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E N V I R O N M E N T A L  S T U D I E S

The climate and health benefits from intensive building 
energy efficiency improvements
Kenneth T. Gillingham1,2*, Pei Huang1,2,3, Colby Buehler4,2, Jordan Peccia4, Drew R. Gentner4,2

Intensive building energy efficiency improvements can reduce emissions from energy use, improving outdoor 
air quality and human health, but may also affect ventilation and indoor air quality. This study examines the 
effects of highly ambitious, yet feasible, building energy efficiency upgrades in the United States. Our energy 
efficiency scenarios, derived from the literature, lead to a 6 to 11% reduction in carbon dioxide emissions and 
18 to 25% reductions in particulate matter (PM2.5) emissions in 2050. These reductions are complementary with a 
carbon pricing policy on electricity. However, our results also point to the importance of mitigating indoor PM2.5 
emissions, improving PM2.5 filtration, and evaluating ventilation-related policies. Even with no further ventilation 
improvements, we estimate that intensive energy efficiency scenarios could prevent 1800 to 3600 premature 
deaths per year across the United States in 2050. With further investments in indoor air quality, this can rise 
to 2900 to 5100.

INTRODUCTION
Global energy consumption is expected to rise by 27% by 2040 (1), 
which underscores serious challenges for mitigating climate change. 
In the United States, building energy use alone accounts for 40% of 
total energy demand (2). Investments in building energy efficiency 
hold promise to reduce energy demand (3) and thus curb emissions 
from fossil fuel combustion, including emissions of both greenhouse 
gases and non-greenhouse gas pollutants, the latter of which are 
hereafter referred to as “local” air pollutants (4, 5). These reductions 
in local air pollutant emissions would improve outdoor air quality, 
potentially providing substantial benefits to human health. Howev-
er, people in the United States spend 87% of their time indoors (6). 
This raises a potential concern of increased exposure to indoor pol-
lutants for some homes due to decreased air exchange rates via 
infiltration that result from the tightening of the building shell for 
energy efficiency improvements (7). Thus, some intensive energy 
efficiency measures could also negatively affect human health, 
potentially offsetting the gains from improved outdoor air quality, 
unless additional measures are taken, including reductions in indoor 
emissions and/or investments in indoor air recirculation with 
pollutant filtration or increased outdoor air ventilation, such as 
those available as part of heating, ventilation, and air conditioning 
(HVAC) systems (8).

This study examines the long-run impacts of intensive energy 
efficiency improvements in buildings that go far beyond the current 
utility energy efficiency programs but align with calls for concen-
trated efforts to deeply improve energy efficiency (3). We explore 
the impacts on energy consumption and emissions, outdoor air 
quality health impacts, and indoor air quality effects (both with and 
without improvements in recirculation with filtration or emission 
reductions). To examine a range of potential impacts, we develop 
two scenarios of energy efficiency improvements in a comprehensive 
set of building services, such as space heating, space cooling, water 

heating, and lighting. These carefully designed scenarios are more 
ambitious than those in previous work and deeply grounded in the 
literature on potential energy efficiency improvements. We also im-
plement an example carbon pricing scenario to better understand the 
effects of intensive energy efficiency in a world with carbon pricing 
on electricity generation.

To our knowledge, we are the first to explore the impacts of in-
tensive building energy efficiency improvements on emissions, in-
door air quality, and human health across the entire United States. 
A rich body of research has studied energy efficiency (9–14). In a 
related study, Buonocore et al. (15) examined the health and climate 
benefits of a set of energy efficiency and renewable energy scenarios 
in the U.S. Mid-Atlantic and Lower Great Lakes regions using an 
electricity system simulation model calibrated to 2012. Buonocore et al. 
provided deep insights into short-run decarbonization strategies 
and the effect of (more modest) energy efficiency scenarios on 
outdoor air quality but did not examine long-run effects or indoor 
air quality implications. In another related study, Brown and Li (16) 
explored the long-run effects of energy efficiency policies on emis-
sions in the commercial, residential, and industrial sectors when there 
is a carbon tax on electricity generation. Our study examines much 
more intensive energy efficiency improvements and quantifies the 
human health impacts resulting from changes in outdoor and resi-
dential indoor air quality (see the Supplementary Materials for a review 
of several less directly related studies).

Our analysis is based, in part, on scenarios implemented in the 
National Energy Modeling System (NEMS) run on a Yale server (and 
thus described henceforth as Yale-NEMS). NEMS is a well-known 
large-scale energy-economic equilibrium model of the U.S. energy 
system that includes all major sectors and runs from the present to 
2050. While no model can perfectly project the future, NEMS has 
been described as the “gold standard” for long-run energy modeling 
in the United States (17). Researchers have used versions of NEMS 
to examine many questions relating to U.S. energy markets and 
environmental policies (18–20), including the effect of energy effi-
ciency policies (16, 21–23). This work represents the first combina-
tion of a large-scale energy-economic model of the U.S. economy 
with extensive modeling of indoor air quality across the U.S. housing 
stock to examine the outdoor and indoor impacts of large-scale energy 
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efficiency. By examining more intensive energy efficiency improve-
ments and quantifying the long-run impacts on human health (in-
clusive of potential indoor air quality effects), our study sheds new 
light on how energy efficiency can contribute to deeper decarbon-
ization and improved human health.

RESULTS
Energy efficiency and carbon pricing scenarios
The starting point for our analysis is the U.S. Energy Information 
Administration’s (EIA) Annual Energy Outlook 2017 (AEO2017) 
reference case (24). AEO2017 projects U.S. energy market outcomes 
(e.g., equilibrium prices and quantities of various energy fuels) and 
the associated emissions out to 2050. It incorporates nearly all exist-
ing national and state-level policies until their sunset dates. No pro-
jection of the future is ever perfectly accurate, and EIA projections 
are no different (25), but researchers in the private sector, academia, 
and the government widely recognize EIA’s projections as plausible 
baselines. In this study, we use AEO2017 without the Obama 
Administration’s Clean Power Plan as our reference case (26).

We develop two scenarios—“Intermediate EE” and “Optimistic 
EE”—to represent future paths of energy efficiency improvements. 
These scenarios are based on feasible potential energy efficiency 
improvements for building services and shell materials that are not 
currently widely adopted but have been laid out in the technical 
literature (27–31). They cover energy services for residential and 
commercial buildings such as space heating and cooling, water 
heating, lighting, refrigeration, and cooking. They also cover building 
shell efficiency improvements for existing and new buildings in the 
residential, commercial, and industrial sectors. Table 1 shows the 
assumptions for our two scenarios. In the Intermediate EE scenario, 
we allow 20% efficiency increases on all building appliances and 
equipment and 40 to 60% efficiency improvements from better shell 
materials in new and existing buildings. The Optimistic EE scenario 
is a more ambitious case, in which we allow 50% efficiency improve-
ments on appliances and equipment and 60 to 90% improvements 
on building shell materials (see the Supplementary Materials).

To better understand the impacts of energy efficiency when the 
electricity sector is decarbonizing, which could reduce the benefits 
of energy efficiency, we also implement a “Carbon Pricing” scenario 

both alone and combined with the efficiency scenarios. In this sce-
nario, we assume a time path of carbon prices on electricity genera-
tion (either through a carbon tax or tradeable permit system) that 
gradually increases from $1/ton CO2 in 2021 to $30/ton CO2 in 2040 
and remains constant thereafter. This path is below the central case 
estimate of the social cost of carbon of the Obama Administration 
(32) and well below the values in recent work (33–35) or the values 
needed to reach a 1.5°C temperature rise target, as advocated by the 
Intergovernmental Panel on Climate Change. This carbon price path 
was chosen simply to illustrate the dynamics at play when a moderate 
carbon price path is in place, which is arguably more likely given 
recent historical experience and if major incentive policies for energy 
efficiency are already in place.

Energy consumption and associated emissions
Figure 1A presents the projected energy consumption in the resi-
dential, commercial, and industrial sectors in the quadrillions of Btus 
(quads) in the United States from the present to 2050. The effect of 
improving building energy efficiency on energy consumption is 
evident: Energy consumption is notably lower in the two energy 
efficiency scenarios than the reference case. In 2050, the Optimistic 
EE scenario leads to 16% reduction of energy consumption in the 
three energy consumption sectors, while the Intermediate EE sce-
nario leads to a 9% reduction. In contrast, the stand-alone Carbon 
Pricing scenario results in only a 3% reduction in energy consump-
tion in 2050. The combined Optimistic EE and Carbon Pricing sce-
nario achieves a 19% reduction in 2050 relative to the reference case. 
We present more detailed results, including total economy-wide 
energy consumption, energy consumption disaggregated by fuel source, 
and end-use service in figs. S1 to S5.

Figure 1B shows the CO2 emissions from fossil fuel combustion 
in the residential, commercial, and industrial sectors, including those 
associated with electricity used by the building sectors, which is 
generated at the power sector. In the Intermediate EE scenario, the 
CO2 emissions are lower by 9% in 2050. In the Optimistic EE sce-
nario, the emissions are 16% lower in 2050, which is about 600 million 
metric tons (MMT) of CO2. The Carbon Pricing scenario achieves a 
similar level of emissions to the Optimistic EE scenario in 2050. Under 
the Optimistic EE and Carbon Pricing scenario, CO2 emissions 
decline by 1222 MMT in 2050, a 33% reduction. The CO2 emission 

Table 1. Summary of energy efficiency scenarios for key efficiency improvements.  

Intermediate EE Optimistic EE

Appliances and equipment*
Residential 20% (28)† 50% (28)†

Commercial 20% (28)† 50% (28)†

Building shell‡

Residential
Existing 2% per year (27, 30)§ 2.5% per year (27)||

New 60% (9, 27, 29, 30) 90% (27, 30)

Commercial
Existing 40% (27, 30) 60% (27)

New 60% (9, 27, 29, 30) 90% (27, 30)

Industrial 60% (27, 30) 90% (27, 30)

*The appliances and equipment include those providing spacing heating, cooling, water heating, lighting, refrigeration, cooking, and numerous other 
services.     †The efficiency improvements for appliances and equipment are based on the advanced case of U.S. EIA’s building-sector reports 
(31).     ‡Building shell includes the envelope materials for isolating indoors and outdoors of buildings, which primarily preserves heating and cooling inside 
buildings.     §The annual efficiency improvement can achieve around 50% cumulative improvements by 2050.     ||The annual efficiency improvement can 
achieve around 60% cumulative improvements by 2050.



Gillingham et al., Sci. Adv. 2021; 7 : eabg0947     20 August 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 12

reductions under the Optimistic EE and Carbon Pricing scenario 
are greater than the sum of the reductions combined from Optimis-
tic EE and Carbon Pricing separately, which is 1183 MMT in 2050. 
This finding implies that the carbon pricing and energy efficiency 
policies are complementary on net, a result due to the fact that the 
two policies together result in more emission reductions in other 
sectors outside the building sector, which more than offsets the re-
duced potential emission savings from the building sector when 
there is cleaner electricity generation. This complementarity result 
is due to re-equilibration of prices and fuel switching in the indus-
trial sector (see section S4). Figure S6 presents the CO2 emissions 
disaggregated by the end-use sector.

Figure  2 illustrates emissions from several non-CO2 air pollu
tants associated with fossil fuel combustion across the entire energy 
system (see Materials and Methods). We observe emission reduc-
tions in the energy efficiency scenarios for nearly all non-CO2 air 
pollutants that we examine, driven by decreased consumption of 
fossil fuels (e.g., a 15% decline in coal and a 19% decline in natural 
gas in the Optimistic EE scenario). For example, sulfur dioxide 
(SO2) emissions decline by 4% in the Intermediate EE scenario and 
11% in the Optimistic EE scenario in 2050. We also observe a com-
plementary relationship between the energy efficiency scenario (i.e., 
Optimistic EE) and carbon pricing scenario for all studied non-CO2 
air pollutants except for ammonia (NH3) and volatile organic com-
pounds (VOCs). We present the detailed air pollutant emissions by 
sector and Census division in figs. S7 to S12.

Health effects
We estimate the effect of energy efficiency improvements on hu-
man health by focusing on changes in premature deaths resulting 
from reduced outdoor energy-related air pollutant emissions (see 
Materials and Methods). Table  2 shows the change in premature 
mortality across the scenarios relative to the reference case in 2050. 
Our central estimates show that the Intermediate EE scenario leads 
to 4300 avoided premature deaths annually by 2050, while the Op-
timistic EE scenario results in 6600 avoided premature deaths per 
year. The Carbon Pricing scenario results in 3700 avoided deaths 
per year. The combined Optimistic EE and Carbon Pricing scenario 
avoids 11,000 premature deaths in 2050.

These considerable reductions in mortality only account for the 
effects resulting from reductions in outdoor primary pollutant 
emissions. Improvements to building energy efficiency often in-
volve a variety of factors such as reducing convective losses, im-
proving appliance efficiency, and “tightening” or reducing outdoor 
air infiltration that occurs through the building shell (i.e., leakage). 
Aside from occasional natural ventilation (e.g., window opening), 
most homes in the United States are ventilated solely by infiltration 
through the building shell; thus, the combination of reduced out-
door air ventilation and substantial indoor emissions may result in 
a reduction in indoor air quality (7) and the associated negative hu-
man health impacts, if no mitigating actions are taken (36). The 
most common residential conditioning systems in the United States, 
and those considered in this study, are forced-air recirculation HVAC 
systems without mechanical ventilation using outdoor air (37, 38), 
which do not contribute to the overall air exchange rate. However, 
these recirculation systems typically include varying levels of particle 
filtration, which can help mitigate indoor air quality. In this analysis, 
“recirculation with filtration” is used to refer to this common 
HVAC configuration, where minimum efficiency reporting value 6 
(MERV 6)–equivalent and MERV 11–equivalent filters are modeled in 
existing and new homes, respectively (see section S5 for more details).

We model the changes in indoor air quality associated with the 
energy efficiency scenarios, focusing on residential buildings be-
cause 70% of time is spent indoors at home on average (6). We im-
plement a Monte Carlo simulation using a single-compartment 
mass-balance box model calibrated to our scenarios (see Materials 
and Methods) to represent the U.S. housing stock. While spatial 
gradients in pollutant concentrations are known to occur in homes, 
this study represents homes with single-compartment box models 
to allow us to consider the health effects for the entire U.S. housing 
stock over a long exposure time scale. A promising area for future 
study would be to combine multicompartment modeling of pollut-
ants and airflow to examine the impact of ventilation scenarios/
strategies on those pollutant-specific gradients and their resulting 
health effects. For tractability, the model focuses on particulate 
matter (PM2.5), a central indoor air pollutant with well-documented 
health associations, and we discuss the factors that would influence 
how our results would apply to other indoor pollutants.

Fig. 1. Projected energy consumption and CO2 emissions from the residential, commercial, and industrial sectors in the United States. Energy consumption in 
(A) includes all fossil fuel and electricity consumption in the residential, commercial, and industrial sectors. (B) Energy-related carbon emissions from the residential, 
commercial, and industrial sectors, including from electricity consumption. The vertical dotted lines separate historical and projected data.
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As changes to infiltration, natural ventilation, and HVAC recir-
culation adoption are all central to changes to indoor air quality (IAQ), 
we first summarize modeled differences in these parameters by year 
and scenario. In 2016, the distribution of infiltration air exchange 
rates in the entire U.S. housing stock (which are based on literature 
values) is estimated as 0.69 ± 0.22 hour−1. The literature has shown 
that newer homes, on average, tend to have lower infiltration rates 
(39), which, in this study, is taken as post-2009 construction. Only 
3% of homes were considered to be post-2009 construction in 2016. 
In 2050, the distribution of infiltration air exchange rates changes to 
0.44 ± 0.17, 0.23 ± 0.10, and 0.18 ± 0.08 hour−1 for the reference, 
Intermediate EE, and Optimistic EE scenarios (fig. S22), respectively. 
Natural ventilation rates remain constant throughout each scenario. 
Across this period, the share of homes with HVAC recirculation 
systems increased from 53% in 2016 to 63% in 2050.

Figure 3A shows the relative changes in indoor PM2.5 concentra-
tions from 2016 to 2050 as a function of the magnitude of indoor 
emissions across the U.S. housing stock (shown by emission per-
centile on the x axis) to demonstrate the nonlinear effect resulting 
from variations in indoor emissions (e.g., cooking activity and fre-
quency, electric versus natural gas stovetops/ovens, appliance usage, 
and cleaning activity). Building energy efficiency measures result in 
reduced PM2.5 concentrations in homes with lower indoor emissions 

versus increased concentrations in homes with higher indoor emis-
sions. Aside from differences in indoor emissions, another key dif-
ference between homes is the presence of indoor air recirculation 
systems that include adequate PM2.5 filtration. Thus, we plot the change 
in concentrations both with and without these measures (Fig. 3A). 
Figure 3B shows the relative changes in response time, specifically 
the ability of homes to dissipate a pollution event, modeled as 1 hour 
of elevated emissions during stovetop cooking. This response time 
increases with greater building energy efficiency measures, largely 
because of reduced infiltration of outdoor air, and is further increased 
in the absence of recirculation systems with filtration.

Indoor air quality is not independent of outdoor air quality. 
Figure 3C demonstrates the combined effect of indoor emissions 
and outdoor concentrations on indoor PM2.5 concentrations for the 
Optimistic EE scenario relative to the reference in 2050. Ratios less 
than 1 (blue shading) represent situations where higher EE scenarios 
lead to a net benefit for indoor air quality by reducing occupant 
exposure to elevated levels of outdoor air pollution, especially with 
additional mitigation measures such as recirculation with filtration. 
The opposite is true for ratios greater than 1 (red shading), where 
the decreased air exchange rate due to the tightening of the building 
shell leads to increased exposure to indoor emissions. To further 
illustrate the interplay of outdoor and indoor air, Fig. 3D displays 

Fig. 2. Projected energy-related local air pollutant emissions in the United States resulting from our scenarios. (A) Projected PM2.5 emissions. (B) Projected PM10 
emissions. (C) Projected NOx emissions. (D) Projected SO2 emissions. (E) Projected VOC emissions. (F) Projected NH3 emissions. (G) Projected CO emissions. The vertical 
dotted lines separate historical and projected data.
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the modeled ratio of indoor to outdoor PM2.5 concentrations and esti-
mates that PM2.5 concentrations are often greater outdoors for the 
majority of U.S. homes, with the exception of homes with the largest 
indoor emissions and in locations with low outdoor concentrations.

The main takeaway of Fig. 3 is that building shell efficiency im-
provements can affect indoor air quality, and the magnitude and 
direction of the effect vary depending on the magnitude of indoor 
pollutant emissions, implementing HVAC systems with pollutant 
filtration, and ambient outdoor concentrations. We use the results 
from Fig. 3 to estimate indoor PM2.5 concentrations over time in 
our scenarios and the net negative health effects from reduced in-
door air quality (over all households) relative to the reference in 
2050 (see Materials and Methods and the Supplementary Materi-
als). We perform this calculation in three ways in a bounding exer-
cise: one assuming no additional HVAC system investments, one 
assuming all homes invest in HVAC systems with particle filtration, 
and one assuming that HVAC investments follow current patterns.

Table 2 also presents the net health effects associated with these 
changes in indoor air quality across the scenarios compared to the 
reference case in 2050. On the basis of the 2050 estimates of homes 
using recirculation systems with filtration (i.e., 62%), worsened indoor 
air quality in the Intermediate EE scenario results in 2500 premature 
deaths in 2050. The Optimistic EE scenario leads to 3000 premature 
deaths. In a lower bound scenario where no homes have recirculation 
with filtration, the Intermediate EE and Optimistic EE scenarios lead 

to 4400 and 5500 premature deaths, respectively. In contrast, when 
the investments in recirculation with filtration are made in all homes, 
the Intermediate EE scenario results in only 1400 premature deaths 
and the Optimistic EE scenario results in 1500 premature deaths.

For net health impacts of our scenarios, the central estimates 
suggest that all scenarios reduce premature mortality on net, with 
the Intermediate EE scenario reducing premature mortality by 1800 
and the Optimistic EE scenario reducing it by 3600 (if investments 
in recirculation/filtration follow the patterns currently in the data). 
Figure S13 shows the net human health results for other years.

Figure 4 presents the results of net changes in avoided premature 
deaths from Table 2 (assuming 62% of homes have recirculation with 
filtration in 2050) disaggregated to the U.S. Census division level put 
in terms of avoided premature mortality per hundred thousand resi-
dents, illustrating that the magnitude of changes in avoided prema-
ture mortality is not evenly distributed across the regions. We apply 
the impacts from our national-level indoor air quality analysis to 
regions based on population but acknowledge that there may be geo-
graphical and seasonal variations in ventilation changes and housing 
characteristics. The avoided premature deaths are primarily con-
centrated in the East and Midwest (i.e., Upper Midwest and Middle 
Atlantic). For example, the Optimistic EE and Carbon Pricing sce-
nario results in six avoided premature deaths per 100,000 residents 
in the Upper Midwest region and five avoided deaths per 100,000 
residents in the Middle Atlantic regions. This spatial pattern is 

Table 2. Avoided premature mortality per year (shown for 2050) across the scenarios relative to the reference case in the United States. “Investment” refers 
to investments in recirculation systems with filtration. The “current patterns” row assumes that 62% of homes in 2050 have recirculation with filtration investments 
and thus can be thought of as a baseline. The numbers in parentheses provide bounds on the health effects of indoor air quality changes. The numbers in 
parentheses represent the lower and upper bounds of the health effects. For health effects associated with outdoor emissions, we estimate the lower and upper 
bounds based on three integrated assessment models [IAMs; i.e., Air Pollution Emission Experiments and Policy (AP3), Estimating Air pollution Social Impact Using 
Regression (EASIUR), and Intervention Model for Air Pollution (InMAP)]. For indoor air quality, we estimate the ranges of health outcomes based on the 95% confidence 
interval of the concentration-response function coefficient from the epidemiology literature. The ranges of net health effects are combinations of the above two. 

Intermediate EE Optimistic EE Carbon Pricing Optimistic EE and Carbon 
Pricing

Avoided premature deaths resulting from reductions in outdoor pollutant emissions

Estimated value 4300 6600 3700 11,000

(3700, 5000) (5700, 7800) (2900, 5100) (9000, 13,000)

Avoided premature deaths resulting from differences in PM2.5 exposure occurring indoors

Current patterns of 
investment

−2500 −3000 0 −3000

(−4500, −850) (−5400, −1000) 0 (−5400, −1000)

No investment −4400 −5500 0 −5500

(−7900, −1500) (−9900, −1900) 0 (−9900, −1900)

Investment in all homes −1400 −1500 0 −1500

(−2500, −460) (−2700, −490) 0 (−2700, −490)

Net changes in avoided premature deaths

Current patterns of 
investment 1800 3600 3700 8000

(−820, 4200) (260, 6800) (2900, 5100) (3600, 12,000)

No investment −79 1100 3700 5500

(−4200, 3500) (−4200, 5900) (2900, 5100) (−920, 11,000)

Investment in all homes 2900 5100 3700 9500

(1200, 4500) (3000, 7300) (2900, 5100) (6300, 13,000)
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primarily driven by greater marginal damages of non-CO2 air 
pollutant emissions in these regions.

Sensitivity analysis
We examine multiple sensitivity cases related to energy system model-
ing and health effects estimation. The sensitivity analyses for energy 
system modeling focus on the Optimistic EE scenario. The results do 
not appear to be sensitive to varying penetration levels of renewables 
in the energy system, which is useful to know because AEO2017 under-
projects renewable growth relative to the trends that we have seen in 
the past 2 years (see fig. S27). In addition, the emission results do not 
vary substantially using the U.S. Environmental Protection Agency 
(EPA) National Emissions Inventory (NEI) 2017 data and 2017 as the 
base year for outdoor emission projections (see fig. S28). However, 
the results appear to be dominantly driven by the projections of the 
emission factors of fossil fuel consumption (see figs. S29 and S30).

The health effects due to changes in outdoor pollutant emissions 
are influenced by the assumptions about the marginal damages from 
air pollutant emissions, which are drawn from the literature (40–42). 
We also conduct a sensitivity analysis for estimating the health ef-
fects owing to changes in PM2.5 exposure occurring indoors using 

an alternative concentration-response (C-R) function. The results 
are consistent with the primary results (see table S3). The full set of 
sensitivity analyses is presented in the Supplementary Materials.

DISCUSSION
This paper analyzes the effects of intensive improvements in building 
energy efficiency that go substantially beyond current policies on 
outdoor emissions, indoor air quality, and human health. We use a 
large-scale energy-economic model, Yale-NEMS, and combine it with 
a detailed indoor air quality analysis. We implement two detailed 
energy efficiency scenarios and a carbon pricing scenario to depict an 
evolving energy system. Our results suggest that intensive efficiency 
scenarios lead to a 6 to 11% decrease in energy-related CO2 emissions, 
a 4 to 11% decrease in SO2 emissions, and an 18 to 25% in decrease in 
primary PM2.5 emissions in 2050. These outdoor emission reductions 
can bring about considerable health benefits, which can reduce prema-
ture mortality by 3700 to 7800 lives in the United States annually in 2050.

While intensive energy efficiency improvements may lead to 
worsened indoor air quality for some homes, we show that prema-
ture deaths are avoided on net (i.e., up to 6800 avoided deaths annually 

Fig. 3. Impact of projected energy efficiency scenarios on residential indoor air quality. (A) Relative change of residential indoor PM2.5 concentration from 2016 to 
2050 for homes with and without HVAC recirculation systems with particle filtration for each EE scenario as a function of indoor emission percentile (a lower value means 
a “cleaner” home). (B) Relative change of the response time from 2016 to 2050 of homes to an indoor emission event for each EE scenario (simulated as 1 hour of stovetop 
cooking). Error bars indicate SDs. (C) Color map of the change of indoor PM2.5 concentration for 2050 from the optimistic EE scenario relative to the reference case as a 
function of indoor emissions and outdoor PM2.5 concentrations. (D) Logarithmic color map of the indoor:outdoor (I/O) ratio of PM2.5 for the optimistic EE scenario in 2050 
(contour lines show the 0.5 and 1 curve). Note that outdoor concentrations in (A) and (B) use the 2016 national average, while in (C) and (D), the outdoor concentration is 
shown up to 35 g/m3 to include the 24-hour standard [shown in (D) alongside annual primary standard and 2016 average].
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in 2050) even after accounting for changes in indoor air quality 
(assuming that investments in recirculation with filtration follow current 
patterns), a new and important result. From a policy perspective, it is 
also important to note that attention to ventilation practices, indoor 
emissions, and investments in indoor air recirculation systems with 
filtration, including upgrading to better-performing filters, could miti-
gate the detriments to indoor air quality. This could even improve 
indoor air quality further, avoiding many additional premature deaths. 
Our result of a complementarity between intensive energy efficiency and 
carbon pricing is also highly policy relevant, as it suggests that the two 
policies could be combined to achieve greater emission reductions.

There are some limitations to our analysis worth mentioning. 
While we address the potential social benefits from building energy 
efficiency improvements, we do not examine the costs associated with 
improving energy efficiency or the costs of additional investments 
in indoor air recirculation systems (with filtration) beyond those already 
in place. Thus, similar to Buonocore et al. (15), this study does not 
perform a cost-benefit analysis but rather is an exploration into the 
climate and health benefits of energy efficiency investments. Since 
intensive energy efficiency improvements may require substantial cost 
outlays, future work is warranted to explore those outlays, as well as 
the future fuel savings that the recipients of the energy efficiency 
improvements would benefit from. Similarly, we focus our indoor 
health effects calculations only on PM2.5 and do not include any 
non–air quality–related benefits (e.g., from reductions in cold-related 
mortality, especially for populations struggling with winter fuel 
poverty, that result from improved building thermal efficiency).

Our estimated health benefits naturally depend on the central 
estimates of marginal damages of emissions and the magnitude of 
the C-R functions. While the methodologies in this study are widely 

used for policy evaluation, there are uncertainties in these values that 
would further broaden our ranges (see the Supplementary Materials). 
In addition, our indoor air and health results are focused on PM2.5 
given its outsize impact on premature mortality, but there are other 
indoor air pollutants. The outcomes and framework of this study 
may be relevant to the analysis of several of these other pollutants in 
the context of ventilation scenarios. Key considerations when apply-
ing our results to other pollutants include pollutant-dependent dif-
ferences in the magnitude of indoor emissions, deposition to indoor 
surfaces, filtration efficiency, chemical reactions/losses, and location- 
and time-dependent outdoor concentrations that affect indoor-outdoor 
pollutant gradients. Gas-phase pollutants have compound-dependent 
deposition rates, potential repartitioning to the gas phase for VOCs, 
and chemical sinks from reactions, and most will have limited filtra-
tion efficiency by traditional filter media in HVAC systems.

Pollutants with a mix of indoor and outdoor sources (e.g., NOx 
and VOCs) may exhibit a range of outcomes across the housing stock 
similar to our observations for PM2.5. There may be higher indoor 
concentrations of gases and particles with major indoor sources 
(e.g., radon, some VOCs, and biological aerosols) due to decreased 
ventilation with outdoor air (43), while the indoor concentrations 
of those of outdoor origin (e.g., ozone and wildfire smoke) may be 
reduced, especially during peak outdoor periods. Mold exposure, and 
the underlying issue of dampness, is another important indoor air 
issue, and one that will respond in a complex way to changes in in-
filtration and ventilation practices. A recent review of a diverse range 
of home retrofit studies (43), and the resulting changes in gas-phase 
pollutants, points to this complexity in the coupled indoor-outdoor 
system, which emphasizes the importance of building design to 
mitigate exposure to both outdoor and indoor air pollution.

Fig. 4. Net benefits of avoided premature mortality per 100,000 residents per year in the U.S. Census divisions. (A) Net benefits of avoided premature mortality per year 
for the Intermediate EE scenario. (B) Net benefits of avoided premature mortality per year for the Optimistic EE scenario. (C) Net benefits of avoided premature mortality 
per year for the Carbon Pricing scenario. (D) Net benefits of avoided premature mortality per year for the Optimistic EE and Carbon Pricing scenario. The results are the 
net mean effects of changes in outdoor and indoor air quality (assuming current patterns of investment in indoor air recirculation systems with filtration) relative to the 
reference case in 2050. We use the nationwide indoor air quality results and divide by the population of each of the regions.
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The presence of a forced-air recirculation HVAC system was 
found to be a key differentiating factor for indoor air quality, and 
additional policy measures addressing particle filtration standards 
or strategic retrofitting incentives could improve health benefits 
substantially. As building envelopes continue to tighten for energy 
efficiency purposes, home ventilation could cease their reliance on 
infiltration and be built or retrofitted with energy-efficient mechanical 
ventilation systems with outdoor air intake, which are not prevalent 
in the current housing stock or considered in our analysis. More 
broadly, our methodology is a scenario analysis designed to illustrate 
the potential benefits of intensive energy efficiency relative to a rea-
sonable baseline, but the exact paths of future developments in 
technology, population, economic growth, policy, etc., are unknown. 
In this sense, we are modeling for quantitative insight, rather than 
exact estimates of any of our outcome variables. Furthermore, an un-
certainty in the indoor air study is the exact relationship of future 
changes in ventilation rates (i.e., infiltration reduction) to building 
shell efficiency index (BSEI)–related improvements compared to 
other efficiency measures (e.g., insulation) (see section S5.1). To 
examine this, a sensitivity analysis (section S5.5) shows indoor 
air quality effects with varying degrees of emphasis on building 
tightening (figs. S25 and S26). In all, the indoor air exposure results 
emphasize careful consideration of ventilation practices and poli-
cies with respect to building efficiency as the indoor air effects are 
sensitive to the level of prioritization on building tightness, which 
may also vary as a function of home type, geometry, or location.

The geographic scope of our analysis is restricted to the United 
States. There are substantial differences between the United States 
and many other countries in the housing stock, electric grid, indoor 
pollutant sources (which are sometimes energy-related and connected 
to relevant policies), and demographics. Intensive energy efficiency 
achieved by tightening the building shell along with investments in 
recirculation systems with filtration may have even more substan-
tial benefits from improved indoor air quality in  locations with 
poorer outdoor air quality as long as there is sufficient mitigation of 
indoor emissions. In addition, widespread bans on natural gas, as 
are occurring in some U.S. municipalities, would affect building-
related greenhouse gas emissions and could mitigate some sources of 
indoor PM2.5 emissions (e.g., table S2). Despite the limitations, the 
results reported in this study can shed light on how intensive build-
ing energy efficiency can be a part of a broader decarbonization 
strategy and how they can bring about substantial health benefits.

MATERIALS AND METHODS
The methodology used in this study includes a series of model runs 
and postprocessing estimations. We first run the scenarios in Yale-
NEMS to project energy consumptions, CO2 emissions, and local air 
pollutant emissions from the present to 2050. On basis of the modeling 
results from Yale-NEMS, we then extrapolate the emissions associated 
with fossil fuel combustion for a more extensive set of air pollutants 
(e.g., PM2.5 and VOCs). Next, we analyze the changes in indoor air 
quality. Last, we quantify the health impacts associated with out-
door and indoor changes to PM2.5 exposure across the scenarios.

Yale-NEMS
NEMS is a large-scale energy-economy equilibrium model for the 
United States, incorporating current policies, resource availability, 
and technologies. Yale-NEMS is the NEMS modeling framework 

run on a server at Yale (the EIA requests all outside users of NEMS 
to add their name with a hyphen in front of NEMS). This modeling 
framework is appropriate for our research goals because of its spatial 
granularity, detailed modeling of the energy markets, and, most 
importantly, a comprehensive representation of building energy 
end-use services. The model consists of 13 interconnected modules, 
including all principal U.S. energy supply and demand sectors at the 
U.S. Census division level. Yale-NEMS solves energy equilibrium 
prices and quantities out to 2050, as it equilibrates energy supply 
and demand. Since we are interested in the effects of building energy 
efficiency improvements, the following description of Yale-NEMS 
will focus on the modeling of building energy consumption in the 
residential, commercial, and industrial sectors.

The modeling of energy demand for the residential sector is in 
the Residential Demand Module (RDM). The RDM is an integrated 
dynamic modeling system accounting for residential consumer 
economic behaviors (44). The module projects residential appliance 
stocks and market shares of technologies and the associated energy 
demand starting from EIA’s most recent Residential Energy Con-
sumption Survey (i.e., the base year of the module) out to 2050. 
Specifically, the RDM models residential energy demand with six 
sequential steps: (i) projecting the stocks of newly built and existing 
(carried forward or removed) houses based on the results from the 
Macroeconomic Activity Module (e.g., gross domestic product and 
population projections); (ii) projecting market shares for each 
available equipment type; (iii) projecting end-use appliance stock 
within houses; (iv) projecting building shell technology for space 
heating and cooling; (v) projecting distributed electricity generation 
in residential houses from solar, fuel cells, and small wind turbine 
systems; and (vi) calculating end-use consumption for each residential 
building service and fuel type. These sequential projections are 
based on energy prices and macroeconomics factors endogenously 
determined in Yale-NEMS and other exogenous data sources.

Similarly, the modeling of energy demand for commercial sec-
tors is depicted in the Commercial Demand Module (CDM) (45). 
The CDM is a dynamic simulation modeling tool that is used to project 
long-run commercial energy demand from EIA’s most recent Com-
mercial Building Energy Consumption Survey to 2050. The module 
consists of five steps: (i) projecting commercial building floorspace, 
(ii) projecting energy-consuming services demand, (iii) forecasting 
electricity generation by distributed generation technologies, (iv) 
determining equipment choices to meet the service demands, and 
(v) calculating energy consumption by fuel type.

The equipment and shell efficiency data in AEO2017 are from 
Navigant Consulting Inc. In our energy efficiency scenarios, we 
mainly alter the baseline equipment and shell efficiency coefficients. 
Yale-NEMS models rebound effects for building services in the resi-
dential and commercial sectors that lead improved energy efficiency 
to increase usage. For example, in CDM and RDM, space heating and 
cooling energy demand associated with increasing equipment effi-
ciency is rebound-adjusted, where the elasticity of energy consump-
tion with respect to the energy efficiency (described as the “rebound 
elasticity” in the NEMS documentation) is assumed to be −0.15.

Yale-NEMS models industrial energy consumption in the 
Industrial Demand Module (46). Unlike the residential and com-
mercial sectors, energy use in industrial buildings only accounts for 
a small proportion of the total energy consumption in the industrial 
sector. The majority of energy is allocated to manufacturing pro-
cesses, which is beyond the scope of this analysis. Here, we change 
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the baseline energy efficiency coefficients, including lighting and 
HVAC, which primarily provide services for workers working indoors. 
Note that Yale-NEMS accounts for increased average temperatures 
out to 2050, with fewer heating degree days and more cooling 
degree days.

Air pollutant emissions estimation
For each model run, Yale-NEMS outputs a rich set of results at the 
Census division level, including energy quantities and prices by fuel 
type and sector, as well as emissions. For emissions, Yale-NEMS 
reports economy-wide energy-related CO2 emissions and SO2 and 
nitrogen oxides (NOx) emissions from the electricity-generating 
sector from the present to 2050. To obtain broader insights into 
emissions, we use a postprocessing approach to estimate the 
emissions of additional local air pollutants from burning fossil 
fuels in all energy-related sectors, such as NH3, carbon monoxide 
(CO), PM2.5, PM10, and VOCs.

For each projected year, we first compute the percentage changes 
in energy consumption by fuel type in that year compared to the 
consumption in the year 2014. We then apply the computed per-
centage changes to the EPA 2014 NEI to extrapolate air pollutant 
emissions over the projected years. Note that the calculated air 
pollutant emissions are only associated with fuel combustion. While 
this approach assumes constant emission factors over time, we con-
duct a sensitivity analysis for changing emission factors. We also 
conduct an additional sensitivity analysis using the EPA 2017 NEI 
data and the year 2017 as the base year for emission projections (see 
section S6.1).

Indoor air quality analysis
One contribution of this paper is that we develop a model to esti-
mate the effects of our scenarios on home indoor air quality. We 
analyze how changes in ventilation due to our scenarios influence 
indoor exposures to PM2.5 from indoor sources. We also account 
for changes in the infiltration of outdoor PM2.5 into homes due to 
our scenarios. The model uses Yale-NEMS output (e.g., BSEI, the 
number of HVAC systems, and heating and cooling degree days) 
and factors from existing literature (e.g., air exchange rates, housing 
stock variables, and PM2.5 emission rates). See section S5 for details 
on the methodology.

We first identify the relationship between energy efficiency im-
provements and home ventilation. Yale-NEMS projects BSEI out to 
2050, which is a key variable linking building EE improvements and 
indoor air quality. The BSEI expresses the relative amount of energy 
required to heat or cool the same space over time compared to the 
base year 2009. In this study, we assume that each factor contribut-
ing to BSEI (energy use due to air leakage, convective losses, appli-
ances, etc.) decreases by the same relative amount (see section S5.1 
for additional information). Coupling changes in the BSEI, heating 
and cooling appliance efficiencies, average home size, and heating 
and cooling degree days allows for the calculation of relative out-
door air infiltration and the resulting air exchange rates compared 
to a base year (e.g., 2016) across the scenarios. See section S5.5 for a 
sensitivity analysis exploring the importance of linking changes to 
energy efficiency with changes to home building tightness and the 
effect of varying the relationship between BSEI and infiltration-
related energy use.

We then calculate absolute air exchange rates from infiltration 
for 2016 based on the Yale-NEMS output (e.g., the housing stock 

and the number of HVAC systems) and various residential home 
factors from the literature (e.g., the distribution of air exchange rates 
from infiltration) (37, 39, 47). Using distributions from the litera-
ture on key home factors allows for a variety of home types to be 
represented under a single distribution rather than from being modeled 
individually. Homes with HVAC systems are assumed to consist of 
forced-air recirculation with no additional outside intake, which is 
the most common configuration for North American homes (37, 38). 
These systems are also assumed to have particle filtration based on 
house age (MERV 6 equivalent for pre-2009 homes and MERV 11 
for post-2009 homes), although there is no known comprehensive 
survey of HVAC filter adoption (39). HVAC runtimes are taken 
from the literature and based on current levels of use, but changes 
in HVAC runtimes could accompany future building ventilation 
scenarios and lead to different levels of PM2.5 filtration (37, 39).

The calculated air exchange rates for infiltration are used in a 
well-mixed single-compartment box model to estimate indoor PM2.5 
concentrations. Although each home consists of several compart-
ments with distinct geometry that will affect pollutant exposure, a 
single-compartment box model was chosen to reduce computational 
complexity and model overall U.S. housing stock effects. Note that 
the modeling framework can be applied to other pollutants, but we 
focus on PM2.5 because of its well-known association with health 
impacts (48). Our indoor air quality model takes into account a wide 
variety of indoor particle sources (e.g., stovetops, ovens, microwaves, 
toasters, washing machines, showering, and vacuuming), outdoor 
PM2.5 penetrating through building cracks, and building air re-
circulation systems with filtration. Note that candles, incense, smoking, 
or other similar sources are not included and would represent addi-
tional PM2.5 emissions. We then implement a Monte Carlo simula-
tion using the Yale-NEMS output distributions for the U.S. housing 
stock, and indoor air quality model parameters to simulate absolute 
indoor PM2.5 concentrations by EE scenario and year.

Because of the nonlinear distribution of indoor emission rates 
(see section S5.3) and the exponential relationship between PM2.5 
and premature mortality, PM2.5 concentration estimates are grouped 
by emissions deciles, each of which are assumed to represent 1/10 of 
the population. The change in indoor air quality for each decile is 
then used to estimate health effects. Generally, reductions in air ex-
change rates due to infiltration, among other factors, provide positive 
health effects to lower deciles and negative health effects to higher 
deciles. These effects are subsequently summed over all bins to de-
termine the net effect. The indoor air quality concentration data 
used for estimating the health effects are presented in fig. S24.

Outdoor health effects estimation
We calculate the effect of outdoor air pollutant emissions on human 
health using the estimates of marginal damages of air pollutant 
emissions from three integrated assessment models (IAMs): the Air 
Pollution Emission Experiments and Policy (AP3) model, the Esti-
mating Air pollution Social Impact Using Regression (EASIUR) 
model, and the Intervention Model for Air Pollution (InMAP) (40–42). 
These models examine the health effects of pollution exposure that 
inherently includes the time spent both indoors and outdoors, as 
well as pollutant intrusion indoors.

On the basis of historical spatially distributed emissions data 
(e.g., EPA’s NEI), these models first estimate baseline atmo-
spheric concentrations of particulate matter for each location 
(e.g., county or grid). The models then compute changes in ambient 
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PM2.5 concentrations from the baseline across locations with a one-
unit perturbation in pollutant emissions. Following the changes in 
PM2.5 concentrations, the IAMs estimate the number of premature 
mortality occurrences caused by the changes in emissions using cer-
tain C-R functions from the epidemiology literature. Last, assuming 
a value of statistical life (VSL), the number of premature mortality 
occurrences is converted to dollar values. The outputs from these 
models include location-specific marginal damages per unit of NH3, 
NOx, primary PM2.5, SO2, and VOCs emissions in dollar values for 
the United States. However, the effect of these emission reductions 
on secondary PM2.5 formation was not modeled as part of this study 
and may lead to changes in ambient secondary organic and inorganic 
PM2.5 concentrations due to reductions in reactive precursors or 
changes in chemical processes. We obtain the marginal damages data 
for AP3 from the website https://public.tepper.cmu.edu/nmuller/
APModel.aspx and the data for EASIUR and InMAP from the Center 
for Air, Climate, and Energy Solutions website (www.caces.us).

The three IAMs have been used in various studies concurrently as 
an approach to shed light on uncertainty (49, 50). Specifically, here, 
we first calculate the county-level number of premature mortality 
cases per metric ton of emissions by dividing the reported dollar 
value marginal damages by the assumed VSL ($9,186,210  in AP3 
and $6,299,143 in EASIUR and InMAP) for each of the IAMs. We 
then aggregate marginal damages to the U.S. Census division level 
weighted by county-level emissions. Next, we calculate the total 
damages of premature mortality by multiplying marginal damages 
and projected emissions by pollutant and summing over the products 
across NH3, NOx, primary PM2.5, SO2, and VOCs. We take the averages 
of the estimates across the three models as our central estimates and the 
ranges of these estimates across the models as the lower and upper 
bounds to provide the reader a sense of the uncertainty in the out-
door health effects calculations. Unfortunately, the IAMs themselves 
do not provide SEs, so it is not possible to estimate within-model 
uncertainty currently, but this is a prime area for future research.

Indoor health effects estimation
The effect of changes in indoor PM2.5 concentrations on changes in 
premature mortality is estimated on the basis of an epidemiology-
based C-R function adjusted for time spent indoors in Logue et al. 
(51). Following Azimi and Stephens (52), we further modify the 
C-R function to account for microenvironmental PM2.5 concentra-
tions and exposures. While the evidence on the variable effects of 
indoor versus outdoor air quality on human health is still emerging, 
here, we apply the best evidence available.

The log-linear C-R function is shown as

	​ ​Y​ t,s,d​​ = ​y​ 0​​(exp(​​t,s,d​ OG ​ × ​​​ home​ × ​C ​t,s,d​ OG ​  + ​ ​t,s,d​ IG  ​  × ​​​ home​ × ​C ​t,s,d​ IG ​  ) − 1 ) × ​Pop​ t,s,d​​​	 (1)

where Yt,s,d indicates the changes in premature deaths in year t 
associated with the type of building stock s, s∈ {homes with recircu-
lation, homes without recirculation}, and emissions decile d that 
defines the magnitude of indoor emissions in homes. y0 is the base-
line mortality rate per person per year, assumed to be 0.0074 (51), 
and home represents the average fraction of time that people spend 
inside residence, which is assumed to be 0.69 (6). ​​C​t,s,d​ OG ​​ represents 
the changes in indoor PM2.5 concentrations (g/m3) that result 
from sources of outdoor origin, and similarly, ​​C​t,s,d​ IG ​​  represents the 
changes in indoor PM2.5 concentrations that result from indoor-
generated sources.

Both ​​C​t,s,d​ OG ​​ and ​​C​t,s,d​ IG  ​ ​are projected from our indoor air quality 
model and are relative to a baseline value of 0 g/m3, which is con-
sistent with other recent studies (52, 53). Popt,s,d represents the total 
population. We take the total U.S. population forecasted in Yale-
NEMS and disaggregate it into homes with and without recircula-
tion/filtration (based on the number of central air conditioning and 
home heating units compared to the total number of homes) and 
indoor emissions decile (assumed to be uniformly distributed).

The parameter ​​​t,s,d​ OG ​​ is the modified PM2.5 C-R coefficient for 
outdoor-generated sources, which is calculated as

	​​ ​t,s,d​ OG ​  = ​ ​ 0​​ / ​​   F ​​ t,s,d​​​	 (2)

where 0 is the PM2.5 C-R coefficient from the epidemiological liter-
ature, assumed to be 0.0058 (95% confidence interval: 0.0020 to 
0.0104) (48). ​​​   F ​​ t,s,d​​​ is an average of infiltration factors weighted by 
time fractions spent in four microenvironments (i.e., home, outdoor, 
vehicle, and other indoors), which is specified as

​​​   F ​​ t,s,d​​ = ​F​t,s,d​ home​ ​​​ home​ + ​F​​ outdoor​ ​​​ outdoor​ + ​F​​ vehicle​ ​​​ vehicle​ + ​F​​ other​ ​​​ other​​	 (3)

​​F​t,s,d​ home​​ is the infiltration factor for home, which is simulated from 
the indoor air quality model. The rest of the infiltration factor and 
time fraction parameters are obtained from Azimi and Stephens 
(52). The intuition for adjusting the C-R coefficient 0 from epide-
miological studies is that the coefficient 0 is calculated from ambient 
PM2.5 concentrations as a proxy for overall personal exposure, which 
includes time spent in various environments (e.g., in a home or vehicle) 
where concentrations may not be equal to that outdoors (53–55). 
Following Azimi and Stephens, we assume that the C-R effects for 
indoor (​​​t,s,d​ IG ​​ ) and outdoor (​​​t,s,d​ OG ​​) generated PM2.5 concentrations 
were equal.

We calculate the central estimates of indoor health effects based 
on the mean values of the parameters discussed above. To illustrate 
the uncertainty in these estimates, we also estimate lower and upper 
bounds using the 95% confidence interval for the PM2.5 C-R coeffi-
cient 0.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/34/eabg0947/DC1
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