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Clustering by measuring local direction
centrality for data with heterogeneous
density and weak connectivity

Dehua Peng 1,2,3,4, Zhipeng Gui 2,3,4 , Dehe Wang 5,6, Yuncheng Ma2,3,
Zichen Huang2,3, Yu Zhou 5,6 & Huayi Wu1,3,4

Clustering is a powerful machine learning method for discovering similar
patterns according to the proximity of elements in feature space. It is widely
used in computer science, bioscience, geoscience, and economics. Although
the state-of-the-art partition-based and connectivity-based clusteringmethods
have been developed, weak connectivity and heterogeneous density in data
impede their effectiveness. In this work, we propose a boundary-seeking
Clustering algorithm using the local Direction Centrality (CDC). It adopts a
density-independent metric based on the distribution of K-nearest neighbors
(KNNs) to distinguish between internal and boundary points. The boundary
points generate enclosed cages to bind the connections of internal points,
thereby preventing cross-cluster connections and separating weakly-
connected clusters. We demonstrate the validity of CDC by detecting complex
structured clusters in challenging synthetic datasets, identifying cell types
from single-cell RNA sequencing (scRNA-seq) and mass cytometry (CyTOF)
data, recognizing speakers on voice corpuses, and testifying on various types
of real-world benchmarks.

Heterogeneous density and weak connectivity in point distributions
are challenging in cluster analysis. As a powerful machine learning
method, clustering explores similar patterns lurking in data1. It aims to
find an optimized partition to group independent points to clusters by
maximizing the intra-cluster similarity and the inter-cluster difference.
Identification of arbitrary shapes, adaptability to the high dimension-
ality and elimination of noisy instances are universal problems that
have been studied extensively in cluster analysis. However, the het-
erogeneous density and weak connectivity also affect the clustering
quality significantly, and should receive more attention. Hetero-
geneous density means that a cluster with uneven density tends to be
separated into parts and the sparse clusters are easy to be mis-
identified as noise, while weak connectivity causes nearby clusters
difficult to separate. Although numerous clustering techniques based

on diverse principles have been developed2, it is still insufficient to
tackle abovementioned challenges effectively using the proximity of
physical distance or density alone.

Partition-based and connectivity-based clustering are two com-
monly usedmethods to associate independent points. Partition-based
clustering finds cluster centers and assigns the points to their nearest
cluster centers using distance measurements. Conventional algo-
rithms, K-means3 and K-medoids4, determine the optimal cluster cen-
ters by constantly modifying the centroid of each cluster. However,
these algorithms cannot identify non-ellipsoidal clusters and have a
weak robustness to the noise. Clustering by finding Density Peaks
(CDP)5 improves the search strategy of cluster centers based on the
idea that cluster centers are characterized by high density locally and
large distance from the points with higher densities. CDP enables the
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identification of arbitrarily shaped clusters and noise points, but the
association rule may cause incorrect assignments of boundary points
when clusters with large differences in size are closely distributed6.

Connectivity-based clustering accurately identifies arbitrary
shapes by continuously aggregating high-density points with a growth
approach. Typically, Density-based Spatial Clustering of Applications
with Noise (DBSCAN)7 clusters circular neighborhoods of connected
points whose densities are greater than the threshold. Although this
condition preserves the local details of a cluster shape, it easily mis-
identifies sparse clusters as noise and even splits an entire clusterwhen
the points are unevenly distributed. WaveCluster8 and CLIQUE9 map
the original points to a grid and merge the connected grid cells to
generate clusters. Connecting points with a grid representation pro-
motes time efficiency, but weakly-connected clusters cannot be
separated and low-density cluster boundaries tend to be detected as
noise points2. As a boundary-seeking approach, local gravitation clus-
tering (LGC)10 proposes two mean-shift-based metrics, centrality (CE)
and coordination (CO), to measure the consistency between the local
attractive forces and mean-shift directions of neighbors. Accordingly,
it is capable to distinguish internal and boundary points of clusters,
and forms clusters by connecting boundary and unlabeled points from
internal points with a damping connecting capability. However,
internal points in sparse clusters are difficult to detect since the mean
shifts tend to move towards the dense regions. Density-based metrics
such as Reverse K-Nearest Neighbors (RKNN)11 have been also utilized
to detect the boundary points of cluster. It queries the number of
objects that consider a given point as the membership of their KNNs,
but might fail to seek the boundaries with low-density densities.

In this work, we propose a clustering algorithm named CDC by
measuring direction centrality locally, which contributes to handling
data with heterogeneous density and weak connectivity. The core idea
is to detect the boundary points of clusters firstly, and then connect
the internal points within the enclosed cages generated by surround-
ing boundary points. Specifically, an internal point of clusters tends to
be surrounded by its KNNs in all directions, while a boundary point
only includes neighboring points within a certain directional range.
Taking advantage of this difference, wemeasure the local centrality by
calculating the directional uniformity of KNNs to distinguish internal
and boundary points. Hence, CDC can avoid the cross-cluster con-
nections and separate weakly-connected clusters effectively. Mean-
while, it can preserve the completeness of sparse clusters, since it
utilizes KNN to search the neighboring points that is irrelevant to the
point density. To validate the effectiveness, we compared CDC with
totally 38 specialized and versatile baselines on 47 datasets derived
from different fields, including 15 scRNA-seq, two CyTOF, two speaker
corpuses, eight UCI, one handwritten image, one face image and
17 synthetic datasets. Results demonstrated that CDC attains superior
clustering accuracy and robust outcomes in a time efficient manner,
and presented its great potentials in various applications. Moreover,
we investigated the dimension expansion and noise elimination
methods, analyzed the parameter sensitivity, and designed adaptive
methods for parameter settings.

Results
Comparison with clustering baselines on synthetic datasets
In this experiment, we selected three synthetic datasets (DS1-DS3) with
different shaped clusters and compared the results with four typical
clustering algorithms (i.e., K-means, CDP, DBSCAN, and LGC) as shown
in Fig. 1. In general, CDC outperformed the baselines on the three
datasets. A total of ten spherical clusters are contained inDS1, with two
nearby clusters in the upper right. K-means and CDP effectively iden-
tified spherical clusters based on the nearest partitioning principle.
However, several boundary points were assigned to the incorrect
clusters by K-means, since it selects the centroids as the cluster centers
that is affected by the cluster sizes. DBSCAN merged the two weakly-

connected clusters as a whole, unless the between-cluster points are
removed as noise. Both LGC and CDCobtained the accurate clustering
results in DS1. It demonstrates that the centrality metrics proposed by
the two algorithms can efficiently contribute to handling spherical
clusters with uniform densities.

Clusters in DS212 are more challenging in distributions, which
contains two weakly-connected spherical clusters, a non-spherical
dense cluster, and a sparse cluster.Meanwhile, a ring cluster surrounds
a spherical cluster, appearing as an island distribution. The results
illustrate that both of K-means and CDP can separate the two weakly-
connected clusters, but cannot accurately detect the islanddistributed
clusters. Due to the density dependence, CDP cannot find the sparse
cluster. It is difficult for DBSCAN to balance the tasks of separating
nearby clusters and detecting sparse clusters. LGC failed to recognize
the complete sparse cluster. Points belonging to the sparse cluster
were wrongly assigned to the left dense ring-shaped cluster due to the
reliance on themean-shift directions. Themetrics inCDCare irrelevant
to density, which depicts the local centrality by measuring the dis-
tribution uniformity of neighboring points in the surrounding direc-
tions. Both the points in the dense or sparse clusters conform to this
law. Thus, the clusterswith complex structures inDS2 canbe identified
accurately by CDC.

DS313 contains six dense clusters in the shape of letters sur-
rounded by a ring-shaped cluster with a significant density difference.
Similar to the results for DS2, the ring-shaped cluster was split to
multiple pieces by K-means and CDP due to the distance association
rule. Connectivity-based approaches retain the integrity of cluster
shapes when handling the clusters with complex structures. Thus,
DBSCAN can identify a ring cluster using a coarse-granular radius, but
can lead to a misconnection of the “O” and “R” as a whole. As LGC is
sensitive to point density, the significant difference of point density
between the ring and the letter clusters incurred errors to detect the
internal and boundary points, thereby affecting the clustering quality.
To further validate the robustness of CDC, we applied it to other six
syntheticdatasets, i.e., DS4-DS914,15 and the performance canbe seen in
Supplementary Fig. 3.

Application of cell type identification on scRNA-seq and CyTOF
datasets
Cluster analysis on gene-expression profiles of single cells contributes
to revealing the types and cell-to-cell heterogeneity16. scRNA-seq and
CyTOF are revolutionary techniques to detect the expression levels of
single cells and has been extensively used in the cell type
identification17,18. To evaluate the applicability of our algorithm, we
applied CDC onmultiple scRNA-seq andCyTOF datasets with different
number of cells and features by comparing with specialized biological
and versatile baselines in both clustering accuracy and time efficiency.

The applicability analysis of CDC was performed on nine pub-
lished and annotated scRNA-seq datasets, i.e., Baron-human (BH),
Baron-mouse (BM)19, Muraro20, Segerstolpe21, Xin22, Allen Mouse Brain
(AMB)23, Anterior LateralMotor (ALM)23, Primary Visual Cortex (VISp)23

and Tabula Muris (TM)24 (see details in Supplementary Table 1). Seven
biological baselines, i.e., Seurat v325, monocle326, SC327, dropClust28,
MetaCell29, Shared-Nearest-Neighbor-Walktrap (SNN-Walktrap)30,
SNN-Louvain31, and seven versatile clustering baselines, i.e., AGNES4,
DIANA32, hclust33, DBCSAN, K-means, C-means34, CLARA4, were selec-
ted for comparison. The standardpreprocessingpipeline of scRNA-seq
clustering is presented in Fig. 2a35, and more details can be seen in
Supplementary Note 4. Principal Component Analysis (PCA)36 was
used to select thefirst 50principal components from thepreprocessed
data, and Uniform Manifold Approximation and Projection (UMAP)37

further reduced the dimensions in the PCA space. The SNN-based and
classical clustering methods were conducted both in multi-
dimensional PCA (i.e., 2D-50D, denoted as -PCA) and 2D UMAP
spaces (denoted as -U2), while CDC was carried out in 2D-5D UMAP
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space (denoted as CDC-U2, -U3, -U4 and -U5). To evaluate the clus-
tering accuracy quantitatively, we calculated the Adjusted Rand Index
(ARI)38 between assignment and true cell annotation.

According to the ARIs reported in Fig. 2b and Supplementary
Table 2, CDC-U2 outperforms the biological and versatile baselines in
both clustering accuracy and stability, and CDC-U3, -U4 and -U5 also
achieved high accuracies on more than half of the datasets. CDC-U2
obtained promising max ARI scores (BH: 0.9532, BM: 0.9683, Muraro:
0.9235, Segerstolpe: 0.9734, Xin: 0.9727, AMB: 0.8873, ALM: 0.7186,
VISp: 0.8569, TM: 0.8384), where seven of the nine datasets (except
Muraro and Xin) are the highest among all algorithms (if does not
consider CDC-U3, -U4 and -U5 in Supplementary Table 2) and having
distinct advantages on AMB, ALM and VISp. As shown in the Sankey
and t-SNE plots (Fig. 2c, d), the predicted results of CDC-U2 are almost
perfectlymatched with the true cell type annotation. Compared to the
other three baselines (SC3, SNN-Louvain-U2, Kmeans-U2), CDC-U2
achieved higher identification accuracy especially on the GABAergic
class of ALM (Fig. 2e). Meanwhile, CDC-U2 has the most robust out-
comes andobtained thehighest averageARIs on eight datasets (except
VISp), which are larger than the second places 0.220, 0.264, 0.005,
0.216, 0.122, 0.016, 0.126, 0.099 respectively. In terms of the average
rank, CDC-U2 achieved 1.8 on the max ARIs and 1.2 on the average,
which are significantly superior to the second rank of 5.3 and 4.2
respectively. Furtherly, most of the baselines performed worse on the
last four scRNA-seq datasets (AMB, ALM, VISp and TM), which have a
larger data volume and multi-level types of cells (e.g., class and sub-
class) with complex manifold distributions, i.e., data dimension is
lower than the feature dimension. Hence, the heterogeneous densities
andweakconnectivitymayoccur after the preprocessing, andmakes it
is hard to identify all cell types accurately. However, by utilizing local
direction centrality, CDC can effectively extract boundary points of
clusters in proper embedded dimension (To be noted, 2DUMAP space
may not always the most appropriate to represent the data distribu-
tion, and users are free to specify appropriate dimension according to
their needs), where the boundary points can bind the internal con-
nections in all directions. Therefore, CDCachievedbetter performance
than the baselines on complex structured scRNA-seq datasets.We also
verified the robustness of CDC on four mouse retina scRNA-seq data-
sets in Supplementary Fig. 4.

The validity of CDC-U2was also evaluated on twoCyTOFdatasets,
i.e., Levine39 and Samusik40 (Supplementary Table 1), by comparing
with 15 clustering baselines including two classical algorithms (K-
means and MeanShift) and 13 dedicated algorithms for the cell popu-
lation detection. We followed the data preprocessing and parameter
settings in18 (Supplementary Note 5). The ARI scores and runtimes are
shown in Fig. 2f. CDC-U2 achieved the highest ARI scores on both of
the two datasets (Levine: 0.9628, Samusik: 0.8564). Meanwhile, it can
be found that CDC-U2 has promising runtimes (the dimension reduc-
tion is included) and is more efficient than eight and ten baselines on
the two datasets respectively. In comparison, ACCENSE, DensVM and
flowMerge, require subsampling tomake them computable due to the
excessive time complexity on large data size. Moreover, CDC embra-
ces parallel computing due to the nature of KNN-based calculation. It
can be easily extended to parallel versions using GPGPU and dis-
tributed computing techniques such as Apache Spark41, for perfor-
mance acceleration.

To testify the scalability of CDC, we further adopted a large-scale
scRNA-seq dataset collected from the adult Mouse Isocortex and
HiPpocampal Formation (MIHPF)42. It contains 1,093,785 total cells
along with 31,053 genes, which are assigned to three classes (Gluta-
matergic neurons, GABAergic neurons and Non-neuronal) and can be
subdivided into 30, 7 and 6 subclasses respectively. The subclasses
have been grouped into 8 neighborhoods, including 5 glutamatergic
(DG/SUB/CA, L2/3 IT, L4/5/6 IT Car3, PT and NP/CT/L6b), 2 GABAergic
(MGE and CGE), and one “other” neighborhood. We first performed a
single-round clustering comparison with K-means and SNN-Louvain in
2D UMAP space, using the preprocessing steps in Supplementary
Note 4. In general, CDC obtained higher accuracy than the two com-
petitors at subclass level (Fig. 3d). Due to the heterogeneity in cluster
size and density, it is hard to capture multi-level differences of gene
expression and identify all cell types in a fine granularity at one time.
However, the confusion matrix of the CDC result with a high recall
score (Fig. 3a) indicates that the identified clusters are in accord with
the proximity reflected in the transcriptomic taxonomy tree and in line
with the cell development. 14 subclasses have been detected, where
only two small subclasses of them,CR and SMC-Peri (including 268 and
198 cells respectively) have relatively low accuracies. While, the rest
subclasses have been assigned to three relatively complete

K-means CDP DBSCAN LGC CDC

Fig. 1 | Comparison with four typical clustering algorithms on three synthetic datasets (DS1-DS3). The three datasets shown in the three rows contain 999, 459 and
7247 points respectively. Each color represents a cluster.
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and the white ones refer to the average ARI scores. CLARA-PCA, DIANA-PCA,
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neighborhoods (NP/CT/L6b,MGE andCGE), exceptMeis2 (only having
one cell) and V3d being mixed together. The integrity of clusters
identified by CDC are the bases for conducting further clustering to
explore fine-grained subclasses.

We adopted a multi-round clustering strategy for further
improving the clustering accuracy. To ensure high integrity, clusters
with high recall score are selected as the initial result (Supplementary
Fig. 5a). The criterion for carrying out the next round clustering is that
there are clusters are connected in the confusion matrix43 or multiple

significant density peaks5 in the generated clusters (Supplementary
Fig. 5b), otherwise clustering terminates (Supplementary Fig. 5c).
Through three rounds of clustering optimization, CDC extractedmore
fine-grained subclasses from the initial clusters C1-C4 (Fig. 3b), and the
integrated final result (Fig. 3f) almost identical to the true cell anno-
tation (Fig. 3c). The ARI score of CDC has been improved from 0.38 to
0.87, which strongly outperforms that of K-means and SNN-Louvain
following the same criterion (Fig. 3e).While K-means and SNN-Louvain
split partial subclasses into smaller clusters and cannot keep the
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accurate structures of subclasses as shown in Supplementary Figs. 6
and 7.

Application of speaker recognition on corpus datasets
Voice is a distinctive biometric characteristic and physiological mod-
ality of every human being. Speaker recognition aims to perform a
classification of unlabeled speech samples from the voice data. How-
ever, a speech signal is susceptible to external or internal distorting

factors (e.g., environment, recording device, tone, etc). To verify the
ability of our algorithm to cope with distorting effects in speaker
recognition, webenchmarkedCDCusing the English Language Speech
Database for Speaker Recognition (ELSDSR)44 and the Microsoft
Speech Language Translation (MSLT)45 corpus datasets. ELSDSR con-
tains English speech data collected from 22 speakers composed of 12
males and 10 females. The speech was recorded in a noise-free
chamber. The volunteers read the same sentences in a declarative
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by UMAP (from cepstral feature vectors with 31 dimensions). Boxes show themean
and the 25–75% range, while whiskers refer to the 1.5 times interquartile range. The

second and third columns represent the ARI curves obtainedbyvaryingTDCMunder
fixed k and varying k under fixed TDCM respectively, where the gray bands represent
the ARI rangeswhen k andTDCM are in the ranges of [10,20] and [0.15, 0.40], and the
curves falling in the bands were sampled with fixed intervals of 2 and 0.05.
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voice. MSLT corpus consists of tens of thousands of conversational
utterances in multiple languages. The audio data were captured from
the conversations held by the authorized volunteers in communica-
tion software. The contents of conversations were not predefined and
the environments were random. A quantity of modal particles and
emotional utterances were contained in the conversations. We selec-
ted 200 segmented audio files of the utterances of 20 speakers in
Chinese including 12 males and 8 females.

The clustering workflow is illustrated in Fig. 4a. Cepstral features
are commonly used to characterize speech signals. We leveraged
RelAtive SpecTrAl-Perceptual Linear Prediction (RASTA-PLP)46 to
extract the cepstral features from the raw waveform data. To limit the
influence of the noisy frames, we converted the cepstrum to feature
vectors by calculating the mean of all the column vectors. UMAP was
then used to reduce the dimensions of the original feature vectors.
Based on the embedded data distributions, CDC was adopted to
recognize the different speakers without any pre-training process.

The clustering results confirmed the effectiveness of CDC on
speaker recognition through comparison with DBSCAN and CDP.
Their max score reported by ACCuracy (ACC), Normalized Mutual
Information (NMI), ARI and F1-score47 (Supplementary Note 3) are
similar on the ELSDSR dataset (Fig. 4b), but the advantage of CDC is
more pronounced on MSLT (Fig. 4c). Rising and falling intonations
usually appear in the real conversations collected by MSLT, while the
recording environment of ELSDSR is quieter without ambient noise
and reverberation. This reason causes data in MSLT corpus are more
dispersedly distributed and generates more weakly-connected clus-
ters than ELSDSR after dimension reduction. With the ability to
handle weak connectivity, CDC yielded more accurate and stable
outcomes than DBSCAN and CDP. In comparison, the performance of
CDP is significantly influenced by the decisions of cluster centers. To
further evaluate the robustness of CDC in parameter adjustment, we
present the ARI curves under different combinations of input para-
meters k and TDCM (see Methods). ARI fluctuated sensitively as TDCM
changes, while it floated steadily from 0.3 to 1 when k varies in the
range [0.15, 0.4] of TDCM. This pattern is relevant to the parameter
sensitivity which is further analyzed in Supplementary Table 6.

Dimension expansion for high-dimensional data
The core of CDC is leveraging Direction Centrality Metric (DCM) to
distinguish internal and boundary points.DCM calculation requires to
map the KNNs onto the unit spherical surface drawn by their center
point firstly, then conducts spherical surface subdivision and angle
measurement of the subdivision units. It is intuitive to understand the
definition of DCM in 2D space that measures the variance of angles
formed by KNNs. While in high-dimensional space, we construct the
convex complex of KNNs for subdividing the spherical surface and
calculate the volume of each simplex in the complex (Supplementary
Fig. 8). Then, the volumeof each subdivisionunit ismeasuredbasedon
the simplex volumes (see Methods).

Since CDC is able to handle high-dimensional data and is not
limited to 2D space, its applicability is of general significance. For the
sake of the validation of CDC in high-dimensional space, we applied it
to various datatypes in other fields, including UCI datasets, and
handwritten and face images. Specifically, we collected eight UCI and
one handwritten digits datasets, i.e., Iris, Seeds, Breast-Cancer, Wine,
PenDigits, Dermatology, Control, Digits48, MNIST10k49 (details in
Supplementary Table 3), and compared CDC with ten state-of-the-art
clustering baselines, i.e., K-means, DBSCAN, CDP, AGNES, MeanShift,
Rcut50, Ncut51, densityCut52, Robust Continuous Clustering (RCC)53,
Graph Clustering with simultaneous Spectral Embedding and Dis-
cretization (GCSED)54. We normalized the features of all datasets and
performed CDC under 2 to 5 UMAP dimensions, and the parameter
settings can be found in Supplementary Table 7. ACC, NMI and ARI
are calculated for clustering accuracy evaluation (Fig. 5a,

Supplementary Tables 4 and 5). In general, CDC obtained the highest
scores on eight datasets, and CDC-U2 to CDC-U5 occupied the top
four places of the average rank in all the three evaluation metrics. In
terms of the time efficiency measured by overall runtimes, CDC-U2
ranked in the forefront, and achieved the second rank on the largest
dataset MNIST10k with 784 features (Fig. 5b). Meanwhile, as the
dimension increases, the runtime of CDC-U2 grows slower than
densityCut, GCSED and much slower than RCC (Fig. 5c).

Moreover,we assessed the adaptability of CDC for handling image
features on ORL face datasets. This dataset contains 40 distinct indi-
viduals and each one has ten images with different lighting, acces-
sories, and facial expressions. All 400 face images are grayscale with
92×112 pixels in size. We extracted Gabor features as the input of
clustering. In addition to K-means, three cutting-edge multi-view
subspace clustering algorithms are selected for comparison, i.e., Co-
Regularized multi-view subspace clustering (Co-Reg)55, Pairwise/Cen-
troid Multi-view Low-Rank Sparse Subspace Clustering (PMLRSSC/
CMLRSSC)56. As the ACC, NMI andARI scores illustrated in Fig. 5d, CDC
has the highest and most stable accuracies, and achieve up to 0.9202
ARI score. The best CDC result is displayed in Fig. 5e, where the faces of
28 individuals were correctly recognized.

Noise elimination using KNN-based methods
Noise points are ubiquitous and negatively impact clustering quality.
KNN-based noise disposal methods can be integrated with CDC to
handle data with noise as a data preprocessing step. This integration
can be seamless by sharing the same k. Here, we adopted three KNN-
based methods, i.e., Inverse Distance Metric (IDM), RKNN, and Local
Outlier Factor (LOF)57 to evaluate the effectiveness of noise elimina-
tion. Considering that thenoisepoints areusually isolated and far away
from the clusters, IDM detects noise by calculating the inverse of the
distance sum of the KNNs. RKNN measures the number of points that
treat the given point as a KNN object. LOF is formulized as the mean
relative reachable density between the center point and its KNN. The
formulas are illustrated in Supplementary Fig. 9.

We benchmarked the integrated methods on four synthetic
datasets (i.e., DS10-DS13) with clusters of various shapes and noise
points. As shown in Supplementary Fig. 10, all the three methods can
detect the noise effectively in general, but performed slightly differ-
ently in the boundary areas of the clusters. In face of the clusters with
uniform densities in DS102, IDM, RKNN and LOF can remove the noise
and preserve the cluster points accurately. However, RKNN and LOF
performed slightly worse than IDM in detecting noise points near the
weakly-connected clusters in DS1158, and misidentified low-density
boundary points of the spindle-shaped clusters as noise in DS135.

Parameter sensitivity analysis
Parameter sensitivity analysis aims tomeasure the degree to which the
dependent variable is affected by the perturbation of the parameters,
which facilitates to control the granularity of parameter tuning. In this
paper, the clustering accuracy is the dependent variable, and we
assessed the impact of the two input parameters of CDC on it, i.e., k
and TDCM (see Methods). We conducted sensitivity analysis using
stratified sampling and random perturbation, which is modified from
Latin-Hypercube One-factor-At-a-Time (LH-OAT)59 in hydrology. This
method divides the two-parameter space intomultiple grid cells of the
same size and samples one point in each cell. It then randomly changes
each sampling point with a fixed perturbation, usually from a pre-
defined constant, and finally calculates the sensitivity indexes to
measure the effects on the results. In the simulations, we selected six
synthetic datasets (DS4-DS9) with different numbers of points and
clusters. We divided the value range of each parameter into 10 equal
intervals to generate a 10 by 10 grid. Five sizes of perturbations for
each parameter were specified in advance and ARI was treated as the
dependent variable to evaluate the clustering accuracy. Each group in
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the experimentwas averaged five times to avoid the randomness in the
simulations (detailed in Supplementary Note 7).

The results shown in Supplementary Table 6 indicate that TDCM is
more sensitive to clustering accuracy than k. With the increase of
perturbation, both of the two sensitivity indexes Sk and ST grow. k only
reached the mild sensitive level when the perturbation is 20, since the
local centrality of most points is stable as k varies within a certain
range. However, TDCM tended to reach the hypersensitive level when
the perturbation is >0.15. DCM ranges from 0 to 1 theoretically, but
most of DCMs commonly lie in a small range. A slight adjustment of

TDCM may cause many points to be converted from boundary to
internal points or vice versa. This conversion affects the recognition of
boundary points and their binding force for internal points, which in
turn influences the clustering quality. In practice, we adopt a more
stable parameter ratio to replace TDCM (see Methods). The sensitivity
analysis for ratio was conducted in its entire value range of [0, 1]. The
results show that the sensitivity indexes of ratio are significantly lower
than that of TDCM, which reveals its mild sensitivity. Therefore, k and
ratio can generate relatively stable outcomes when vary in a certain
range, which in turn contributes to the robustness of CDC.

a

b c d
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Rank of 
runtimes
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Fig. 5 | Performances on UCI, MNIST10k, and ORL face datasets. a Heatmap for
the ARI scores of 11 clustering algorithms. b Comparison of runtimes among 11
clustering algorithms on eight UCI datasets and MNIST10k, where the runtime of
CDC-U2 includes dimension reduction using UMAP and CDC clustering. All algo-
rithms were implemented on a commodity desktop computer with an 8-core Intel
i7 processor and 64 GB RAM (the smaller circle, the better time performance).

c Runtimes of RCC, GCSED, densityCut and CDC-U2 (includes UMAP runtime as
well) on simulated datasets with 1,000 samples and different number of dimen-
sions. Shadow represents 95% confidence band. d Clustering accuracies reported
by ACC, NMI and ARI of K-means, Co-Reg, PMLRSSC, CMLRSSC and CDC on ORL
face dataset. e Pictorial representation of the best CDC cluster assignations, where
each column contains ten images of one person and each color denotes a cluster.

Article https://doi.org/10.1038/s41467-022-33136-9

Nature Communications |         (2022) 13:5455 8



Validation of the adaptive methods
Parameter tuning is a labor-intensive task that requires constant
trial and error in cluster analysis. To alleviate this issue, we pro-
pose two adaptive methods to determine the appropriate para-
meters. TDCM (or ratio) is estimated through graph theory analysis
on a Triangulated Irregular Network (TIN) in 2D space. Com-
monly, boundary points tend to have lower centrality (i.e., higher
DCM) than internal points. Thus, we sort all DCMs in a descend
order and the optimal TDCM (or ratio) can be searched if the
number of boundary points is given. Based on the graph theory
and 2D Euler’s formula, it can be found that the boundary points
are associated with the vertexes, intra-cluster triangles and the
number of clusters (see Methods). With the estimation of the
cumulative number of vertexes, and intra-cluster triangles in the
multiple disconnected subgraphs, the number of boundary point
can be approximately determined using Eq. (15). We testified the
TIN-based adaptive method for TDCM on four synthetic datasets,
i.e., DS14-DS17 (Supplementary Fig. 11a–c), on which all clusters
can be identified accurately under the estimated parameters
(Supplementary Fig. 11c). The blue-colored cross-cluster triangles
were detected by the judge rule in Eq. (16) from the whole TIN
networks (Supplementary Fig. 11a). Although a few intra-cluster
triangles at the boundaries are misidentified as cross-cluster tri-
angles and several cross-triangles are undetected due to the close
proximity between clusters, these two biases can be offset
partially.

In practice, a rough estimation of k would likely yield satisfac-
tory clustering results due to its insensitivity. k is relevant to the
number of points n, and a linear or logarithmic relation between
them has been validated in the KNN-based cluster analysis10,52.
According to the existed studies, we generalize an empirical model
to set k with a continuous piecewise function in Eq. (9) (see Meth-
ods). It is formulized as a range of k and ensures the growth speed to
flatten out when k is >1000. We collated the optimal k specified on
17 synthetic (DS1-DS17) and nine real-world datasets (Supplementary
Table 3). All the optimal k lie within the range determined by Eq. (9)
and demonstrates the validity of the proposed empirical model
(Supplementary Fig. 11d). CDC equipped with the two adaptive
methods was further assessed on the real-world datasets. Results
show that it can achieve top 25% clustering accuracy on all datasets,
and even got the highest ARI on Wine, PenDigits, Control and Digits
(Supplementary Fig. 11e).

Discussion
In many real-world applications, the data distribution in the feature
space tends to be heterogeneous and complex. Association rules
basedondensity or proximity of physical distance alone are difficult to
identify the clusters in an effective and stable manner. We utilize the
local centrality to distinguish the internal and boundary points. The
determined boundary points generate enclosed cages to prevent the
cross-cluster connection of internal points and enable the accurate
extraction of cluster shapes. In the constraint of the generated cages,
weakly-connected clusters can be separated. Moreover, the local
centrality depends on the directional uniformity of KNNs rather than
the density of the center point. Therefore, CDC is competent to
identify sparse clusters with low density.

CDC has strong robustness to heterogeneous distributions and
algorithm parameters. When handling clusters with clear shapes and
uniformdensity, it can accuratelydetect theboundary points.Actually,
the heterogeneous density would cause some wrong divisions of
internal and boundary points. Nonetheless, if the determined bound-
ary points are enough to avoid the cross-cluster connections, and only
a few internal points are misidentified, the intra-cluster connections
would not be cut off, thus not affecting the global assignments.

Beyond identifying the cell types, recognizing speaker voices and
face images, CDC has more potentials. It can be a promising technique
to segment the cell images, explore the spatial living patterns of spe-
cies, and reveal the aggregation distributions of geographic objectives.
However, CDC may be invalid to handle data with manifold structure
directly, since the detected boundary points cannot constraint the
internal connections in all directions in the feature space. Utilizing
dimension reduction techniques such as UMAP to embed the data to a
proper dimension can broaden the application of CDC. Consequently,
in some extreme cases, parameter setting should bemore careful since
dimension reduction may cause “crowding problem” and affect clus-
tering accuracy. In addition, the DCM calculation would generate
increasing number of simplices as the dimension increases. More
effective DCM calculation could be further investigated.

Methods
Procedure of the clustering algorithm
The core idea behind CDC is to distinguish boundary and internal
points of clusters based on the distribution of KNNs. The boundary
points outline the shape of clusters and generate cages to bind the
connections of internal points. The internal points of clusters tend to

b

Value of DCM

0 1

c d

f

ri

rj

dij

pi

pj

g h

a

e

12

3

4

k

Fig. 6 | Illustration of algorithm and intermediate results of CDC in 2D space.
a Central angles formed by KNNs of a center point. b DCM calculation results of
sample data. c, d Division results of internal and boundary points on two synthetic
datasets, with k = 10 and TDCM =0.1 for DS5, and k = 30 and TDCM=0.1 for DS7. The

red points denote the internal points and the blue points denote the boundary
points. e Reachable distances of internal points. f Association rule for connecting
internal points. g, h Connection results of internal points on DS5 and DS7.
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be surrounded by their neighboring points in all directions, while
boundary points only include neighboring points within a certain
directional range. To measure such differences in the directional dis-
tribution, we define the variance of the angles formed by the KNNs in
2D space as the local Direction Centrality Metric (DCM):

DCM =
1
k

Xk
i = 1

αi �
2π
k

� �2

ð1Þ

KNNs of the center point can form k angles α1, α2…αk (Fig. 6a).
For 2D angles, the condition

Pk
i= 1αi = 2π holds. DCM reaches the

minimum 0 if and only if all the angles are equal. This condition
means that the KNNs of the center point are evenly distributed in all
directions. It can be maximized as 4ðk�1Þπ2

k2 when one of these angles is
2π and the remaining are 0 (see Supplementary Note 1). Such an
extreme situation happens when the KNNs are distributed in the
same direction. According to the extrema,DCM can be normalized to
the range [0, 1] as follows:

DCM =
k

4 k � 1ð Þπ2

Xk

i= 1
αi �

2π
k

� �2

ð2Þ

A sample result ofDCM calculation reveals that the internal points
of clusters have relatively low DCMs and the boundary points have
higher values (Fig. 6b). Thus, internal and boundary points can be
divided by a threshold TDCM. The division results of two synthetic
datasets DS5 and DS7 validate the effectiveness (Fig. 6c, d).

To ensure that the internal points p1, p2, …,pm connect to each
otherwithin the area restricted by the surrounding boundarypoints q1,
q2, …, qn−m, we define the minimum distance between the internal
point pi and all boundary points as its reachable distance:

ri =minn�m
j = 1 dðpi,qjÞ ð3Þ

where d(pi, qj) is the distance between the two points pi and qj (Fig. 6e).
Two internal points can be connected as the same cluster if the fol-
lowing association rule is guaranteed:

d pi,pj

� �
≤ ri + rj ð4Þ

where ri and rj are the reachable distances of internal points pi and pj,
respectively (Fig. 6f). On the premise of correct identification of
boundary points (except for extreme cases in the situation when the
boundary points are identified incompletely), the connections of
internal points are constrained in the area defined by the boundary
points. If a cross-cluster connection exists between two internal
points, there will be boundary points contained in the range defined
by their reachable distances, which conflicts with the definition of the
reachable distance. Therefore, the internal points of the same cluster
can be trapped in the same external contour consisting of boundary
points, and the cross-cluster connections will be avoided based on
this association rule. The connection results of DS5 and DS7 are
generated by applying the rule to the division results (Fig. 6g, h).
Although couples of clusters are connected weakly in DS5 and DS7,
and the three clusters in DS7 differ greatly in density, all the clusters
have been identified accurately.

After calculating the DCM and connecting internal points, we
finish the procedure by assigning eachboundary point to the cluster to
which its nearest internal point belongs. CDC contains two con-
trollable parameters, k and TDCM. k adjusts the number of nearest
neighbors, and TDCM determines the division of internal and boundary
points. The pseudocodeofCDC is detailed in SupplementaryNote 2. In
practice, considering TDCM varies with data distributions, we adopt a
percentile ratio of internal points to determine TDCM as the

[n∙(1–ratio)]th DCM sorted in a descending order (Supplementary
Fig. 11b). The parameter ratio has intuitive physical meaning and
better stability (see Supplementary Table 6), which makes it easier to
specify than TDCM. According to our experiments, 70%~99% internal
points are the suggested default parameter range of ratio for pro-
mising clustering results. Nevertheless, when clusters are mixed up
with each other, more boundary points (lower ratio) are necessary to
separate the close clusters.

Time complexity analysis
To assess the computational efficiency of CDC, the time complexity is
analyzed. Runtime of CDC can be decomposed as:

TCDC =T1 +T2 +T3 ð5Þ

where T1, T2, T3 denote the runtime of the division of internal and
boundary points, internal connection, and boundary assignment
respectively. Asdescribed in theprocedure, the stepofdivision includes
measuring the distances, searching the KNNs, and calculating the
DCMs. So, the time complexity of T1 in 2D space can be represented as:

O T1

� �
=O n2 +n

Xk
i= 1

n� i

 !
+nk

 !
=Oðkn2Þ ð6Þ

wheren refers to the total number of points. The internal connection is
composed of the calculation of reachable distances and point-wise
association:

O T2

� �
=O m n�mð Þ+m2� �

=O mnð Þ ð7Þ

where m refers to the number of identified internal points. Then, the
search of the nearest internal point for each boundary point and
assigning the corresponding labels require the time complexity:

O T3

� �
=O m n�mð Þ+ n�mð Þð Þ=O mnð Þ ð8Þ

The specified parameters k andm aremuch <n commonly, hence
the total time complexity of CDC is approximatelyO(n2). The search of
KNN can be refined using indexes techniques41, such as K-D tree. It can
avoid the calculation of pairwise distances and improves time effi-
ciency to O(nlogn).

Empirical estimation method of k
Through the analysis of parameter sensitivity and existing studies10,52,
we know that k is an insensitive parameter and relates to the number of
points n in dataset. Thus, we propose an empirical method by for-
mulizing the relation between k and n as:

k =
d n
50e ~ d n

20e if 100≤n ≤ 1000

log2ðnÞ+ 10
� 	

~ 5 log2ðnÞ
� 	

if n≥ 1000

(
ð9Þ

where d�e denotes to the nearest integer upwards. This empirical
model is represented as a continuous piecewise function that depicts a
growth trend of k as n increases.

Estimation of the number of boundary points for determin-
ing TDCM

As shown in Supplementary Fig. 12a, we constructed a Triangulated
Irregular Network (TIN) to connect all points. In graph theory, the
degree of a vertex is defined as the number of edges incident to the
vertex and each edge connects two vertexes. Based on this law, we can
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obtain:

XV
i= 1

deg vi
� �

=2E ð10Þ

where deg(vi) represents the degree of vertex vi, V denotes the total
number of vertexes, and E represents the total number of edges. In a
graph, each triangle has three edges and each edge is shared by two
triangles except the outermost edges. Actually, for a TIN that has a
single connected component, the total number of boundary points is
equal to that of the outermost edges, since all the outermost edges are
connected end to end by boundary points and form a closed polygon.
This law can be summarized as:

XV
i = 1

deg vi
� �

= 3F +B ð11Þ

where F and B refer to the total number of triangles and boundary
points respectively. Meanwhile, 2D Euler’s formula can be considered
as follows:

V + F � E = 1 ð12Þ

By combining these formulas, we can infer the solution of B as
follows:

B= 2V � F � 2 ð13Þ

However, the number of initial boundary points in the whole TIN
is not equal to the total number of boundary points in the separated
clusters. To conduct an accurate estimation, the whole TIN should be
treated as multiple sub-networks (Supplementary Fig. 12b). Given C
clusters, the number of boundary points in clusters can be solved as
follows:

Xm
i = 1

Bi =2
Xm
i= 1

Vi �
Xm
i = 1

Fi � 2C ð14Þ

B=2V � F � 2C ð15Þ

where F is the total number of intra-cluster triangles in the multiple
separated networks. V is known in a given dataset (i.e., n), but F and C
are not. The initial F is the total number of triangles in the whole TIN,
which includes the triangles connecting different clusters, i.e., cross-
cluster triangles whose three vertices are not all in the same cluster
(otherwise is intra-cluster triangle). Using the excessive number of
triangles would make the number of boundary points B smaller than
the true value. To identify the cross-cluster triangles, we set a
judgment rule:

X3
i = 1

X3
j = 1,j≠i

σ vi, vj
� �

<3 ð16Þ

where v1, v2, v3 are the three vertices of a triangle, and σ(vi, vj) is an
indicator function:

σ vi,vj
� �

=
0 if vj =2 KNN vi

� �
1 if vj 2 KNN vi

� �
(

ð17Þ

Equation 16. considers the proximity of the vertices in an intra-
cluster triangle. The final F can be calculated as the initial F minus the
number of cross-cluster triangles that satisfies Eq. (16) (Supplementary

Fig. 12c). In termsof the number of clustersC, it is significantly <V and F
usually,whichhas a trivial effecton the estimationofB.Moreover, CDC
is robustness to the DCM threshold as mentioned in Discussion. Thus,
C can be treated as 1, when it is vague or difficult to determine.

In an actual implementation, we adopt Delaunay triangulation
algorithm to construct the initial TIN, which can prevent the connec-
tion of internal points far apart within the same cluster. The time
complexity to construct the TIN canbe represented asO(nlogn),which
is same as CDC. Moreover, it should be noted that using the inter-
mediate results after removing the cross-cluster triangles as the final
clustering results is inappropriate. Because Eq. (16) cannot guarantee
to remove the cross-cluster triangles in an accurate and complete
manner (Supplementary Fig. 12a), thereby causing the clusters in close
proximity to be merged as a whole. The pseudocode of adaptive
method to determine TDCM is illustrated in Supplementary Note 2.

DCM calculation in high-dimensional space
DCM calculation requires to map the KNNs onto the unit hyper-
spherical surface drawn by their center point firstly, then subdivides
the hyperspherical surface and measures the generalized angles of
each subdivision unit. In 2D space, KNNs are mapped onto a unit
circle. They subdivide the circle into multiple arcs and each arc cor-
responds to a central angle. DCM measures the variance of these
angles. While in 3D space, KNNs are mapped onto a unit spherical
surface. They connect neighboring points to form a spherical trian-
gulation andDCM is extended as the variance of the solid angles of the
triangles. For subdividing a hyperspherical surface in a higher-
dimensional space, we adopt Qhull algorithm60 to construct the
convex complex of KNNs. Since all the KNNs have been mapped onto
the hyperspherical surface, they are guaranteed to be the vertices of
the convex complex (Repeat KNNs are not included). Ind-dimensional
space, each facet of the convex complex is a (d-1)-simplex and cor-
responds to a subdivision unit (Simplex here denotes the simplest
figure that contains d + 1 given points in d-dimensional space and that
does not lie in a space of lower dimension). For instances, a 2D and 3D
convex complex consists of multiple line segments (1-simplex) and
triangles (2-simplex), which subdivides the circle and spherical sur-
face into arcs and spherical triangles respectively (Supplemen-
tary Fig. 8).

After subdividing, the generalized angles could be measured.
Natively, the angles are equivalent to volumes of the corresponding
subdivision units (e.g., arc length in 2D circle, area of the spherical
triangle in 3D sphere). However, it is difficult to calculate the volumes
of subdivision units in high-dimensional space due to the computa-
tional complexity of multiple integral. Therefore, we measure the
volume of each simplices and then allocate the global volume error
to each subdivision unit evenly for an approximate calculation.
Although there are errors between the true and calculated volumes
of subdivision units, the DCM sort orders based on the two kinds of
volumes are the same, since the volumes of subdivision units
increase monotonically with the corresponding simplices. Thus, a
DCM threshold can be searched to distinguish the internal and
boundary points effectively.

Specifically, we suppose a simplex s in d-dimensional space is
composed of dKNN points p1, p2,…, pd which have beenmapped onto
the hypersphere, where pi = ðx1i , x2i , . . . , xd

i Þ. Vectors pdp1


!, pdp2



!, …,
pdpd�1




! with the same origin pd can determine a (d-1)-dimensional
parallelepiped P in vector space Rd . Let
εi =pdpi



!= ðx1i � x1
d , x

2
i � x2

d , . . . , x
d
i � xddÞ

T
and A= ðε1, ε2, . . . , εd�1ÞT ,

then we have the volume of P61:

vol Pð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det AAT
� �r

ð18Þ
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Simplex s is a hypertetrahedron embedded in the parallelepiped P
and they share d-1 edges pd p1, pd p2,…, pd pd−1. So, the volumeof s is62:

vol sð Þ= vol Pð Þ
Γ d � 1ð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det AAT
� �r

d � 1ð Þ!
ð19Þ

Thedetailed volumecalculations of parallelepipedP and simplex s
are presented in Supplementary Note 6. After measuring the simplex
volume, we calculate the deviation between the volume sum of sim-
plices and the hyperspherical surface area, and further assign the
global volume error equally to each subdivision unit. The assignment
guarantees the volume sum of subdivision units under different sub-
divisions is constant in the same dimension. The generalized surface
area of a d-dimensional unit sphere is:

S=
2π

d
2

Γ ðd2Þ
ð20Þ

We suppose that the convex complex consists of f simplices s1, s2,
…, sf and subdivides the hypersphere into f units u1, u2, …, uf accord-
ingly. The volume of subdivision unit ui can be solved as:

vol ui

� �
= vol si

� �
+
S�Pf

i= 1
vol si
� �

f

ð21Þ

DCMmeasures the varianceof the volumesof all subdivisionunits:

DCM =
1
f

Xf
i = 1

vol ui

� �� S
f

� �2

ð22Þ

Like DCM in 2D space, it can also be normalized as:

DCM =
f

f � 1ð ÞS2
Xf
i= 1

vol ui

� �� S
f

� �2

ð23Þ

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The synthetic datasets used in this study have been deposited at
https://github.com/ZPGuiGroupWhu/ClusteringDirectionCentrality/
tree/master/Toolkit/Synthetic%20Data%20Analysis/SyntheticDatas
ets. The scRNA-seq, CyTOF, corpus and other real-world datasets
used in this study are available publicly: BH, BM, Muraro, Seger-
stolpe, Xin, AMB and TM (https://zenodo.org/record/2877646#.
YjBPGXpByUl), ALM and VISp (https://portal.brain-map.org/atlases-
and-data/rnaseq/mouse-v1-and-alm-smart-seq), WT_R1, WT_R2, Nd
pKO_R1 and NdpKo_R2 (GSE125708), MIHPF (https://portal.brain-
map.org/atlases-and-data/rnaseq/mouse-whole-cortex-and-
hippocampus-10x), Levine and Samusik (FlowRepository: FR-FCM-
ZZPH), ELSDSR (http://www2.imm.dtu.dk/~lfen/elsdsr/), MSLT
(https://www.microsoft.com/en-us/download/details.aspx?id=
55951), Iris (http://archive.ics.uci.edu/ml/datasets/Iris), Seeds (http://
archive.ics.uci.edu/ml/datasets/seeds), Breast-Cancer (http://
archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Origi
nal%29), Wine (http://archive.ics.uci.edu/ml/datasets/Wine), PenDi-
gits (http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition
+of+Handwritten+Digits), Dermatology (http://archive.ics.uci.edu/
ml/datasets/Dermatology), Control (http://archive.ics.uci.edu/ml/
datasets/Synthetic+Control+Chart+Time+Series), Digits (https://

archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwr
itten+Digits), MNIST10k (http://yann.lecun.com/exdb/mnist/),
ORL face dataset (https://www.kaggle.com/datasets/jagadeesh
kasaraneni/orlfaces).

Code availability
The code of CDC in MATLAB, R and Python, and the toolkit with six
applications can be downloaded at https://github.com/
ZPGuiGroupWhu/ClusteringDirectionCentrality and https://zenodo.
org/record/7029720#.YwuFsuxByZw. Digital Object Identifier https://
doi.org/10.5281/zenodo.7029720.
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