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Abstract: Galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol
(DGDG), are the predominant lipid classes in the thylakoid membrane of chloroplasts. These lipids
are also major constituents of internal membrane structures called prolamellar bodies (PLBs) and
prothylakoids (PTs) in etioplasts, which develop in the cotyledon cells of dark-grown angiosperms.
Analysis of Arabidopsis mutants defective in the major galactolipid biosynthesis pathway revealed
that MGDG and DGDG are similarly and, in part, differently required for membrane-associated
processes such as the organization of PLBs and PTs and the formation of pigment–protein complexes
in etioplasts. After light exposure, PLBs and PTs in etioplasts are transformed into the thylakoid
membrane, resulting in chloroplast biogenesis. During the etioplast-to-chloroplast differentiation,
galactolipids facilitate thylakoid membrane biogenesis from PLBs and PTs and play crucial roles in
chlorophyll biosynthesis and accumulation of light-harvesting proteins. These recent findings shed
light on the roles of galactolipids as key facilitators of several membrane-associated processes during
the development of the internal membrane systems in plant plastids.

Keywords: chlorophyll; chloroplast; digalactosyldiacylglycerol; etioplast; galactolipid;
monogalactosyldiacylglycerol; photosynthetic proteins; prolamellar body; thylakoid membrane

1. Introduction

Plastids are a diverse family of plant organelles probably derived from a cyanobacterial ancestor
through endosymbiosis. In higher plants, various types of plastids differentiate from undifferentiated
proplastids or other types of plastids, depending on the host cell type and developmental stages [1].
Chloroplasts are the most typical form of plastids that develop the thylakoid membrane inside to
perform oxygenic photosynthesis. Under light, most chloroplasts differentiate directly from proplastids.
However, in the absence of light, as often observed in angiosperms germinated in the dark, proplastids
in leaves differentiate to precursors of chloroplasts, etioplasts [2].

Etioplasts largely differ from chloroplasts, particularly in structures and components of internal
membranes. Unlike chloroplasts with highly stacked lamellar thylakoid membranes, etioplasts form
paracrystalline, three-dimensional lattice structures named prolamellar bodies (PLBs), from which
flattened lamellar prothylakoids (PTs) are radiated [2]. Etioplasts accumulate protochlorophyllide
(Pchlide), the precursor of chlorophyll (Chl), in these internal membranes. With light exposure,
etioplasts rapidly differentiate to chloroplasts to establish photoautotrophic growth. The differentiation
from etioplasts to chloroplasts after light exposure involves the dynamic transformation of PLBs
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to thylakoids, which is accompanied by changes in pigment compositions from Pchlide to Chl
and accumulation of other photosynthetic components including photosystem (PS) I, PSII, and
light-harvesting complex (LHC).

The biogenesis of the thylakoid membrane requires coordinated biosynthesis and assembly of
photosynthetic membrane proteins, pigments, and cofactors with glycerolipids. Glycerolipids in the thylakoid
membrane provide a lipid bilayer matrix for photosynthetic complexes responsible for photochemical
and electron transport reactions and allow for generating an electrochemical potential difference across
the membrane for ATP synthesis. In addition, glycerolipids function directly in photosynthesis as
structural components of PSII, PSI, LHCII, and cytochrome b6f complexes [3]. The lipid matrix of
the thylakoid membrane consists mainly of four lipid classes—monogalactosyldiacylglycerol (MGDG),
digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylglycerol
(PG) (Figure 1A)—each of which has specific roles in the biogenesis and maintenance of the thylakoid
membrane and photosynthesis.

Of the four major thylakoid lipids, galactolipids MGDG and DGDG constitute the bulk of the
lipid bilayer and thus play essential roles in chloroplast biogenesis [4]. MGDG has a conical shape
with a small head group of a single galactose moiety and flexible poly-unsaturated fatty acid tails
and forms a hexagonal-II phase in aqueous mixtures. In contrast, DGDG has a cylindrical shape with
a larger head group of two galactose moieties, which allows for forming a lamellar bilayer phase
(Figure 1B) [5]. The ratio of non-bilayer-forming MGDG to bilayer-forming DGDG is important to
form and stabilize the thylakoid membrane structure [6]. The MGDG-to-DGDG ratio is also suggested
to be required for the unique structures of PLBs and PTs in etioplasts [7]. Recently, characterization
of galactolipid-deficient Arabidopsis mutants have revealed similar and different involvements of
MGDG and DGDG in etioplast development in the dark and etioplast-to-chloroplast differentiation
after light exposure.
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Figure 1. Abundance of galactolipids in plastid internal membranes and their structural characteristics.
(A) Glycerolipid composition in the thylakoid membrane from spinach chloroplasts [8] and prolamellar
bodies from wheat etioplasts [7]. Only the major lipids are compared. (B) Conceptual structure
of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) and their phase
behaviors in aqueous mixtures.

In this review, we briefly outline internal membrane processes during etioplast development in
the dark and etioplast-to-chloroplast differentiation after light exposure and discuss the roles of MGDG
and DGDG in these processes. Recent advances in understanding the functions of galactolipids as key
facilitators of various membrane-associated processes in etioplasts and chloroplasts provide important
insights into the complex processes of thylakoid membrane development and photosynthetic activation
in plants.



Plants 2019, 8, 357 3 of 17

2. Development of Etioplasts in the Dark and Their Differentiation to Chloroplasts with Light

2.1. Pchlide and Chl Biosynthesis in the Dark and in the Light

Plants synthesize tetrapyrroles, including Pchlide and Chl, in plastids as described in
comprehensive reviews (Figure 2) [9–12]. As an early step of tetrapyrrole biosynthesis, the generation
of 5-aminolevulinic acid (ALA) from glutamyl-tRNAGlu is a rate-limiting step of the entire pathway.
ALA is processed into protoporphyrin IX (Proto IX), the last common intermediate for both Chl and
heme biosynthesis, by a cascade of several enzymatic steps. For Chl synthesis, Mg-chelatase (MgCh)
inserts Mg2+ into Proto IX to yield Mg-Proto IX, followed by esterification of Mg-Proto IX to Mg-Proto
IX monomethylester (Mg-Proto IX ME) by S-adenosyl-l-methionine:Mg-Proto IX methyltransferase
(MgMT). Subsequently, Mg-Proto IX ME cyclase (MgCY) introduces the fifth ring to Mg-Proto IX
ME to form divinyl Pchlide, which is then reduced to chlorophyllide (Chlide) by Pchlide reductase
(POR). After reduction of the 8-vinyl group, Chlide a is esterified with geranylgeraniol or phytol by
Chl synthase to form Chl a. Some of Chl a is reversibly converted to Chl b via the Chl cycle.

Plants 2019, 8, 357 3 of 17 

 

Plants synthesize tetrapyrroles, including Pchlide and Chl, in plastids as described in 
comprehensive reviews (Figure 2) [9–12]. As an early step of tetrapyrrole biosynthesis, the generation 
of 5-aminolevulinic acid (ALA) from glutamyl-tRNAGlu is a rate-limiting step of the entire pathway. 
ALA is processed into protoporphyrin IX (Proto IX), the last common intermediate for both Chl and 
heme biosynthesis, by a cascade of several enzymatic steps. For Chl synthesis, Mg-chelatase (MgCh) 
inserts Mg2+ into Proto IX to yield Mg-Proto IX, followed by esterification of Mg-Proto IX to Mg-Proto 
IX monomethylester (Mg-Proto IX ME) by S-adenosyl-L-methionine:Mg-Proto IX methyltransferase 
(MgMT). Subsequently, Mg-Proto IX ME cyclase (MgCY) introduces the fifth ring to Mg-Proto IX ME 
to form divinyl Pchlide, which is then reduced to chlorophyllide (Chlide) by Pchlide reductase (POR). 
After reduction of the 8-vinyl group, Chlide a is esterified with geranylgeraniol or phytol by Chl 
synthase to form Chl a. Some of Chl a is reversibly converted to Chl b via the Chl cycle. 

Most oxygenic photosynthetic organisms can synthesize Chl both in the light and in the dark. 
Exceptions include angiosperms, which synthesize Chl exclusively in a light-dependent manner. In 
angiosperms, the conversion of Pchlide to Chlide is catalyzed by light-dependent NADPH:Pchlide 
oxidoreductase (LPOR), which absolutely requires light for its enzymatic activity [13]. Unlike 
angiosperms, other oxygenic phototrophs including cyanobacteria can convert Pchlide to Chlide in 
the absence of light, because these organisms have another type of POR active in the dark, the so-
called dark-operative POR, in addition to LPOR [14]. The light dependence of the Pchlide reduction 
in angiosperms led to the establishment of a specific light-responsive developmental program called 
greening or deetiolation. 

 
Figure 2. Involvements of galactolipids in Pchlide biosynthesis, the organization of Pchlide–LPOR–
NADPH complexes and the regeneration of photoactive ternary complexes after photoconversion. 
The pathways for Chlide biosynthesis and the conversion of (P)chlide–LPOR complexes are shown 

Figure 2. Involvements of galactolipids in Pchlide biosynthesis, the organization of Pchlide–LPOR–
NADPH complexes and the regeneration of photoactive ternary complexes after photoconversion.
The pathways for Chlide biosynthesis and the conversion of (P)chlide–LPOR complexes are shown with
important intermediates. An involvement of MGDG and/or DGDG is indicated by their names with
the corresponding steps. Both galactolipids facilitate the membrane-associated processes of the Pchlide
biosynthesis pathway and the formation of the Pchlide–LPOR–NADPH ternary complex. In addition,
MGDG plays a role in the oligomerization of the ternary complex, whereas DGDG is required for the
modification of the complex after photoconversion.

Most oxygenic photosynthetic organisms can synthesize Chl both in the light and in the dark.
Exceptions include angiosperms, which synthesize Chl exclusively in a light-dependent manner.
In angiosperms, the conversion of Pchlide to Chlide is catalyzed by light-dependent NADPH:Pchlide
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oxidoreductase (LPOR), which absolutely requires light for its enzymatic activity [13]. Unlike
angiosperms, other oxygenic phototrophs including cyanobacteria can convert Pchlide to Chlide in the
absence of light, because these organisms have another type of POR active in the dark, the so-called
dark-operative POR, in addition to LPOR [14]. The light dependence of the Pchlide reduction in
angiosperms led to the establishment of a specific light-responsive developmental program called
greening or deetiolation.

2.2. Formation of Pchlide–LPOR–NADPH Ternary Complexes in PLBs

Reflecting the light dependent property of LPOR to reduce Pchlide, angiosperms accumulate
Pchlide with LPOR in the dark. In etioplasts, LPOR binds Pchlide and NADPH to form photoactive
ternary complexes. Therefore, the abundance of LPOR proteins affects the formation of the
photoactive complex [13,15]. In addition, carotenoids are required for accumulation of the photoactive
complex [16,17], probably without largely affecting LPOR protein levels [18]. Because xanthophylls
are strongly associated with LPOR in wheat etioplasts [19], these pigments may stabilize the
Pchlide–LPOR–NADPH complex on the membrane. In etioplast membranes, the photoactive ternary
complex further forms dimeric or large oligomeric complexes (Figure 2) [20]. The oligomeric complex
is the major form especially in PLBs, whereas small amounts of the dimeric complex are identified in
both PLBs and PTs, with relatively enriched in PTs in wheat etioplasts [21,22].

With illumination, LPOR in the photoactive complex instantaneously reduces Pchlide to Chlide by
using NADPH as a reductant [23]. Although Pchlide is a photosensitizer with a potential to generate
singlet oxygen under light, the formation of the photoactive complex prevents photooxidative
damage from light-absorbed Pchlide [2]. After the photoconversion of Pchlide, the resulting
Chlide–LPOR–NADP+ oligomeric complex is processed in two different pathways to regenerate
the photoactive Pchlide–LPOR–NADPH complex (Figure 2) [20]. In the major pathway, NADP+ is
replaced by NADPH to form the Chlide–LPOR–NADPH ternary complex, which contributes to prevent
photodamage from Chlide [2]. This process is followed by dissociation of the oligomeric complex to
dimeric complexes and replacement of Chlide by Pchlide. In the minor pathway, the replacement
of the pigments and cofactors occurs in the oligomeric complex, which would be advantageous to
regenerate the photoactive complex rapidly [24]. Meanwhile, some portion of Pchlide, referred to as
nonphotoactive Pchlide, is not bound to the active site of LPOR and thus is inconvertible by a short
illumination [14,25]. Reflecting the photosensitizing nature of Pchlide, an excess accumulation of
nonphotoactive Pchlide often causes photobleaching of seedlings with light [26].

2.3. Formation of PLBs in Etioplasts

In etioplasts, LPOR is the most abundant protein and particularly enriched in PLBs [7,27], whereas
most proteins in the photosynthetic machinery including PSI, PSII, and LHCs are very minor and,
if present, are not assembled into mature complexes [28]. In Arabidopsis, there are three isoform
genes (PORA, PORB, and PORC) for the LPOR activity. PORA and PORB are highly expressed in
the dark and accumulated in etioplasts as major LPOR isoforms, whereas PORC is light-inducible
and mainly functions under light conditions [13]. The levels of PORA and PORB strongly affect the
size of PLBs in Arabidopsis. A decrease in the total amount of LPOR proteins by knockout mutations
of PORB [29,30] or antisense RNA-mediated suppression of PORA or PORB [15] diminished the
size of PLBs in etiolated Arabidopsis seedlings. The loss-of-function mutation in CONSTITUTIVE
PHOTOMORPHOGENESIS 1 (COP1), a ubiquitin E3 ligase suppressing photomorphogenesis in the
dark, strongly decreased the expression of PORA and PORB and inhibited the formation of PLBs
in dark-grown Arabidopsis [31]. However, constitutive expression of either PORA or PORB in the
cop1 mutant restored PLBs. Moreover, overaccumulation of either of the LPOR isoforms in etioplasts
enlarged the size of PLBs [15,32]. These data suggest that the total amount of LPOR proteins determines
the size of PLBs in etioplasts (Figure 3) [13,15].
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In contrast to the size of PLBs, the lattice structure of PLBs is independent of the amount of LPOR
proteins [15,29,30,32–34]. Instead, the biosynthesis of carotenoids is deeply involved in the formation
of the regular lattice structure of PLBs. Treatment of amitrole, which inhibits lycopene cyclization,
and the knockout mutation of a gene encoding carotenoid isomerase, which is responsible for
all-trans-lycopene synthesis, strongly disturbed the structure of PLBs and the formation of photoactive
Pchlide, whereas norflurazon treatment, which inhibits phytoene desaturation, did not largely alter the
PLB development [16,17]. These results indicate that excess accumulation of ζ-carotene, neurosporene,
and/or cis-lycopene, which are almost undetectable in etiolated wild-type seedlings, inhibits the
organization of the PLB lattice structure. Carotenoids abundant in etioplasts, such as lutein and
violaxanthin [19], are likely important for stabilization of the lattice structure of PLBs [17].
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Figure 3. Role of galactolipids and NADPH:Pchlide oxidoreductase (LPOR) proteins in the formation
of etioplast membranes. The size of PLBs correlates with the amount of LPOR proteins whereas the
structure of PLBs depends on the galactolipid composition. Impaired galactolipid biosynthesis reduces
the size of PTs, presumably via decreasing total lipid content and/or changing the lipid composition.

2.4. Transformation of PLBs to the Thylakoid Membrane During Etioplast-to-chloroplast Differentiation

Electron tomography observation of dark-grown runner bean seedlings revealed that, after 1 h of
illumination, a regular tetrahedral structure of tubular connections within PLBs becomes irregular
and porous PTs surround the degrading PLBs radially [35]. The PLB degradation further proceeds
and porous PTs are arranged parallel to each other during subsequent hours of illumination. Stacked
membranes connected with PTs appear after 8 h of illumination and the size of grana increases during
chloroplast maturation.

With illumination, Pchlide in the photoactive complex is instantaneously converted to Chlide,
which is further metabolized to Chl by downstream enzymes [36,37]. In parallel, light signals
upregulate expression of genes for Chl biosynthesis and activate de novo Chl biosynthesis [2]. Virtually
all Chl molecules are bound to photosynthetic complexes, particularly LHCII [38]. Many mutants
deficient in Chl biosynthesis lack LHCII with severely impaired thylakoid biogenesis and grana
stacking, which indicates the necessity of Chl for the accumulation of LHCII and thylakoid membrane
biogenesis [29,39–41]. Chl biosynthesis is also required for the accumulation of D1, the core PSII
protein, and assembly of PSII [28].

Proteins occupy 70–80% of the thylakoid membrane surface [42] and thus play essential roles in
thylakoid biogenesis during chloroplast development. In Arabidopsis, rapid degradation of PORA
and PORB was observed with illumination to etiolated seedlings [43]. Considering that the LPOR
protein level is a determinant factor of the PLB size, the degradation of LPOR proteins would induce
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the dispersion of PLBs. Although some photosynthetic membrane proteins such as subunits of ATP
synthase and cytochrome b6f are accumulated in etioplasts [44], the components of major photosynthetic
complexes including LHCII, PSI, and PSII are almost absent and not assembled into mature complexes
in dark-grown seedlings [28,45]. During the etioplast-to-chloroplast differentiation in pea seedlings,
the amount of the core components of PSI, PSII, LHCI, and LHCII rapidly rose in 6 h of illumination
and further increased in 24 h, whereas the amount of LPOR proteins gradually decreased [46].
Photosynthetic protein-pigment complexes are assembled in parallel with the transformation from
PLBs to the thylakoid membrane [35]. LHCII and PSII are abundant in grana regions of the thylakoid
membrane, whereas PSI is enriched in stroma lamellae in mature chloroplasts [47]. Disruption of
either PSI or PSII severely perturbs the structure of the thylakoid membrane in chloroplasts, with PSI
particularly affecting the formation of stroma lamellae whereas PSII being more important for the grana
stacking. LHCII is also essential for the development of the thylakoid membrane and particularly
grana formation, as evidenced by disturbances of the grana structure in mutants or transgenic plants
in which the accumulation or organization of LHCII is altered [48–51]. In addition, CURVATURE
THYLAKOID1 (CURT1) protein family functions in grana stacking independently of the mechanism
mediated by LHCII. CURT1 proteins are localized to the grana margin and probably induce membrane
curvature directly [52].

3. Role of Galactolipids in Etioplasts

3.1. Galactolipid Synthesis in Etioplasts

In addition to proteins and pigments, glycerolipids are essential components of internal membranes
of etioplasts and chloroplasts. The composition of glycerolipids is similar between PLBs and the
thylakoid membrane (Figure 1A), despite the large differences in their structures. In both PLBs in
etioplasts [7] and the thylakoid membrane in chloroplasts [8], MGDG and DGDG account for ~50% and
~30%, respectively, of total membrane lipids. PTs have a relatively lower MGDG-to-DGDG ratio (1.1)
than PLBs (1.6) in wheat etioplasts [7].

Plant MGDG is synthesized by MGDG synthase in the plastid envelope, which transfers a
galactose moiety from UDP-galactose to diacylglycerol. Arabidopsis possesses three isoforms of
MGDG synthase, namely inner-envelope localized MGD1 and outer-membrane localized MGD2 and
MGD3 [53]. DGDG synthase in the outer envelope of plastids synthesizes DGDG by transferring a
galactose moiety from UDP-galactose to MGDG. Arabidopsis has two isoforms of DGDG synthase,
namely DGD1 and DGD2 [54,55]. MGD1 and DGD1 synthesize the bulk of galactolipids in chloroplasts
whereas MGD2, MGD3 and DGD2 mainly function to provide DGDG to the extraplastidic membranes
specifically under phosphate-starved conditions [56]. In etiolated seedlings, knockout mutations of
both MGD2 and MGD3 did not alter galactolipid content, which suggests that MGD2 and MGD3 are
not involved in galactolipid synthesis in etioplasts [57]. A knockout mutant of MGD1 (mgd1-2) fails to
develop cotyledons during embryogenesis and is not useful to reveal the MGD1 function in etiolated
seedlings [58]. Meanwhile, a recent analysis of Arabidopsis transgenic lines expressing an artificial
microRNA targeting MGD1 (amiR-MGD1) under a dexamethasone-inducible promoter revealed that
suppression of the MGD1 mRNA level to 35% of control plants decreased MGDG content to 64% of the
control without affecting DGDG content in etiolated seedlings [59]. These data suggest that MGD1 is
the major enzyme responsible for MGDG synthesis in etioplasts. DGDG biosynthesis in etioplasts is
mainly catalyzed by DGD1 in Arabidopsis. A knockout mutation of DGD1 (dgd1) repressed DGDG
accumulation to 20% of the wild type with only a small decrease in MGDG content [60]. The remaining
DGDG in dgd1 may be synthesized by DGD2.

3.2. Involvement of Galactolipids in Pchlide Biosynthesis

Galactolipid deficiency affects the biosynthesis of Pchlide in etiolated Arabidopsis seedlings.
In etiolated MGD1-suppressed amiR-MGD1 and dgd1 seedlings, the amount of Pchlide was decreased
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to 60% and 76%, respectively, of the control level [59,60]. Treatment of excess amount of ALA, which
bypasses the rate-limiting step of the Pchlide biosynthesis pathway, sharply increases the amount
of Pchlide in etiolated wild-type seedlings. However, in galactolipid-deficient seedlings, exogenous
ALA treatment caused the accumulation of Pchlide intermediates such as Proto IX, Mg-Proto IX, and
Mg-Proto IX ME, instead of a strong increase in the Pchlide content. Of these porphyrin intermediates,
Mg-Proto IX showed the highest accumulation in both galactolipid-deficient seedlings. These results
indicate that the membrane-associated steps of the Pchlide biosynthesis pathway, particularly the
Mg-Proto IX metabolism by MgMT, is sensitive to the membrane lipid environment in etioplasts.
Despite the milder loss of galactolipids in amiR-MGD1 (36% decrease of MGDG) than dgd1 (80%
decrease of DGDG), amiR-MGD1 seedlings showed a more severe impairment of Pchlide biosynthesis,
suggesting a particular importance of MGDG in Pchlide synthesis (Figure 2).

Although MGDG and DGDG are required for the porphyrin metabolism by MgCh and MgMT
in vivo [59,60], both lipids are not essential cofactors of recombinant MgCh and MgMT proteins [61–63].
Moreover, Chen et al. [64] recently reported that recombinant Synechocystis proteins for MgCh, MgMT,
MgCY, LPOR, divinyl reductase, Chl synthase, and geranylgeranyl reductase can generate Chl from
intrinsic Proto IX in E. coli cells, where galactolipids are completely absent. These Chl synthesizing
enzymes are suggested to form heterocomplexes on the plastid membrane for efficient channeling
of the intermediates [10,12], so the existence of galactolipids and/or a proper MGDG-to-DGDG ratio
may be required for the sublocalization of proteins such as MgCh, MgMT, and MgCY or the complex
formation of these proteins. We cannot exclude the possibility that galactolipids enhance the activity of
the membrane-bound enzymes in vivo.

Carotenoid biosynthesis also affects the Pchlide biosynthesis in etioplasts. Inhibition of lycopene
cyclization in barley enhances the accumulation of ALA, Proto IX, Mg-Proto IX, Mg-Proto IX ME, and
even Pchlide, with particularly affecting the steps catalyzed by MgMT and MgCY [18]. Carotenoids may
be required for tight regulation of ALA synthesis in the dark and the functionality of membrane-attached
MgMT and MgCY. A proper membrane structure built with galactolipids and carotenoids may be
essential for the membrane-associated process of the Pchlide biosynthesis pathway and the regulation
of ALA biosynthesis, although the effects of galactolipids on ALA synthesis remain unclear.

3.3. Roles of Galactolipids in the Organization of (P)chlide–LPOR Complexes Before and After Illumination

In addition to decreased Pchlide content, impaired galactolipid biosynthesis decreases the
accumulation of photoactive Pchlide in etiolated Arabidopsis seedlings without largely affecting
carotenoid composition, indicating that both MGDG and DGDG are also required for the formation
of the ternary complexes (Figure 2) [59,60]. The MGD1-suppressed seedlings showed a more severe
impairment of photoactive Pchlide accumulation than dgd1, which indicates that MGDG is more
important than DGDG for the formation of the Pchlide–LPOR–NADPH complexes. Moreover, MGDG
deficiency resulted in abnormal accumulation of the dimeric Pchlide–LPOR–NADPH complex [59],
whereas the impairment of DGDG or carotenoid biosynthesis did not cause the increase in dimeric
complexes [16–18,60], so MGDG has a specific role in oligomerization of the ternary complexes
(Figure 2). Meanwhile, a loss of DGDG strongly affects the behavior of Chlide–LPOR complexes
after photoconversion of Pchlide. Dissociation of oligomeric Chlide–LPOR complexes to dimeric
complexes after photoconversion was retarded in dgd1 compared to the wild type [60], whereas such
defect was not observed in MGD1-suppressed seedlings [59]. The data indicate that DGDG mediates
regeneration of the Pchlide–LPOR–NADPH complex from the Chlide–LPOR–NADP+ complex after
photoconversion (Figure 2), which would help safe and efficient conversion of Pchlide to Chl during
greening of etiolated seedlings.

An in vitro experiment with a mixture of recombinant LPOR proteins and Pchlide isolated from
etiolated wheat seedlings revealed the function of thylakoid membrane lipids in the organization of
the Pchlide–LPOR–NADPH complexes [65]. Although the addition of NADPH to the mixture of LPOR
and Pchlide in the absence of lipids can trigger the formation of the ternary complexes, the presence
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of thylakoid anionic lipids SQDG and PG drastically enhanced the rate of the complex formation,
with galactolipids showing smaller effects. In agreement with the analysis in galactolipid-deficient
Arabidopsis seedlings, addition of MGDG caused a red shift of fluorescence emitted from the
Pchlide–LPOR–NADPH complexes, indicative of the oligomerization of the ternary complexes, whereas
other lipid classes did not show this effect. Altogether, these data represent the importance of thylakoid
lipids and lipophilic pigments for the formation and organization of photoactive Pchlide–LPOR
complexes formed in etiolated seedlings. MGDG and DGDG have each specific function in the
oligomerization of the ternary complexes and the dissociation of Chlide–LPOR complexes, respectively.
Notably, a 36% decrease in MGDG by MGD1 suppression has strong effects on the formation of
photoactive complexes and their oligomerization, without strongly disturbing the PLB structure,
representing the specific and essential role of MGDG in the organization of the ternary complexes.

3.4. Importance of Galactolipids in the Formation of PLBs and PTs

Besides Pchlide, LPOR and carotenoids, galactolipids have been considered as key players in
the organization of PLBs and PTs for a long time. Biochemical analysis of isolated PLBs and PTs
from wheat etioplasts revealed a higher MGDG-to-DGDG ratio and a lipid-to-protein ratio in PLBs
than PTs [7]. In vitro assay with mixtures of lipids and water found that the PLB-like cubic structure
appears when MGDG and DGDG are mixed in a ratio of 1.2:1 or 2:1 [66]. These observations imply
that enrichment of non-bilayer-forming MGDG is important for the PLB formation whereas higher
accumulation of bilayer-forming DGDG helps the development of lamellar PTs. Interaction between
LPOR and membrane lipids, especially MGDG, is also suggested to be important for stabilizing
the PLB structure [2,67]. Although a knockdown mutant of MGD1 in Arabidopsis (mgd1-1), which
has a T-DNA insertion in the promoter region of MGD1, showed no obvious changes in membrane
structures of etioplasts as compared with wild-type [68], strong MGD1 suppression by amiR-MGD1
decreased the MGDG-to-DGDG ratio from 1.37 to 0.96 and affected the membrane structure of PLBs [59].
As suggested previously [7,66], a high MGDG-to-DGDG ratio may be required for the regular lattice
structure of PLB. The development of PTs was also impaired by MGD1 suppression in amiR-MGD1,
which suggests that MGDG also has some roles in PT development. The non-bilayer property of MGDG
may be important for the PT development. Another possibility is that the decrease in total lipid content
by the reduced MGDG synthesis directly leads to reduced PT elongation in the MGD1-suppressed
etioplasts. Considering that the PLB size was not decreased by MGD1 suppression [59], a substantial
portion of lipid constituents in MGD1-suppressed etioplasts may be used for the PLB formation,
resulting in decreased PT development. The importance of DGDG for internal membrane formation in
etioplasts was revealed by the analysis of the dgd1 mutant [60]. The lattice structure and the entire shape
of PLBs, but not the PLB size, were strongly perturbed in dgd1 etioplasts. In addition, PT development
was severely impaired in dgd1, consistent with the hypothesis that bilayer-forming DGDG is important
for the PT formation [7]. The stronger effect of DGDG deficiency in dgd1 than MGDG deficiency in
MGD1-suppressed amiR-MGD1 may reflect a more crucial role of DGDG than MGDG in the formation
and the organization of the etioplast membranes. However, it should be noted that dgd1 lost more
total galactolipid content than the MGD1-suppressed seedlings. In dgd1, an overall deficiency of lipid
components in the lipid matrix might result in severe disturbances in membrane structures.

3.5. A Model for Galactolipid-mediated Etioplast Development

Considering that galactolipids are required for the Pchlide biosynthesis and the organization
of Pchlide–LPOR–NADPH complexes during etioplast development, angiosperms are likely to
synthesize and accumulate galactolipids in etioplasts prior to the accumulation of Pchlide and LPOR
(Figure 4). At the beginning of etioplast development from undifferentiated plastids, galactolipids
may form PT-like lamellar membrane structures because of the lack of LPOR and Pchlide. After initial
accumulation of galactolipids in immature etioplast membranes, Pchlide and LPOR may accumulate
in the membranes to develop PLBs with lipids. During this process, a proper MGDG-to-DGDG ratio is
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required to form the highly regular lattice structure of PLBs (Figure 3). Whereas the size of PLBs mainly
depends on the LPOR protein levels, the development of lamellar PTs would be strongly affected by
the amount and/or composition of lipid constituents. In particular, the amount of DGDG, the main
bilayer-forming lipid in etioplasts, may be crucial for the development of PTs, because another major
lipid MGDG has a non-bilayer-forming property and is considered to require specific proteins such as
LHCII, which is almost absent in etioplasts, to form lamellar membranes. Molecular mechanisms for
coordinating biosynthesis of galactolipids, Pchlide and LPOR and the formation of the photoactive
ternary complex during etioplast development remain to be elucidated in future studies.
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Figure 4. Schematic diagram for a model of galactolipid-mediated etioplast development. Galactolipids
accumulated in immature developing etioplasts form lamellar PTs together with anionic lipids.
Subsequently, LPOR proteins accumulate with Pchlide on the lipid bilayer and induce the formation of
paracrystalline tubular networks with lipids, resulted in the development of prolamellar bodies (PLBs)
and maturation of etioplasts.

4. Role of Galactolipids During Etioplast-to-chloroplast Differentiation

4.1. Contribution of Galactolipids to Transformation of PLBs to the Thylakoid Membrane

Upon light exposure, tubular PLBs were directly converted to the lamellar thylakoid membrane [35].
The regular structure of PLBs is rapidly lost in 1–4 h of illumination and transformed into flat slats.
Subsequently, stacked membranes appear in the first day of illumination, followed by the development
of the grana stacks connected to unstacked stroma lamellae in the next few days. Despite the rapid
and dynamic transformation of the internal membrane systems during the etioplast-to-chloroplast
differentiation, galactolipid content only gradually increases during the greening process. The content
of both MGDG and DGDG was almost unchanged during the first 6 h of illumination in Arabidopsis [43]
and cucumber [69]. Etiolated barley seedlings even showed a decrease in galactolipid content at the
beginning of greening [70]. Then the barley seedlings increased the lipid content after 6 h, which
coincided with the grana formation. In etiolated seedlings of cucumber and Arabidopsis, the galactolipid
content increased to ~4 fold and 2–3 fold, respectively, after 24 h of illumination [43,69]. Therefore, in
these plants, PLB is transformed into the early thylakoid membrane without an increase in galactolipid
content, presumably by diverting lipid constituents from PLBs to thylakoid membranes directly.

In MGD1-suppressed amiR-MGD1 and dgd1 seedlings, both MGDG and DGDG content remained
at low levels throughout the greening process [43]. However, in the MGD1-suppressed seedlings, PLB
was entirely transformed into flat membranes within 6 h of illumination as in control plants, although
further development of the thylakoid membrane networks was severely abolished (Figure 5) [43].
Thus, MGDG biosynthesis is unnecessary for the transformation of PLBs to flat membranes at the
beginning of greening, but is required for the massive development of thylakoid membranes afterwards.
Because the MGD1-suppressed seedlings develop PLBs to a size similar to that in control plants, lipids
accumulated in the PLBs can directly make flat membranes after PLB dispersion presumably owing to
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the bilayer-forming nature of DGDG and anionic lipids. Meanwhile, DGDG deficiency by the dgd1
mutation strongly retarded the PLB-to-thylakoid transition. The remnants of PLBs were still observed
after 10 h of illumination in most dgd1 plastids and even after 24 h in some plastids (Figure 5) [43].
In parallel, the formation of lamellar membranes was strongly impaired in dgd1 plastids and thylakoid
development was severely retarded at least until 24 h of illumination. Remnants of the PLB-like
structure were also observed in DGDG-deficient barley seedlings illuminated for 24 h after 7-d dark
incubation [71]. Of note, LPOR proteins, which determine the size of PLBs, were rapidly degraded in
the dgd1 seedlings as in the wild-type plants [43]. Thus, the PLB remnants in dgd1 are not caused by
LPOR. In dgd1 etioplasts after illumination, PLBs rich in MGDG cannot be converted into lamellar
membranes even after degradation of LPOR and long remain as membranous aggregates presumably
due to hexagonal-phase-forming property of MGDG. These findings underscore an irreplaceable role
of DGDG in the initiation of lamellar membrane construction from PLBs during cotyledon greening.

Plants 2019, 8, 357 10 of 17 

 

DGDG deficiency by the dgd1 mutation strongly retarded the PLB-to-thylakoid transition. The 
remnants of PLBs were still observed after 10 h of illumination in most dgd1 plastids and even after 
24 h in some plastids (Figure 5) [43]. In parallel, the formation of lamellar membranes was strongly 
impaired in dgd1 plastids and thylakoid development was severely retarded at least until 24 h of 
illumination. Remnants of the PLB-like structure were also observed in DGDG-deficient barley 
seedlings illuminated for 24 h after 7-d dark incubation [71]. Of note, LPOR proteins, which 
determine the size of PLBs, were rapidly degraded in the dgd1 seedlings as in the wild-type plants 
[43]. Thus, the PLB remnants in dgd1 are not caused by LPOR. In dgd1 etioplasts after illumination, 
PLBs rich in MGDG cannot be converted into lamellar membranes even after degradation of LPOR 
and long remain as membranous aggregates presumably due to hexagonal-phase-forming property 
of MGDG. These findings underscore an irreplaceable role of DGDG in the initiation of lamellar 
membrane construction from PLBs during cotyledon greening. 

 
Figure 5. Schematic view of etioplast-to-chloroplast differentiation in galactolipid deficient 
Arabidopsis seedlings. MGDG deficiency in MGD1-suppressed amiR-MGD1 does not affect PLB-to-
lamellar membrane transformation but impairs further membrane development and grana formation 
during greening. By contrast, DGDG deficiency in dgd1 seedlings retards PLB dispersion and 
subsequent lamellar membrane formation at the early stage of greening. However, prolonged 
illumination gradually induces the development of the highly-stacked thylakoid membrane in dgd1 
chloroplasts, but with an abnormally bent structure. 

4.2. Contribution of Galactolipids to the Development of the Thylakoid Membrane During Chloroplast 
Maturation 

The ratio of non-bilayer-forming MGDG to bilayer-forming DGDG determines the phase 
behavior of membranes and is likely important for the thylakoid organization [6]. The conical 
structure of MGDG with a small galactose head group has long been assumed to stabilize the inner 
leaflet of highly curved grana margins [72]. Recently, Seiwert et al. [73] demonstrated that MGDG 
promotes membrane stacking by easing the membrane curvature stress in the margin domains. 
Consistent with these studies, the MGDG-to-DGDG ratio is higher in the grana region than in the 
stroma lamellae [74], implying the importance of MGDG for grana formation. In fact, knockdown of 
MGD1 decreased the development of grana stacks in Arabidopsis [68,75] and tobacco [76], whereas 
a knockout mutation of MGD1 (mgd1-2) totally inhibits thylakoid biogenesis in Arabidopsis [58]. 
Moreover, detailed structural analysis of the thylakoid membrane in the heterozygous mgd1-2 mutant 
chloroplasts revealed a crucial role of MGDG in the formation of the typical helical grana 

Figure 5. Schematic view of etioplast-to-chloroplast differentiation in galactolipid deficient Arabidopsis
seedlings. MGDG deficiency in MGD1-suppressed amiR-MGD1 does not affect PLB-to-lamellar
membrane transformation but impairs further membrane development and grana formation during
greening. By contrast, DGDG deficiency in dgd1 seedlings retards PLB dispersion and subsequent
lamellar membrane formation at the early stage of greening. However, prolonged illumination gradually
induces the development of the highly-stacked thylakoid membrane in dgd1 chloroplasts, but with an
abnormally bent structure.

4.2. Contribution of Galactolipids to the Development of the Thylakoid Membrane during Chloroplast
Maturation

The ratio of non-bilayer-forming MGDG to bilayer-forming DGDG determines the phase behavior
of membranes and is likely important for the thylakoid organization [6]. The conical structure of
MGDG with a small galactose head group has long been assumed to stabilize the inner leaflet of
highly curved grana margins [72]. Recently, Seiwert et al. [73] demonstrated that MGDG promotes
membrane stacking by easing the membrane curvature stress in the margin domains. Consistent with
these studies, the MGDG-to-DGDG ratio is higher in the grana region than in the stroma lamellae [74],
implying the importance of MGDG for grana formation. In fact, knockdown of MGD1 decreased the
development of grana stacks in Arabidopsis [68,75] and tobacco [76], whereas a knockout mutation of
MGD1 (mgd1-2) totally inhibits thylakoid biogenesis in Arabidopsis [58]. Moreover, detailed structural
analysis of the thylakoid membrane in the heterozygous mgd1-2 mutant chloroplasts revealed a crucial
role of MGDG in the formation of the typical helical grana arrangement and the granum marginal
region [77]. In vitro assay and computer simulations demonstrated that DGDG also contributes to
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grana stacking through an interaction between the head groups [6,78]. However, DGDG deficiency
in Arabidopsis dgd1 and dgd1 dgd2 mutants even slightly increases the size and numbers of grana
stacks under light conditions [79,80]. These seedlings accumulate LHCII to the wild-type level, which
probably promotes the formation of grana stacks in the absence of DGDG. Nevertheless, the structure of
the entire thylakoid is abnormally bent under light conditions in DGDG-deficient seedlings [77,79,80],
highlighting the importance of DGDG in membrane flattening.

As the thylakoid membrane has a high protein density [42], the association of photosynthetic
complexes with membrane lipids strongly affects thylakoid membrane structures. In vitro analysis
revealed that the interaction of LHCII to non-bilayer-forming MGDG enables MGDG to form a bilayer
structure [81]. The data suggest a crucial role of LHCII in the organization of lamellar membranes
under an MGDG-rich lipid environment such as grana regions. Meanwhile, MGDG can increase
the stability of LHCII against mechanical unfolding in vitro [82], implying a requirement of MGDG
for stable accumulation of LHCII in the thylakoid membrane. Furthermore, MGDG and DGDG
induce the aggregation of LHCII [83], which may affect thylakoid membrane architecture including
grana stacks. As another mechanism, CURT1 proteins, small polypeptides with two transmembrane
regions and a tentative N-terminal amphipathic helix, accumulate in grana margins and directly induce
membrane curvature [52], although the relationship between CURT1 and membrane lipids is unknown.
As described in the Section 2.4., the formation of PSI and PSII in the lipid bilayer would also contribute
to the organization of the thylakoid membrane. Therefore, lipids and proteins together make up the
thylakoid membrane in a coordinated and interactive manner.

Biosynthesis of Chl is also essential for the thylakoid membrane development, as represented by
the impaired thylakoid formation in Chl-deficient mutants [29,39–41,49]. Light exposure to etiolated
seedlings acutely induces expression of genes for Chl biosynthesis and photosynthesis and triggers the
biosynthesis of Chl and thylakoid proteins to assemble photosynthetic protein-pigment complexes.
In wild-type Arabidopsis seedlings under the greening process, Chl content increases sharply in
response to illumination, whereas LHCII proteins are below detectable levels until 6 h of illumination
and drastically accumulated afterwards [43]. In MGD1-suppressed amiR-MGD1 and dgd1 seedlings,
accumulation of Chl was strongly inhibited, probably owing to the same mechanism for the repression
of Pchlide synthesis in etioplasts. Accumulation of LHCII proteins was also repressed at low levels in
these seedlings at least until 24 h of illumination. Several causes can be considered for the impaired
LHCII accumulation in the galactolipid-deficient seedlings. In the MGD1-suppressed seedlings,
mRNA accumulation of LHCB1 and LHCB6 genes was strongly suppressed after an initial increase
in response to light [43]. An impaired protein import [84] and destabilization of LHCII [82] by
galactolipid deficiency may also cause the decreased LHCII accumulation. In addition, because
Chl is necessary for stable accumulation of LHCII, the strong inhibition of Chl biosynthesis would
greatly affect accumulation of LHCII and other Chl-binding proteins in the thylakoid membrane. As a
result, in addition to galactolipid deficiency, lack of LHCII proteins and other photosynthetic proteins
may cause the impaired development of the thylakoid membrane in galactolipid-deficient seedlings.
Of note, in the dgd1 mutant under the greening process, although thylakoid development was severely
retarded even at 24 h of illumination, prolonged illumination for 72 h recovered the retardation and
resulted in well-developed thylakoid membranes with grana stacks similar to those in the wild type
(Figure 5) [43]. These findings agree with the observation that adult dgd1 plants grown in the light
almost fully developed the thylakoid membrane with substantial LHCII accumulation as did wild-type
plants [79]. From these data, we hypothesize that, in dgd1 seedlings under the greening process, slow but
gradual accumulation of LHCII and other photosynthetic proteins with Chl enables MGDG-rich lipid
constituents to form lamellar membranes and their further development to the thylakoid membrane
with grana stacks. By contrast, in MGD1-suppressed amiR-MGD1, the inhibited Chl accumulation
was not recovered by prolonged illumination. Because MGD1 suppression also inhibited DGDG
biosynthesis from MGDG, deficiency of both galactolipids would impair chloroplast development
more severely than the single DGDG deficiency. Alternatively, MGDG may have a distinct role in the
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regulation of chloroplast development and its deficiency may specifically inhibit such processes. In fact,
we observed that MGD1 suppression, but not the dgd1 mutation, significantly downregulate mRNA
expression of nuclear- and plastid-encoded photosynthesis-associated genes [43,85], the mechanism of
which should be elucidated in future studies.

4.3. A Model for the PLB-to-thylakoid Transformation during Eitoplast-to-chloroplast Differentiation

When etiolated seedlings are exposed to light, Pchlide in the photoactive complex is immediately
converted to Chlide, and then to Chl. LPOR released from the complex is degraded and the
paracrystalline structure of PLBs is disordered (Figure 6). The tubular PLBs were directly converted to
the lamellar thylakoid membrane, presumably with the help of bilayer-forming DGDG. In parallel,
light signals induce expression of genes for Chl biosynthesis and photosynthesis and activate de novo
Chl biosynthesis and photosynthetic protein accumulation. Galactolipid biosynthesis pathways are
also activated and galactolipid content gradually increases toward the maturation of the thylakoid
membrane. The photosynthetic complexes including LHCII are embedded in lipid bilayer membranes
that are transformed from PLBs and PTs or newly synthesized, which enhances the development of
thylakoid membrane networks with grana stacking. In this process, non-bilayer-forming MGDG may
play a specific role in the formation of the unique thylakoid membrane architecture with highly curved
grana margins in collaboration with several membrane proteins. Changes in lipid-protein-pigment
interactions result in the dynamic transformation from etioplasts to chloroplasts and the establishment
of photoautotrophic growth.
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Figure 6. Schematic diagram for a model of etioplast-to-chloroplast differentiation. Illumination to
etioplasts induces degradation of LPORs after photoconversion of Pchlide to Chlide, which results in
disorganization of the paracrystalline PLB structure. The disorganized PLBs are directly transformed
to flat membranes without requiring increases in galactolipid content. In parallel, light activates Chl
biosynthesis and mRNA accumulation of LHCB genes, which, with a slight delay, induce accumulation
of LHCII in developing membranes. Interaction between LHCII and membrane lipids, particularly
MGDG, induces multiple stacking of flat membranes, resulting in the development of the thylakoid
membrane with grana stacks. At later greening stages, gradually-accumulated galactolipids further
extend the thylakoid membrane networks together with photosynthetic proteins to complete chloroplast
development and fully activate photosynthesis.
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5. Perspectives

Together with biochemical and spectroscopic studies, recent studies using genetic and molecular
biology techniques have led to uncover the functions of galactolipid biosynthesis in dark-developed
etioplasts and their differentiation to chloroplasts. These studies provide new insights into the roles of
lipids in organizing several membrane-associated processes during plastid differentiation. However,
molecular mechanisms for regulating Chl biosynthesis and photosynthetic gene expression in response
to galactolipid synthesis largely remain to be elucidated. Various processes involved in chloroplast
development, including lipid and pigment biosynthesis, import of nuclear-encoded proteins and
expression of plastid-encoded genes, would take place in, on, or near the envelope membrane at the
initial stage of chloroplast development. Considering that galactolipid biosynthesis is a prerequisite
for other processes required for chloroplast development [43,75], it may provide the lipid environment
that facilitates biosynthesis of pigments and other cofactors, accumulation of proteins from the outside
and the inside of plastids, and assembly of photosynthetic complexes. In this sense, galactolipids
may act as an initiator of thylakoid membrane biogenesis and thus chloroplast development. Of note,
etioplasts and chloroplasts also contain anionic lipids SQDG and PG as major lipid constituents, and
their roles in etioplast development and etioplast-to-chloroplast differentiation are also important
questions to be answered in the future studies.
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