1,3-thiazole (2g): White solid; m.p. 

121 °C (i-PrOH); 1H-NMR (DMSO-d6) δ: 2.61 (s, 3H, CH3), 5.33 (s, 2H, CH2), 7.86–8.32 (m, 4H,  

4 × CH); 13C-NMR (DMSO-d6) δ: 20.0 (CH3), 56.0 (CH2), 123.4 (q, J = 273.0 Hz, CF3), 125.1 (q,  

J = 3.9 Hz, CH), 130.0 (q, J = 33.1 Hz, C-CF3), 131.2 (CH), 131.3 (q, J = 3.5 Hz, CH), 132.5 (CH), 
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139.9 (C), 143.2 (C), 146.6 (C), 170.5 (C); Anal. Calcd for C12H9F3N2O4S2: C, 39.34; H, 2.48; N, 7.65. 

Found: C, 39.40; H, 2.45; N, 7.54. 

4-[(4-Methoxyphenylsulfonyl)methyl]-2-methyl-5-nitro-1,3-thiazole (2h): Brown solid; m.p. 154 °C  

(i-PrOH); 1H-NMR (DMSO-d6) δ: 2.66 (s, 3H, CH3), 3.85 (s, 3H, CH3), 5.12 (s, 2H, CH2), 7.12 (d,  

J = 7.2 Hz, 2H, 2 × CH), 7.64 (d, J = 7.2 Hz, 2H, 2 × CH); 13C-NMR (DMSO-d6) δ: 20.1 (CH3), 56.0 

(CH3), 56.6 (CH2), 114.7 (2 × CH), 130.2 (C), 130.5 (2 × CH), 143.7 (C), 143.9 (C), 163.8 (C), 170.2 

(C); m/z (EI): [M+H]+, found  329.0258. C12H12N2O5S2 requires 329.0260. 

4-[(4-Ethylphenylsulfonyl)methyl]-2-methyl-5-nitro-1,3-thiazole (2i): White solid; m.p. 162 °C  

(i-PrOH); 1H-NMR (DMSO-d6) δ: 1.19 (t, J = 7.5 Hz, 3H, CH3), 2.65 (s, 3H, CH3), 2.70 (q, J = 7.5 Hz, 

2H, CH2), 5.15 (s, 2H, CH2), 7.46 (d, J = 8.3 Hz, 2H, 2 × CH), 7.64 (d, J = 8.3 Hz, 2H, 2 × CH);  
13C-NMR (DMSO-d6) δ: 15.3 (CH3), 20.1 (CH3), 28.3 (CH2), 56.4 (CH2), 128.3 (2 × CH), 128.9 (2 × CH), 

136.1 (C), 143.7 (C), 151.2 (C), 170.2 (C), C-NO2 not visible under these conditions; m/z (EI): 

[M+H]+, found  327.0468. C13H14N2O4S2 requires 327.0468. 

2-Methyl-4-(methylsulfonylmethyl)-5-nitro-1,3-thiazole (2j): Brown solid; m.p. 127 °C (i-PrOH);  
1H-NMR (DMSO-d6) δ: 2.75 (s, 3H, CH3), 3.13 (s, 3H, CH3), 5.07 (s, 2H, CH2); 

13C-NMR (DMSO-d6) 

δ: 20.2 (CH3), 41.7 (CH3), 54.6 (CH2), 144.4 (C), 170.7 (C), C-NO2 not visible under these conditions; 

m/z (EI): [M+Na]+, found  258.9815. C6H8N2O4S2 requires 258.9818. 

4-[(5-Bromothiophen-2-ylsulfonyl)methyl]-2-methyl-5-nitro-1,3-thiazole (2k): Yellow solid; m.p. 167 °C 

(i-PrOH); 1H-NMR (DMSO-d6) δ: 2.68 (s, 3H, CH3), 5.31 (s, 2H, CH2), 7.45 (d, J = 3.9 Hz, 1H, CH), 

7.56 (d, J = 3.9 Hz, 1H, CH); 13C-NMR (DMSO-d6) δ: 20.1 (CH3), 57.3 (CH2), 122.6 (C), 132.4 (CH), 

136.5 (CH), 140.0 (C), 143.1 (C), 146.6 (C), 170.5 (C); Anal. Calcd for C9H7BrN2O4S2: C, 28.20; H, 

1.84; N, 7.31. Found: C, 27.82; H, 1.76; N, 7.08. 

2-Methyl-4-[(naphtalen-2-ylsulfonyl)methyl]-5-nitro-1,3-thiazole (2l): Yellow solid; m.p. 163 °C  

(i-PrOH); 1H-NMR (DMSO-d6) δ: 2.55 (s, 3H, CH3), 5.28 (s, 2H, CH2), 7.67–7.74 (m, 3H, 3 × CH), 

8.09–8.17 (m, 2H, 2 × CH), 8.37 (d, J = 7.7 Hz, 1H, CH), 8.46 (d, J = 7.7 Hz, 1H, CH); 13C-NMR 

(DMSO-d6) δ: 20.0 (CH3), 56.5 (CH2), 123.4 (CH), 124.9 (CH), 127.2 (CH), 128.6 (CH), 128.8 (CH), 

129.4 (CH), 131.1 (CH), 133.8 (CH), 136.1 (C), 143.3 (C), 146.5 (C), 170.2 (C), C-NO2 not visible 

under these conditions; Anal. Calcd for C15H12N2O4S2: C, 51.71; H, 3.47; N, 8.04. Found: C, 51.64; H, 

3.48; N, 7.94. 

3.5. General Procedure for the Dichlorination of Compounds 2a to 2e to Synthesize Products 3a to 3e 

Using Microwave Irradiation 

The corresponding sulfone (1 equiv.) was added to a solution of hypochlorite-based bleach (2.6% 

active chlorine, 10 mL). The reaction mixture was irradiated in a microwave oven and reaction was 

carried out at 40 °C at 75 W from 1h to 3.75 h. After being cooled down, the mixture was then 

extracted with chloroform (3 × 20 mL). The organic layers were dried over anhydrous sodium sulfate 

and removed under vacuum. Purification by column chromatography eluting with CHCl3 and 

recrystallization from i-PrOH gave the corresponding required product. 
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4-[Dichloro(phenylsulfonyl)methyl]-2-methyl-5-nitro-1,3-thiazole (3a): Yellow solid; m.p. 169 °C  

(i-PrOH); 1H-NMR (CDCl3) δ: 2.76 (s, 3H, CH3), 7.57–7.80 (m, 3H, 3 × CH), 8.14–8.18 (m, 2H, 2 × CH); 
13C-NMR (CDCl3) δ: 20.0 (CH3), 29.6 (C), 91.4 (C), 128.6 (2 × CH), 133.0 (2 × CH), 133.1 (C), 135.3 

(CH), 143.2 (C), 165.5 (C); Anal. Calcd for C11H8Cl2N2O4S2: C, 35.98; H, 2.20; N, 7.63. Found: C, 

36.04; H, 2.11; N, 7.39. 

4-[Dichloro(tosyl)methyl]-2-methyl-5-nitro-1,3-thiazole (3b): Yellow solid; m.p. 165 °C (i-PrOH);  
1H-NMR (CDCl3) δ: 2.49 (s, 3H, CH3), 2.75 (s, 3H, CH3), 7.39 (d, J = 8.2 Hz, 2H, 2 × CH), 8.03 (d,  

J = 8.2 Hz, 2H, 2 × CH); 13C-NMR (CDCl3) δ: 20.0 (CH3), 21.8 (CH3), 129.3 (2 × CH), 129.9 (C), 

133.1 (2 × CH), 143.4 (C), 146.9 (C), 156.4 (C), 165.3 (C); C-NO2 not visible under these conditions; 

m/z (EI): [M+H]+, found  380.9532. C12H10Cl2N2O4S2 requires 380.9532. 

4-[Dichloro(4-chlorophenylsulfonyl)methyl]-2-methyl-5-nitro-1,3-thiazole (3c): Yellow solid; m.p. 

165 °C (i-PrOH); 1H-NMR (CDCl3) δ: 2.75 (s, 3H, CH3), 7.57 (d, J = 8.7 Hz, 2H, 2 × CH), 8.10 (d,  

J = 8.7 Hz, 2H, 2 × CH); 13C-NMR (CDCl3) δ: 20.0 (CH3), 91.4 (C), 129.0 (2 × CH), 131.7 (C), 134.4 

(2 × CH), 142.6 (C), 143.3 (C), 165.7 (C); C-NO2 not visible under these conditions; Anal. Calcd for 

C11H7Cl3N2O4S2: C, 32.89; H, 1.76; N, 6.97. Found: C, 33.12; H, 1.70; N, 7.20. 

C11H7N2O4S2, colorless prisms (0.25 × 0.15 × 0.1 mm3), MW = 401.66, orthorhombic, space group 

P21/c (T = 293 K), a = 15.6219 (1) Å, b = 9.6399 (3) Å, c = 20.5410 (5) Å, α = 90°, β = 90°, γ = 90°; 

V = 3093.34 (12) Å3, Z = 8, µ = 0.879 mm−1, F(000) = 1616, index ranges 0 ≤ h ≤ 22, 0 ≤ k ≤ 13,  

−29 ≤ l ≤ 0; θ range = 1.98–31.00°, 199 variables and 0 restraints, were defined for 4807 independent 

reflections with I ≥ 2σ(I) to R1 = 0.0600, wR2 = 0.1256, GooF = 1.052. CCDC 908240 contains the 

supplementary crystallographic data for this paper. These data can be obtained free of charge at 

www.ccdc.cam.ac.uk/data_request/cif of from the Cambridge Crystallographic Data Centre, 12, Union 

Road, Cambridge CB2 1EZ, UK; Fax: + 44 (1223) 336033; E-Mail: deposit@ccdc.cam.ac.uk. 

4-[(4-Bromophenylsulfonyl)dichloromethyl]-2-methyl-5-nitro-1,3-thiazole (3d): Yellow solid; m.p. 

165 °C (i-PrOH); 1H-NMR (CDCl3) δ: 2.76 (s, 3H, CH3), 7.75 (d, J = 8.6 Hz, 2H, 2 × CH), 8.03 (d,  

J = 8.6 Hz, 2H, 2 × CH); 13C-NMR (CDCl3) δ: 20.1 (CH3), 91.3 (C), 131.3 (C), 132.0 (2 × CH), 132.2 

(C), 134.4 (2 × CH), 143.3 (C), 165.7 (C); C-NO2 not visible under these conditions; Anal. Calcd for 

C11H7BrCl2N2O4S2: C, 29.61; H, 1.58; N, 6.28. Found: C, 29.27; H, 1.51; N, 5.97. 

4-[Dichloro(4-fluorophenylsulfonyl)methyl]-2-methyl-5-nitro-1,3-thiazole (3e): Yellow solid; m.p. 145 °C 

(i-PrOH); 1H-NMR (CDCl3) δ: 2.76 (s, 3H, CH3), 7.26–7.32 (m, 2H, 2 × CH), 8.17–8.23 (m, 2H, 2 × CH); 
13C-NMR (CDCl3) δ: 20.1 (CH3), 91.4 (C), 116.1 (d, J = 23.4 Hz, 2 × CH), 129.0 (d, J = 3.2 Hz, C-F), 

136.1 (d, J = 10.3 Hz, 2 × CH), 143.3 (C), 164.5 (C), 165.6 (C), 169.6 (C); m/z (EI): [M+H]+, found  

384.9280. C11H7FCl2N2O4S2 requires 384.9281. 
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3.6. In Vitro Biological Evaluation 

In Vitro Cytotoxicity Evaluation on CHO and HepG2 Cell Lines 

CHO and HepG2 cell lines were maintained at 37 °C, 6% CO2, 14% O2, 80% N2, with 90% 

humidity in RPMI supplemented with 10% fœtal bovine serum, 1% L-glutamine (200 mM) and 

penicillin (100 U/mL) / streptomycin (100 µg/mL) (complete RPMI medium).  

In vitro cytotoxicity evaluation on CHO and HepG2 cell lines was performed according to the 

method described by Mosmann [50] with slight modifications. Briefly, 5 × 103 cells in 100 µL of 

culture medium (RPMI + 10% CO2) were inoculated into each well of 96-well plates and incubated at 

37 °C in a humidified 6% CO2, 14% O2, 80% N2 atmosphere. After 24 h incubation, 100 µL of 

medium with various product concentrations was added and the plates were incubated from 24 h 

(CHO) to 72 h (HepG2). Duplicate assays were performed for each sample. At the end of the treatment 

and incubation, the medium was aspirated from the wells and 10 µL yellow MTT (3-(4,5-dimethyl-2-

thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) solution (5 mg MTT/mL in PBS) was added to each 

well with 100 µL of medium without fœtal bovine serum. Cells were incubated for 2 h at 37 °C to 

allow MTT oxidation by mitochondrial dehydrogenase in the viable cells. After 2 h, the MTT solution 

was aspirated and DMSO (100 µL) was added to each well to dissolve the resulting blue formazan 

crystals. Plates were then shaken vigorously (300 rpm) for a few minutes. The absorbance was 

measured at 570 nm with 630 nm as reference wavelength, using a microplate spectrophotometer. 

DMSO was used as blank and doxorubicin as positive control.  

Cell viability was calculated as percentage of control (cells incubated without compound). The 50% 

cytotoxic concentrations (CHO CC50 and HepG2 CC50) were determined by non-linear regression 

analysis processed on dose-response curves, using the Table Curve software 2D v.5.0. CC50 values 

represent the mean value calculated from three independent experiments. 

4. Conclusions 

We have developed an efficient, rapid and eco-friendly microwave-based method for synthesizing 

4-alkyl- and 4-arylsulfonylmethyl-2-methyl-5-nitro-1,3-thiazoles by the reaction of 4-chloromethyl-2-

methyl-5-nitro-1,3-thiazole (1) with various substituted sodium sulfinates, either commercially 

available or obtained from sulfonyl chlorides previously reduced by a sodium-mediated reaction in 

aqueous medium.  

Biological evaluation of these synthesized compounds revealed the promising antiproliferative 

activity toward HepG2 cell line of most of the dihydrogenated sulfonyl derivatives after metabolic 

activation. Their dichlorinated analogs were synthesized using hypochlorite-based bleach (2.6% active 

chlorine) under microwave irradiation. Biological results showed that these compounds were much 

more cytotoxic toward both cell lines, showing their lack of cellular specificity and confirming that the 

methyl group next to sulfonyle played a key role in the antiproliferative activity of this series on 

human liver tumor cells.  

These promising results suggest that further research should be done on 4-arylsulfonylmethyl-2-

methyl-5-nitro-1,3-thiazoles as potential anticancer agents in the treatment of liver cancer. 
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