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Abstract

Genetic studies have typically inferred the effects of human impact by documenting patterns of
genetic differentiation and levels of genetic diversity among potentially isolated populations using
selective neutral markers such as mitochondrial control region sequences, microsatellites or single
nucleotide polymorphism (SNPs). However, evolutionary relevant and adaptive processes within
and between populations can only be reflected by coding genes. In vertebrates, growing evidence
suggests that genetic diversity is particularly important at the level of the major histocompatibility
complex (MHC). MHC variants influence many important biological traits, including immune
recognition, susceptibility to infectious and autoimmune diseases, individual odours, mating
preferences, kin recognition, cooperation and pregnancy outcome. These diverse functions and
characteristics place genes of the MHC among the best candidates for studies of mechanisms and
significance of molecular adaptation in vertebrates. MHC variability is believed to be maintained by
pathogen-driven selection, mediated either through heterozygote advantage or frequency-
dependent selection. Up to now, most of our knowledge has derived from studies in humans or
from model organisms under experimental, laboratory conditions. Empirical support for selective
mechanisms in free-ranging animal populations in their natural environment is rare. In this review,
| first introduce general information about the structure and function of MHC genes, as well as
current hypotheses and concepts concerning the role of selection in the maintenance of MHC
polymorphism. The evolutionary forces acting on the genetic diversity in coding and non-coding
markers are compared. Then, | summarise empirical support for the functional importance of MHC
variability in parasite resistance with emphasis on the evidence derived from free-ranging animal
populations investigated in their natural habitat. Finally, | discuss the importance of adaptive genetic
variability with respect to human impact and conservation, and implications for future studies.

Introduction

Many natural populations are threatened not only by a
dramatic reduction in total area of available habitat but
also by increasing habitat fragmentation and degradation
leading to declining population sizes and barriers to gene
flow if exchange of individuals between subpopulations is

restricted [1-3]. Small populations often suffer from
reduction of genetic diversity due to genetic drift and
inbreeding effects [4-6]. Negative effects such as increased
rates of allelic loss, fixation of deleterious alleles and
decreased average individual heterozygosity relative to the
overall population were observed by both, theoretical and
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empirical studies [7,8]. The loss of genetic variation can
lead to short-term reduction of fitness components such
as survival, reproductive output, growth rates and to
impaired ability to adapt to long-term changes in the envi-
ronment [7,9-13]. An increasing number of studies indi-
cates that host genetic diversity plays an important role in
buffering populations against pathogens and widespread
epidemics [6,14-20]. Study of the genetic effects of popu-
lation fragmentation is therefore of central importance for
conservation biology [21].

Genetic studies of wild animals often employ neutral
markers such as mitochondrial d-loop DNA (mtDNA),
microsatellites or single nucleotide polymorphism
(SNPs) to estimate the amount of variation present in
individuals and populations [22-24]. While these markers
are very informative for phylogenetic reconstructions and
population history (bottleneck effects), for molecular
clocks, to examine dispersal patterns of individuals (gene
flow) and to classify individuals by relatedness and pater-
nity analyses [25-28], the variation at neutral loci cannot
provide direct information on selective processes involv-
ing the interaction of individuals with their environment
or on the capacity for future adaptive changes [29,30].
However, these are issues of particular relevance in evolu-
tionary ecology and conservation [31,32]. In addition,
recent research in a variety of taxa and situations has
revealed that evolution often occurs on contemporary
timescales, often within decades (summarised in [32]). In
some cases, the time span between the separation of pop-
ulations might even be too short to leave a signal at neu-
tral loci so that differences between populations are only
detectable at genes under selection [33], such as those of
the highly variable major histocompatibility complex
(MHC). Contrary to neutral markers, MHC variability
reflects evolutionary relevant and adaptive processes
within and between populations and is very suitable to
investigate a wide range of open questions in evolutionary
ecology and conservation. The comparison with neutral
markers allows the construction of null hypotheses con-
cerning the diversity at selectively relevant genes and con-
clusions on the relevance of MHC polymorphism. One
might argue that many recent studies report that individ-
ual heterozygosity at apparently neutral microsatellite
markers is correlated with key components of individual
fitness such as survival [34], fecundity [35], disease resist-
ance [14,36] and lifetime reproductive success [37]. How-
ever, null results are likely to be underrepresented in the
literature because of publication bias in favour of signifi-
cant correlations [38]. A recent review and meta-analysis
of both published and unpublished studies of the associ-
ation between neutral marker heterozygosity and traits or
components of individual fitness reported that associa-
tions were common, yet typically weak [39]. A correlation
between individual heterozygosity at neutral genetic
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markers and components of individual fitness can arise in
different ways, with the effects of inbreeding depression
due to a genome-wide reduction in genetic variability
(including fitness-relevant loci) and linkage disequilib-
rium to loci under selection being the most likely explana-
tions [[6,38,40], see also [41]].

In this review, I first introduce general information about
the structure and function of MHC genes, as well as cur-
rent hypotheses and concepts concerning the role of selec-
tion in the maintenance of MHC polymorphism. The
evolutionary forces acting on the genetic diversity in cod-
ing and non-coding markers are compared. Then, I sum-
marise empirical support for the functional importance of
MHC variability in parasite resistance with emphasis on
the evidence derived from free-ranging animal popula-
tions investigated in their natural habitat. Finally, I dis-
cuss the importance of adaptive genetic variability with
respect to human impact and conservation, and implica-
tions for future studies.

Major histocompatibility complex (MHC):
structure, function and selection mechanisms
Structure and function

The MHC consists of a group of closely linked genes that
constitute the most important genetic component of the
mammalian immune system [42]. The MHC encodes cell-
surface glycoproteins that bind antigens derived from
pathogens or parasites and present them to T-lym-
phocytes which trigger the appropriate immune response.
Two major groups of MHC genes can be distinguished.
MHC class I genes play an essential role in the immune
defence against intracellular pathogens by binding pep-
tides mainly derived from viral proteins and cancer
infected cells. They are expressed on the surface of all
nucleated somatic cells. In contrast, MHC class II genes
are predominantly involved in monitoring the extracellu-
lar environment by presenting peptides mainly derived
from parasites to the T-cells (e.g. bacteria, nematodes, ces-
todes) [43,44]. They are primarily expressed on antigen-
presenting cells of the immune system, such as B cells and
macrophages. Within class II genes, most research in
mammals focuses on the second exon of DRB genes
because these loci code for parts of the functionally
important antigen binding sites (ABS) [45]. Alternatively,
the B-chain in general is used if loci assignment is not pos-
sible due to missing information (e.g. in teleost, [46,47]).
The class II region genes are closely linked in humans and
all other mammals examined, and variants at these genes
are generally in strong linkage equilibrium [48]. Thus, the
pattern observed for DRB loci should be a good indicator
of the genetic variation in other class Il genes and even
some other less closely linked genes in the MHC [49-51].
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Genes within the MHC involved in antigen presentation
constitute the most polymorphic loci known in verte-
brates [52,53]. The variability of the MHC-molecules is
correlated with the diversity of the T-lymphocyte receptors
which in turn determine the disease and parasite resist-
ance of an organism and thus may influence the long-
term survival probability of populations [54-57]. The
antigen binding sites show high levels of variation not
only in the number of alleles but also in the extent of
sequence variation between alleles [58]. Under neutrality
theory, the rate of synonymous nucleotide substitution
(d,) is predicted to be larger (d > d,)) than the rate of non-
synonymous substitution (d,) because non-synonymous
substitutions change the amino acid composition and are
thereby likely to be deleterious [59,60]. However, several
studies demonstrate that the ABS display more non-syn-
onymous than synonymous substitutions (d, > d,)
([61,62], reviewed by [19]). This cannot be explained by
a higher mutation rate in this specific region [58,61,62].
The emerging general view is that the determinant role in
shaping patterns of nucleotide diversity in MHC genes is
balancing selection [19,59,60,63]. Balancing selection
results not only in the maintenance of large numbers of
alleles in populations, but also in greatly enhanced per-
sistence of allelic diversity over extremely long time peri-
ods relative to neutral genetic variation [64], an
observation termed 'trans-species evolution of polymorphism'
[42]. The subsequent alteration in ABS allows binding of
a diverse array of antigens [61,62,65].

Selection mechanisms

Two main types of balancing selection ('heterozygote
advantage hypothesis' and 'frequency-dependence selection')
have been suggested as important in retaining high levels
of genetic diversity at the MHC in humans and vertebrates
(reviewed by [19,64,66-68]).

In evaluating the evolutionary potential of 'heterozygote
advantage' mechanism [69] a clear distinction between
'dominance' (heterozygote advantage in a broad sense) and
‘overdominance' (heterozygote superiority) is necessary.
The term 'dominance' refers to heterozygotes that are as
resistant as the most resistant homozygote (if the allele A
is associated with resistance, then the genotype AB is as
resistant as AA (AB = AA)). In this case the heterozygote
advantage could be due to masking of susceptible alleles.
Whereas there is some support for this selection mecha-
nism among experimental infection studies using mainly
congenic mice it is clearly not sufficient to maintain high
MHC variability [68,70,71]. 'Overdominance' seems to be
the more efficient 'heterozygote advantage' mechanism pro-
moting MHC diversity. In this case, heterozygotes are
expected to have higher fitness than either parental
homozygotes especially if confronted with multiple spe-
cies or strains of pathogens or parasites (the genotype AB

http://www.frontiersinzoology.com/content/2/1/16

has a higher fitness than AA (AB>AA) and BB (AB>BB)
[72]). The assumption is based on the theoretical back-
ground that heterozygous individuals should be able to
detect and present a wider range of pathogen-driven anti-
gens due to a larger number of different MHC molecules,
hence increasing the relative fitness of MHC heterozygotes
compared with homozygotes [60,73]. Thereby, two differ-
ent 'overdominance' models have been suggested: a) 'sym-
metric overdominance' or 'symmetric balancing selection' [74],
whereby all heterozygotes derive a similar selective advan-
tage to homozygotes (= all heterozygous are selectively
equivalent), and b) 'divergent allele advantage' [75]. In the
later it is speculated that heterozygotes carrying more
divergent allelic sequences have a selective advantage rel-
ative to individuals carrying relatively similar alleles by
presenting a broader spectrum of antigens to the immune
system. To the best of my knowledge, the 'divergent allele
advantage'-hypothesis has never been applied in infectious
disease studies but to explain the persistence of highly
divergent MHC alleles over millions of years [75,76].
Richman and colleagues [77] used a theoretical model to
confirm Wakeland's contention that MHC alleles are
more divergent than expected under a model of balanced
genetic polymorphism assuming selective equivalence of
different alleles (but see [78-80]). Application of this
model to MHC class IIb gene sequence data of deer mice
(Peromyscus maniculatus) provided more support for the
'divergent allele advantage' model than for the 'symmetric
overdominance' model for the maintenance of MHC poly-
morphism [77]. Thereby it is important to note that the
analysis are based on assumptions of the coalescent mod-
els in which no gene conversion is allowed and therefore
conclusions should be taken with care if such a muta-
tional process is suspected [19].

The second mechanism, 'frequency-dependent selection',
occurs when an allele or genotype is favoured at one fre-
quency, but disadvantaged at another frequency
[73,81,82]. Host-parasite dynamics are considered as an
coevolutionary arms race. Pathogens adapt to infect the
most common host genotype, leaving rare genotypes least
infected [83]. If alleles are favoured when they are rare,
but selected against when they are common, a balanced
polymorphism results. Thus, the 'frequency-dependent selec-
tion' hypothesis is also described as 'rare-allele advantage
hypothesis', 'Red Queen hypothesis' or 'moving-target hypothe-
sis' [84-87]. The hypothesis assumes the following details.
Rare (e.g. new) MHC alleles that are more resistant to par-
asites cause an advantage to the host, spread through the
population and become common. This increases selection
on parasites to evade recognition by these common alle-
les. As the parasite antigenicity changes, the relative fitness
of the common host genotypes decreases and provides a
selective advantage to other rare alleles. The time-lag
nature of these antagonistic coevolutionary responses
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could lead to a cycling of fitness values of different alleles/
genotypes in both hosts and pathogens, and result in the
maintenance of high genetic diversity. As a consequence
of these processes, pathogen-driven selection varies over
time and may differ among habitats/environments within
the range of a species, such that one host MHC-allele is
favoured at a certain time in one environment and
selected against in another. This should lead to varying
spatiotemporal selection directions in space and time
(‘diversifying selection in space and time') [88,89,91]. So far,
only one study investigated variation in MHC frequencies
over time in a natural population to test the assumptions
of the frequency-dependent model. Westerdahl and col-
leagues [92] compared the temporal changes in allele fre-
quencies of 23 class I alleles and 23 neutral microsatellites
of Great reed warblers (Acrocephalus arundinaceus) in nine
consecutive cohorts. The MHC alleles showed on average
slightly higher variation in temporal fluctuations com-
pared to the microsatellite alleles. The frequency of two
specific class I alleles varied more between cohorts than
expected from random, whereas none of the neutral mark-
ers showed fluctuations exceeding the expectation from
stochastic variation. The authors suggested that the varia-
tion in MHC allele frequencies between cohorts is not a
result of demographic events, but rather an effect of selec-
tion favouring different MHC alleles in different years.
However, Westerdahl and colleagues [92] did not include
investigations of parasites or pathogens dynamics for
explaining this pattern.

In addition, reproductive mechanisms such as disassorta-
tive mating and maternal-foetal interactions have been
suggested as alternative or complementary mechanisms
maintaining MHC diversity (summarised by [68,87,93-
97]). MHC dissimilar mating preferences might act to
increase offspring heterozygosity ('good-genes as heterozy-
gosity hypothesis' [98]), to provide offspring with a moving
target of MHC alleles as protection against pathogens
which rapidly adopt to the parental genotypes ('rare-allele
advantage hypothesis', 'Red Queen hypothesis', 'moving-target
hypotheses' [73,81,82,87], to avoid inbreeding or genetic
incompatibility ('genetic compatibility hypothesis' [99]) or to
achieve an optimal MHC diversity in offspring with
respect to parasite resistance (‘allele counting hypothesis'
[46,47] but see [91]).

The actual cue used in MHC-based mate choice is thought
to be based on odour which allows to distinguish MHC-
identity (summarised by [87,100-102]). Peptides/MHC
complexes that are not retained at the cell surface but
instead are released into the extracellular space might
appear in the urine and other body secretions and be used
for interindividual communication [103,104]. In mam-
mals, the vomeronasal organ is essential in odour-based
social recognition by detecting pheromones and other
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chemosignals that carry information about gender, sexual
and social status, dominance hierarchies, and individual-
ities, but it has been difficult to define the molecular
nature of these chemosignals. Recent studies provided evi-
dence that MHC class I peptides serve as chemosensory
signals in the vomeronasal organ by which individual
MHC genotype diversity can be used as a relatedness
marker and may influence social behaviour [105].

These diverse functions and characteristics place genes of
the MHC among the best candidates for studies of mech-
anisms and significance of molecular adaptation in verte-
brates [19,52,93].

Evolutionary forces acting on the genetic
diversity in coding and non-coding markers

The maintenance of genetic variation in natural popula-
tions in neutral parts of the genome under the non-selec-
tive evolutionary forces such as genetic drift and
inbreeding depend not only on the number of individuals
constituting a population, but also on the particular life
history, the dispersal patterns (gene flow) and the breed-
ing system of the species under study [106,107]. In con-
trast, the ability of natural populations to maintain
genetic variation in functional genes depends on the selec-
tion pressures involved. Balancing selection is thought to
counteract the effects of genetic drift and to retard the rate
of fixation of alleles [58].

Evidence for selection maintaining high MHC diversity
despite restricted variability in non-coding markers

There is increasing evidence for high MHC diversity due to
balancing selection in species with otherwise restricted
diversity in non-coding markers. For example, the San
Nicolas Island fox (Urocyon littoralis dickeyi) is the most
monomorphic sexually reproducing animal population
yet reported with respect to variation in neutral genetic
markers. No variation has been discovered in supposedly
neutral hypervariable microsatellite loci and multilocus
fingerprints, for which the probability of genetic identity
is commonly <1 in several millions. Such low levels of
variation imply lower resistance to pathogens, reduced fit-
ness, and problems in distinguishing kin from non-kin.
However, high MHC diversity is probably still maintained
in this population by balancing selection. It is assumed
that periodic selection has rescued genetic variation at the
MHC and, potentially other fitness-related genes ([108]
but see also [90]). Another example was found in Hawai-
ian honeycreepers (Vestiaria coccinea) [109]. Natural selec-
tion has maintained variation within the MHC while
mitochondrial d-loop sequences and cytochrome b
sequences were invariant and allozymes revealed low var-
iability probably due to a genetic bottleneck. Moreover, in
fragmented Malagasy gray mouse lemur (Microcebus muri-
nus) populations, the number of DRB-alleles and the gene
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diversity were still high [110] but microsatellite and mito-
chondrial marker showed very low levels of polymor-
phism [111]. In the same study area, also the introduced
black rat (Rattus rattus) revealed a similar pattern of
genetic polymorphism: high levels of variability in the
functional important MHC DRB marker [Sommer,
unpublished data] in contrast to low mitochondrial d-
loop variability (five haplotypes) [112].

These studies indicate that until a threshold level, genetic
variation at the MHC might persist due to balancing selec-
tion despite low levels of variability shown by neutral
markers. The results support the importance of balancing
selection as a mechanism to maintain variation in natural
populations and expose the difficulty of using neutral
markers as surrogates for variation in fitness-related loci
[108].

Processes leading to low variability in both coding and non-
coding markers

The maintenance of polymorphism within populations is
dependent on the product of selection intensity, mutation
rate and effective population size [58,113,114]. Under
certain circumstances strength of selection acting on MHC
loci can be insufficient to maintain variation in small or
fragmented populations for a long period of time. The
effects of balancing selection and genetic drift on the
genetic diversity of coding MHC class II (DQA) variability,
neutral mitochondrial control region and microsatellite
marker were recently investigated in 14 island and two
mainland populations of the Australian bush rat, Rattus
fuscipes [115,116]. Both neutral marker sets revealed high
levels of genetic variability over-all but clear signs of
genetic drift such as little to no diversity in the small
island populations and extreme differentiation between
the populations. In the MHC, higher levels of heterozy-
gosity were observed on two of the islands than would be
expected under neutrality, but genetic drift played a dom-
inant role in the majority of island populations leading to
a decrease in the number of MHC alleles.

Similarly, historical events such as bottlenecks and
founder effects but also constraints of the mating system
can be reflected in low numbers of MHC alleles (for exam-
ple in an Asian lion population (Panthera leo persica)
[117]; cheetahs (Aconyx jubatus) [118]; Malagasy giant
jumping rats (Hypgeomys antimena) [119-121]; Malagasy
western forest mouse (Macrotarsomys bastardi) [120]; com-
mon hamsters in the Netherlands (Cricetus cricetus) [122];
Scandinavian beavers (Castor fiber) [123]; Swedish moose
(Alces alces) [124,125]; musk ox (Ovibos moschatus) [126];
Spanish ibex (Capra pyrenaica) [127]; island population of
desert bighorn sheep (Ovis canadensis mexicana) [128];
Arabian oryx (Oryx leucoryx) [129]; South African bonte-
bok (Damaliscus pygargus pygargus) [130]; Przewalski's
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horses (Equus przewalskii) [55]; Northern elephant seals
(Mirounga angustirostris) [131], fin whales (Balaenoptera
physlaus] [132], sei whales (Balaenoptera borealis) [132],
and black robins (Petroica traversi) [133]). Under these cir-
cumstances, the power of genetic drift has been stronger
than the power of selection. As predicted by theoretical
models [135], the reduced MHC polymorphism is usually
correlated with low genome-wide genetic variation [89].
For example, cheetahs (Aconyx jubatus) show low MHC
diversity, which correlates with a genome-wide loss of
diversity presumably due to a genetic bottleneck about
10,000 years ago [118]. Also Northern elephant seals
(Mirounga angustirostris) which were hunted near to
extinction in the 19t century lost most of the variability in
allozymes, mitochondrial DNA, mini- and microsatellite
loci and MHC class 1I loci [131,135].

Empirical support for the functional importance
of MHC variability in pathogen and parasite
resistance

Evidence for the functional importance of MHC variability
and selective mechanisms derived from studies in humans
or under experimental, laboratory conditions

While predictions of an association between MHC diver-
sity and disease resistance are straightforward extensions
of MHC theory, up to now, most of the empirical evidence
has been derived from studies in humans or under exper-
imental/laboratory conditions [19,67,136].

'"MHC heterozygote advantage' [69] was indicated in
humans by a slower progression to AIDS after HIV infec-
tion [137] and in a more effective clearance of hepatitis B
viral infections [138]. In laboratory experiments, MHC-
heterozygous mice showed reduced pathogenicity during
bacterial and viral infection (streptococcus-induced
lesions [139], Salmonella, Lysteria [70], Salmonella enterica,
Theiler's virus [140]), an increased T-cell mediated immu-
nity during lymphocytic choriomeningitis (LCM) infec-
tion [69] and they had a faster clearance rate of parasitic
worms (Heligmosomoides polygyrus [141], Schistosoma man-
soni [142]), than the average homozygote. Tumor inci-
dence was lower and regression faster in heterozygous,
rous sarcoma virus (RSV) infected chicken (Gallus domes-
tica [143]). MHC class IIB heterozygotes had an increased
survival rate in captive-raised fish, e.g. in Chinook salmon
(Oncorhynchus tsawytscha) infected with a haematopoietic
necrosis virus (HNV) [144] and in fluke-infected (Gyro-
dactilus  turnbulli) Gila topminnows (Poeciliopis o.
occidentalis) [54].

The 'frequency-dependent selection hypothesis' [81,82] is
engaged by both mathematical models [73,145] and
some empirical studies that show correlations between
certain alleles and disease resistance in humans (e.g.
malaria [146], Epstein-Barr-virus [147], hepatitis B [148],
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leprosy, tuberculosis [67], Heliobacter-infected gastric can-
cer [149]). In humans, a correlation was observed
between some MHC class II haplotypes and the clinical
severity of cestode infections (Echinococcus multilocularis)
[150]. Certain MHC alleles also played a role in resist-
ance/susceptibility to a fungal disease (Cryptococcus neofor-
mans [151]), infections with gastrointestinal nematodes
in lab mice (Trichinella spiralis [152,153], Nematospiroides
dubius [154], Trichuris muris [155]) and in straightbred
Scottish ~ Blackface sheep (Ostertagia circumcincta
[156,157]). Associations between resistance and MHC
genotype was found in chicken suffering from infection
with Marek's disease (a tumour disease caused by a herpes
virus [158]). Experimental evidence for MHC-allele-spe-
cific resistance to Aeromonas salmonicida bacteria [57,159]
and to the infectious salmon anaemia virus (ISAV) was
found in captive-raised Atlantic salmon (Salmo salar
[160]).

Evidence for the functional importance of MHC variability
and selective mechanisms derived from studies in free-
ranging animal populations in their natural environment
Whereas studies carried out under experimental or labora-
tory conditions can be better standardised to account for
different parameters (e.g. in inbred congenic mice), they
do not provide sufficient information to evaluate the
ubiquity of pathogen-driven selective mechanisms acting
in free-ranging animal populations in their natural habi-
tat. Doing MHC research in wild vertebrates allows to test
whether the results of studies on inbred congenic lab
strains will hold in animals with a more diverse genetic
background. Further, laboratory studies cannot reveal the
effects of conditionally advantageous or deleterious alle-
les which will be discovered only in the presence of natu-
ral stress, such as spatially and temporally changes in
climate, food availability, competition, and associated
levels of parasitism [18,161]. Predicting the evolutionary
potential of wild host populations in response to parasites
requires at least a minimal understanding of the genetic
basis for host resistance and heritability under field condi-
tions, and the strength and mode of parasite-mediated
selection [162]. Few studies have attempted to test for an
association between MHC polymorphism and parasite
resistance in wild populations under natural conditions
[19]. Available information is summarised in Table 1.

Under field conditions, associations between MHC heter-
ozygosity and resistance/susceptibility to parasite infec-
tions have only been found in the African striped mouse
(Rhabdomys pumilio [163]) and in three-spined stickle-
backs (Gasterosteus aculeatus [47,164]) which seem to pos-
sess up to six MHC class II loci. In the later, a modification
of a simple heterozygote advantage was identified as
within individual fish, intermediate, rather than maximal
allele numbers were associated with minimal parasite
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load [47,164]. This is explained by the fact that MHC-
genes are involved in the preservation of T-cells during
thymic selection. At some point, increasing the number of
MHC molecules expressed should cause a net loss of T-
cells and therefore negatively affect the organism [165]
(but see also Borghans and colleagues [166] who used a
simulation approach which revealed that several hundred
alleles would be required to cause such a net loss of T-
cells). Different allele numbers can be produced by both
heterozygosity at single loci and differences in MHC class
IT gene duplication numbers across haplotypes [167]. At
the moment it is not clear whether or not this selection
pattern of intermediate, rather than maximal allele num-
bers is confined to species with a relatively flexible
genomic architecture such as sticklebacks and other tele-
osts with haplotype variation in their MHC locus duplica-
tion numbers, or whether it represents a more general
feature that has been overlooked in previous studies
[168]. In mammals, a flexible MHC genomic architecture,
namely the appearance of multiple MHC class II DRB loci
with variable loci numbers between individuals has been
described in rhesus macaques (Macaca mulatta [169]) and
in California sea lions (Zalophus californicus [170]). The
later possess up to eight different DRB loci in variable con-
figurations among individuals but with low levels of
allelic variation per loci. Preliminary evidence suggested
an association between a certain MHC genotype and uro-
genital cancer. In contrary to sticklebacks, no relationship
between the total number of unique DRB genes and the
presence of cancer has been identified [171]. A possible
relationship between the number of MHC alleles and par-
asitic load in mammals was also investigated in hairy-
footed gerbils (Gerbillurus paeba) which possess two func-
tional DRB loci [172]. Here, individuals carrying three dif-
ferent MHC alleles had significantly higher faecal egg
count values than individuals with four alleles [172]. This
is in accord with the theoretical background which
assumes that animals containing more MHC alleles than
others should be able to recognise a larger spectrum of
pathogen-derived antigens and consequently be infected
by less parasite species and/or to be generally less inten-
sively infected [69].

An association between certain MHC alleles and disease
resistance or susceptibility was found in a free-ranging
sheep population (Soay sheep, Ovis aries) where MHC
variants appear to play a major role in protection against
strongyle nematode invasion, the most prevalent gas-
trointestinal parasite found [56]. As expected by the
assumptions of the 'negative frequency-dependent selection'
(‘rare-allele advantage hypothesis', 'Red Queen hypothesis',
'moving-target hypotheses') [73,81,82], the most common
alleles OLADRB 205 and 257 (allele frequencies: 0.21-
0.24) were associated with decreased lamb or yearling sur-
vivorship, whereas the rarer OLADRB 263 allele (allele
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Table I: Evidence for pathogen-driven selection mechanisms in free-ranging vertebrate populations investigated in their natural

environment.
Host species Host Country Infectious agent Heterozygote Negative frequency- Reference
environment advantage dependent selection
Three-spined Lakes and rivers Germany 14 species of Supported in terms ofa  Not investigated [47]
stickleback macroparasites general diversity
(Gasterosteus advantage; minimal
aculeatus) parasitation at
intermediate MHC class
IIB diversity; population
exposed to more diverse
parasites had more
different alleles.
Soay sheep Large unmanaged  Scotland Strongyle Not supported; Common alleles [56]
(Ovis aries) population on an nematode heterozygosity is not the (OLADRB 205, OLADRB
island critical factor 257) were associated with
determining mortality in ~ decreased lamb or
lambs and yearlings. yearling survivorship and
a high incidence of
parasitism; the rarer allele
(OLADRB 263) with
increased yearling
survival.
Gray mouse lemur  Littoral rain forest Madagascar Seventeen Not supported; The common allele Mimu- [174]
(Microcebus nematode species; heterozygosity was DRB*| was more
murinus) separate data uncorrelated with frequently found in
analysis for (most  infection status (being infected individuals, in
common) single infected or not), the individuals with high
and multiple number of different number of different
infections. nematodes per individual nematode species
(NNI) as well as with the infections (NNI) and
faecal egg counts (FEC, faecal egg counts (FEC);
eggs/g faeces). the rare alleles Mimu-
DRB*6 and 10 were more
prevalent in not infected
individuals and in
individuals with low NNI
and FEC values.
Yellow-necked Tree-dominated Germany Eight nematode Not supported; Mice carrying allele Apfl- [173]
mouse habitat species; separate heterozygosity did DRB*5 or the closely
(Apodemus flavicollis) data analysis for neither influence the related allele Apfl-DRB*15
(most common) infection status (being had an increased risk of
single and multiple infected or not), nor the  being nematode infected
infections. number of different and displayed higher FEC
nematode infections than individuals carrying
(NNI) nor the individual  other alleles; the allele
faecal egg count (FEC, Apfl-DRB*23 was
eggs/g faeces) values. associated with low FEC
in separate analyses of the
most common nematode.
Hairy-footed gerbil  Dunefield of the South Two different Not investigated Gepa-DRB*|5 was only [172]
(Gerbillurus paeba) Southern Kalahari  Africa cestode species, found in not infected
Desert six different mice.
nematode species
Striped mouse Dunefield of the South Eight different Supported; The allele Rhpu-DRB*I [163]
(Rhabdomys pumilio) ~ Southern Kalahari ~ Africa nematode species  heterozygosity did occurred more frequently
Desert influence the infection in infected individuals and
status (being infected or  in individuals with high
not) and the individual FEC values (high parasite
faecal egg count (FEC) load). In contrary, the
value with higher values  allele Rhpu-DRB*8
observed in homozygous  occurred more often in
individuals. individuals with low FEC
values.
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frequency: 0.13) was associated with increased yearling
survival (Table 1). Further evidence for the importance of
certain MHC alleles and resistance or susceptibility to
helminths was revealed in a common European rodent
(vellow-necked mouse, Apodemus flavicollis [173]), in the
two African rodent species mentioned before (Gerbillurus
paeba [172], Rhabdomys pumilio [163]), and in a primate
species (gray mouse lemur, Microcebus murinus [174])
(Table 1). Also in R. pumilio, it was the most common
allele Rhpu-DRB*1 (allele frequency: 0.22) which
occurred more frequently in infected individuals and in
individuals with high faecal egg count values (indicating
high parasite load) whereas the rare allele Rhpu-DRB*8
(allele frequency: 0.05) occurred more often in individu-
als with low FEC values (indicating low parasite load).
Also in M. murinus, the common allele Mimu-DRB*1
(allele frequency: 0.33) was more frequently found in
infected individuals and in individuals with a high
number of different nematode species infections and fae-
cal egg count values (eggs/g faeces) (indicating high para-
site load), the rarer alleles Mimu-DRB*6 and *10 (allele
frequencies: 0.11 and 0.06) were more prevalent in not
infected individuals, in individuals with low number of
different nematode species infections and faecal egg count
values (indicating low parasite load). These examples
demonstrate the frequency-dependence of selection
between parasites and hosts in the form of a rare allele
advantage in the host population.

Evaluating the relative importance of balancing selective
mechanisms

Right now there is still much debate whether 'heterozygote
advantage' or 'frequency dependent selection hypothesis' is
most important for balancing selection [89]. Most studies
investigating 'heterozygote advantage' compared the infec-
tious disease outcomes of heterozygotes at a given MHC
loci, as a group, to the outcomes of homozygotes at the
same locus, as a group ('population heterozygote advantage'
[70,175], examples see above) probably always due to
restrictions in sample size. However, comparing the
average performance of all heterozygotes against homozy-
gotes, instead of wusing allele specific tests for
‘overdominance', can not distinguish whether the observed
advantage is due to 'dominance’ or 'overdominance'. Group-
ing all homozygotes and all heterozygotes, respectively,
circumvent tests of the original hypothesis namely the
superiority of heterozygotes over either corresponding
homozygote [69] (see paragraph 'Selection mechanisms'
above) as this hypothesis is conditional on the alleles
involved (and should be more precisely termed 'allele-spe-
cific overdominance' [175]). However, a theoretical model
showed that under a very wide range of assumptions
about the relationship between homozygote and hetero-
zygote infectious risk, 'allele-specific overdominance' might
be consistent with "population heterozygote advantage', e.g. a

http://www.frontiersinzoology.com/content/2/1/16

"population heterozygote advantage' might occur when the
diversity of resistant alleles is sufficiently high and the
diversity of susceptible alleles is sufficiently low [175]. But
also the opposite might be true. Because of confounding
effects of differences in frequencies of susceptible or resist-
ant alleles, population level tests can, in a worse case, find
a heterozygote advantage even when every heterozygote is
at greater infection risk than either corresponding
homozygote in allele-specific analyses [175]. Direct esti-
mates of the allele-specific effects of heterozygosity rela-
tive to the corresponding homozygotes are rare. The most
convincing experimental evidence for heterozygote
advantage through 'allele-specific overdominance' derived
from McClelland and colleagues [140] using co-infections
with multiple pathogens in MHC-congenic mice with
reciprocal resistance/susceptibility profiles (but the
authors did not test for fitness consequences). In humans,
the only studies that directly compare the outcomes of
heterozygotes to those of homozygotes for the same alle-
les derived from investigations of autoimmune but not
from infectious diseases (summarised by [70,175]).

As mentioned above allele-specific analyses were most
often impossible due to restrictions in sample size. In
humans, recently a new approach to circumvent this prob-
lem was proposed by classifying alleles to supertypes
based on shared binding motifs [176,177]. Though it is
clear that the highly polymorphic HLA genes play a crucial
role in the immune response, their great diversity is a
major obstacle in distinguishing HLA allele-specific effects
and complicates the attribution of specific alleles with the
outcome of diseases. Collecting samples of the size
needed for definitive results is often not feasible. The bio-
logical relevance of a classification scheme based on func-
tional binding specificities is supported by a growing
body of evidence of cross-presentation of specific peptide-
binding motifs by different HLA molecules. Trachtenberg
and colleagues [176] investigated the usefulness of group-
ing HLA alleles to supertypes by their overlapping peptide
binding specificities in explaining the association between
HLA polymorphism and HIV disease progression. Their
study indicated that HLA-supertypes are highly predictive
of viral load. Consistent with the rare-allele advantage
model the authors could show the advantage of a rare
HLA supertype in progression of HIV [176]. After more
intense studies of the implications and limits of super-
types in large human data sets, this classification
approach of common functional traits may also provide
tools for the MHC research in natural endangered popula-
tions, where high allelic diversity causes problems in
obtaining sufficiently large statistical sample sizes. Cau-
tion must be taken not to miss the effects of new, rare alle-
les by clustering alleles in functional types.
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As outlined before, two different 'overdominance' models
have been suggested: a) 'symmetric overdominance' or 'sym-
metric balancing selection' [74], whereby all heterozygotes
derive a similar selective advantage to homozygotes (= all
heterozygous are selectively equivalent), and b) 'divergent
allele advantage' [75]. As almost all heterozygote advantage
studies were carried out on the population level, so far, no
effort has been made to differentiate between these two
‘overdominance' models in infectious disease studies. How-
ever, the 'divergent allele advantage' hypothesis has recently
been considered in MHC-dependent mate choice studies
[121,178]. In the African striped mouse (Rhabdomys
pumilio) where associations between MHC heterozygosity
and resistance/susceptibility to parasite infections have
been found [163], no significant correlation between pair-
wise genetic distances of heterozygotes (a measurement
for allelic divergence) and infection rates (faecal egg
count: log-transformed number of eggs per gram faeces)
was found (Froeschke & Sommer, unpublished data).
Another point that need to be mentioned is that only a
few studies in natural populations indicating correlative
evidence for ‘'heterozygote advantage’ combined MHC
research with estimates of genome-wide diversity by using
neutral markers and thus could rule out possible effects of
genome-wide heterosis [47,137].

With respect to the 'frequency dependent selection hypothesis',
evidence for pathogen-resistant/susceptible alleles/haplo-
types is not equally available. So far, more alleles/haplo-
types were found to be associated with susceptibility to
disease [67] (but see Table 1). This bias could be simply
due to over presentation of human studies, in which the
emphasis has been on finding disease-allele associations
[179]. But it is also in line with theoretical predictions of
host-parasite coevolution. Susceptibility is expected to be
more common, because fast evolution of the parasite is
assumed to fuel the arms race between them and their
hosts. For most pathogens it is valid to assume a higher
evolutionary potential compared to that of the host,
because generation times are usually much shorter or
effective population sizes of pathogen populations are
larger [18]. The human HLA-A11 allele, for example, con-
fers resistance to infection with Epstein-Barr-virus only in
populations where the allele is rare. In populations with
high frequency of this allele, virus strains have fixed a
mutation that prevents presentation of immunodomi-
nant epitopes by HLA-A11 molecules [147]. Also certain
HLA alleles are associated with a slower progression of
HIV if they are rare and have no advantage if they are com-
mon (summarised by [176]). This shows that a fast-evolv-
ing pathogen is able to adapt to host defence.

Evaluating the relative importance of both balancing
selective mechanisms, so far, more evidence is available
for the importance of specific MHC-alleles in parasite
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resistance or susceptibility. It is conceivable that a rare
allele may have a high fitness and at the same time a con-
stant advantage for heterozygotes. Both hypotheses may
be in accord with each other and are not mutually exclu-
sive. But as most studies deal with single viral, bacterial or
parasitic agents it was suggested that studies combining
two or more pathogens may increase the amount of evi-
dence for heterozygote advantage [57,136,140] (but see
[173,174]). De Boer and colleagues [180] studied the
degree of MHC polymorphism arising when 'heterozygote
advantage' is the only selection pressure by using mathe-
matical models. The simulations revealed that 'heterozy-
gote advantage' on its own is not sufficient to explain the
high population diversity of the MHC. This would require
that the fitness contributions of all alleles would be unre-
alistically similar. 'Heterozygote advantage' in pathogen
resistance could, however, promote mating preferences
for MHC-dissimilarity, which in turn drive high allelic
diversity [52,68,70]. This could explain why MHC-hetero-
zygous males have attributes important during sexual
selection such as an increased antler development and
body mass in white deer [181] and sexually attractive
odour in stickleback fish [46]. In contrast, a study on sex-
ual selection in pheasants (Phasianus colchicus) found that
females prefer males with larger spurs, and that this sexu-
ally selected trait is associated with a particular MHC
allele [182,183]. The overall view is emerging that
although 'heterozygote advantage' is clearly an important
selection pressure additional frequency-dependent selec-
tion pressure is required. A theoretical model by Hedrick
[89] indicated that the selective force from pathogens,
which vary in space and time ('diversifying selection in space
and time'), could maintain the genetic polymorphism in
MHC genes. Since evolving pathogens mainly evade pres-
entation by the most common MHC alleles in the host
population, they provide a selective pressure for a large
variety of rare alleles. Host-parasite coevolution would be
sufficient to explain the large degree of MHC polymor-
phism [145].

In ongoing studies assessing the evolutionary genetic
details of vertebrate host-parasite relationships and evi-
dence for frequency-dependent parasite-driven selection
four patterns ought to be evident: (1) parasitism reduces
host fitness, (2) MHC alleles differ in susceptibility, (3)
alleles frequencies change according to (2), and (4) in the
longer term dynamics should encompass frequency-
dependent allele frequency fluctuations [17]. Whereas (1)
and (2) indicate the potential for selection and have been
shown in recent studies in wildlife populations (e.g.
[184], this review), so far evidence for (3) and (4) is lim-
ited. Ongoing investigations of the parasite-driven selec-
tion mechanisms under natural conditions should focus
on temporal variation of pathogens, host fitness attributes
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and allele frequencies to test whether allele frequencies
change accordingly in a cycling pattern.

Functional differences of amino acid variation in the
antigen binding sites

There is increasing evidence that pathogen escape from
MHC-dependent immune system recognition may
involve changes in only a few amino acids so that small
binding-motif differences can lead to large differences in
protection. Common mechanisms include changes in
pathogen antigens (epitopes) that prevent binding (1) to
the MHC-encoded cell surface glycoprotein or (2) to the
T-cell receptor. (3) A third mechanism is molecular mim-
icry of host proteins that prevent T-cell receptor binding
(T-cells that recognise host proteins are destroyed during
thymic selection). For instance, a one-amino-acid differ-
ence in the antigen-binding region of the DRB*1302
allele abrogates its protection to malaria (summarised by
[185,186]). In Malagasy mouse lemurs (Microcebus muri-
nus), MHC-alleles associated with gastrointestinal nema-
tode susceptibility (Mimu-DRB*1, *6 and *10) have
unique amino acid motifs in the antigen binding sites
(ABS) [174]. Mimu-DRB*1 associated with high parasite
load differs from all other alleles by three unique amino
acids, all of them located within the functional important
ABS (aspartic acid in position 70, glutamic acid in posi-
tion 71, lysine in position 74). Two of these ABS are
mutated in Mimu-DRB*6 and *10 currently associated
with low parasite load: the allele Mimu-DRB*6 has a
unique motif at position 74 (glycine) and Mimu-DRB*10
at position 71 (methionine). In addition, only Mimu-
DRB*6 and *10 possess the amino acid arginine located
next to the ABS in position 78 [174] (position numbers
after [62]). This indicates the functional differences of cer-
tain amino acids in the ABS and thus the influence of dif-
ferent amino acid compositions on parasite resistance.

So far, the molecular details of the interactions between
helminth parasites and the intestinal components of the
immune system are not as well understood as for viral or
bacterial infections. However, huge progress was made in
understanding the cellular and molecular mechanisms in
the immune regulation by gastrointestinal helminth para-
sites in recent years. The recognition of gastrointestinal
parasites and their antigens, and the initiation of the
immune response occur in specialised lymph nodes in the
epithelium of the gut wall, the so called Peyer's patches. In
these Peyer's patches all cell types necessary for antigen
presentation to CD4+ T-cells including MHC class II mol-
ecules are present. This activates a range of interacting
processes against the parasite culminating in an inflam-
matory reaction in the intestinal mucosa and different
effector mechanisms against the invading parasite (sum-
marised in [186-191]).

http://www.frontiersinzoology.com/content/2/1/16

Importance of MHC variability in conservation
Importance of adaptive genetic variability with respect to
human impact

Human impact (e.g. habitat fragmentation, degradation,
isolation, urbanisation, pollution) has diverse impacts on
the ecology and genetics of both, vertebrate and parasite
populations. It often causes a loss of genetic variation
leading to short-term reduction of fitness components,
and to an impaired ability to adapt to changing environ-
ments which in turn influences evolutionary outcomes
[5,6,12,18,192]. Habitat degradation and climatic condi-
tions are also crucial parameters in terms of distribution,
transmission and developmental success of parasites and
pathogens [18,192,193]. Such changes may have signifi-
cant implications for outbreak patterns of pest species, the
conservation of rare mammal species and their ecological
functions, as well as associated veterinary and medical
consequences for wildlife, lifestock and humans [194].
Rapid evolution (on the order of decades or shorter) has
been supported by numerous examples from host-para-
site systems, and it is now clear that pathogens can cause
major shifts in the genetic composition of their hosts on
short timescales [18,162,195]. Detectable changes in
allele frequencies can occur between subsequent genera-
tions and can be a sensitive indicator for demographic
changes in some species [196].

The effects of pollution on the MHC was investigated in
the estuary killifish (Fundulus heteroclitus) [33]. Popula-
tions experiencing strong differences in antigenic chal-
lenges (PCB-contaminated versus unpolluted site) show
significant differences in amino acid substitution patterns
in a highly variable MHC class II B locus. However,
whether MHC population profile differences represent
direct effects of chemical toxicants or parasite-mediated
selection need to be investigated [33]. The only study
including an environmental variable such as habitat frag-
mentation in the analysis of associations of MHC-consti-
tution and parasite burden was carried out in a subdivided
mouse lemur population [174]. The work indicated that
variation in MHC-allele frequencies in the fragments were
linked to parasite load as certain alleles which differed in
a few amino acids in the ABS from other alleles (see
above) were associated to parasite resistance or suscepti-
bility. Female mouse lemurs inhabiting the fragment with
the highest parasite load had a lower fat deposition in the
tail (important during the dry season) and therefore lower
survival rates than populations of the three other frag-
ments. In addition, the population size declined dramati-
cally in recent years [197]. However, to clearly separate
whether the higher parasite load in the respective frag-
ment is due to the MHC-constitution of individuals
inhabiting this fragment or due to other ecological factors
associated with fragment size or degradation needs further
investigations [174]. Nevertheless, the study suggests that
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Table 2: Number of MHC class Il DRB exon 2 alleles (ca. 200 bp) and sequence diversity in free-ranging vertebrate populations
investigated in their natural environment. In addition, for comparison of variability levels of species with a low number of MHC alleles
two studies of captive-bred populations are included. * DRB-locus is duplicated. N = sample size.

Species Order Country Nr of Nr (%) of Nr (%) of Nr (%) of amino References
alleles variable variable acid differences
(N) nucleotide aminoacid between alleles
positions positions

Microcebus murinus primates Madagascar 14 (228) 71 (41.5) 31 (54.4) 5(8.8) — 25 (43.9) [110,174]

Microcebus berthae primates Madagascar 9 (42) 46 (26.9) 24 (42.1) 3(5.3)-19(33.3) Sommer et al.,
unpublished data

Apodemus sylvaticus rodentia Germany 38 (119) 71 (32.7) 38 (52.8) 2 (2.7) — 28 (38.8) [206]

Apodemus flavicollis rodentia Germany 27 (146) 49 (22.6) 28 (38.9) 1 (1.4)-21(29.2) [173]

Leopoldamys sabanus ~ rodentia Borneo 28* (49) 85 (49.7) 39 (68.4) 4 (7.0) — 25 (43.9) Lenz et al., unpublished
data

Gerbillurus paeba rodentia South Africa  34* (40) 68 (39.8) 33 (57.9) 1 (1.8)—19(33.3) [172]

Rhabdomys pumilio rodentia South Africa 20 (58) 43 (25.1) 23 (40.4) 1 (1.8) — 14 (24.6) [163]

Rattus rattus rodentia Madagascar 13 (58) 72 (40.7) 33 (55.9) 3 (5.1)— 26 (44.1) Sommer, unpublished
data

Hypogeomys antimena  rodentia Madagascar 5 (229) 37 (17.1) 19 (26.4) 6(8.3)-21(29.2) [201]

Equus przewalskii perissodactyla captive-bred 6* (14) 52 (20.8) 29 (34.9) I (1.2) — 22 (26.5) [55]

Oryx leucoryx artiodactyla captive-bred 3 (57) 35(14.8) 21 (26.9) 13(16.7) - 17 (21.8) [129]

Damaliscus pygargus artiodactyla South Africa 6 (45) 21 (8.4) 14 (16.9) I (1.2) = 13 (15.7) [130]

pygargus

the MHC-constitution might influence the long-term sur-
vival of small fragmented animal populations and indi-
cates the functional importance of maintenance of MHC
variability in declining or fragmented animal
populations.

More studies in free ranging animal populations with
respect to human impact are needed to allow more gen-
eral conclusions on the importance of adaptive genetic
variability in conservation. According to the theoretical
background, temporal and spatial variation in the para-
sitic fauna will cause shifts of selective advantage of cer-
tain MHC-alleles in different areas changing over time.
This should result in habitat- and climate-specific amino
acid substitution patterns in the functional important ABS
in relation to local pathogen-driven selective pressures. So
far, empirical evidence for 'diversifying selection in space and
time' is limited. Studies on the interaction between envi-
ronmental conditions and the expression of genetic cov-
ariation (the so called genotype-environment interaction)
might be an important avenue for future work. Genotype-
environment interactions have commonly been found in
live history traits when multiple environments were con-
sidered reflecting the fact that genes influencing a trait in
one environment may not be important in a different one
[198]. In this context, host and parasite movement among
habitat fragments could be crucial to both parasite persist-
ence, and the spread and maintenance of resistance alleles
and thus to allow ongoing coevolutionary processes. The
role of metapopulation dynamics in maintaining the
diversity of host resistance genes can be a matter of con-

cern in conservation genetics aiming at the preservation of
both current patterns and ongoing processes. As contem-
porary evolution is influenced by complex interactions
among population size, genetic variation, strength of
selection, and gene flow, the overall goal in conservation
genetics — maintenance of short-term local adaptations
and preservation of long-term adaptive potential - might
be a challenging task [32].

Relevance of MHC polymorphism for individual fitness
and long-term persistence

Genetic variation at MHC loci is thought to be important
for resistance against pathogens, thereby increasing indi-
vidual fitness and thus the long-term survival of endan-
gered species [60,73]. Several studies have reported
decreased pathogen resistance among MHC homozy-
gotes, or an increase in pathogen susceptibility in inbred
individuals in general. However, a direct link between
pathogen-mediated population decline and low MHC
variation has been difficult to demonstrate in natural pop-
ulations [49]. Recent studies indicated that although
MHC allele numbers are low in many bottlenecked spe-
cies most of them still indicate a high degree of divergence
between alleles. Table 2 summarises the number of func-
tional important MHC class 11 DRB exon 2 alleles and
sequence diversity in some free-ranging vertebrate popu-
lations investigated in their natural habitat. The compari-
son indicates that also species with a low number of
different MHC alleles, such as the critically endangered
Malagasy Giant Jumping Rat (Hypogeomys antimena, 5 alle-
les) whose geographic range was recently restricted to less
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Differences between the rates of non-synonymous (d,) and synonymous (d,) substitutions (= d,-d,, amino acid sequence-
changing substitution rate) in antigen-binding sites (ABS, shaded bars) and nonantigen-binding sites (nonABS, black bars) of
MHC class Il DRB exon 2 alleles of the species included in Table 2. Abbreviations follow the MHC nomenclature [42], the first

two letters of the genus and the species name are used.

than 20,000 ha, still have high levels of nucleotide and
amino acid divergence between MHC DRB-alleles while
mitochondrial d-loop sequences revealed very low varia-
bility [199-201]. A similar picture was revealed in the
Przewalski's horse (Equus przewalskii, 6 alleles [55]), in the
Arabian oryx (Oryx leucoryx, 3 alleles [129]) and in the
South African bontebok (Damaliscus pygargus pygargus, 6
alleles [130]) (Table 2). Considering the nonABS, the
ratio between non-synonymous (d,) and synonymous
(d,) substitutions was significantly smaller (d, < d,) than
unity in some species (Fig. 1) which indicates purifying
selection acting on these codons depending on their
respective function [202]. In contrary, comparisons of
non-synonymous (d,) and synonymous (d,) substitution
rates in parts coding for the functional important ABS
revealed a significantly higher rate of substitutions (d, >
d,) which change the amino acid constitution in the ABS
and thus increase the divergence between alleles in all
species irrespective of the number of MHC alleles still
present (Fig. 1).

The studies indicate that selection processes are able to
maintain MHC polymorphism also under unfavourable
conditions at least for a certain time which in turn might
suggest that levels of variability in species with low num-
bers of MHC alleles might be sufficient to prevent imme-
diate pathogen-mediated population decline. However,
in such populations adaptive processes to changing con-
ditions might be limited. An intriguing question is still
what happens if new pathogens arise which differ from
commonly encountered diseases by the respective popu-
lations. It is reasonable to assume that the maintenance
and even more renewal of variation in functional impor-
tant parts of the MHC such as in the antigen binding sites,
either from mutation, recombination or immigration
from other populations is an important genetic compo-
nent in the cascade leading to an appropriate immune
response, when combating new or coevolving virulent
pathogens. It was suggested that the extremely low genetic
variability in cheetahs (Aconyx jubatus) as a consequence
of inbreeding depression due to a substantial bottleneck
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about 10,000 ago limits adaptation processes to tempo-
rary pathogens which might explain the high disease sus-
ceptibility nowadays [118,203]. As in other mainly
endangered species, the proposed association cannot be
tested as there are no genetically variable outbred cheetah
population to compare with [21]. Samples from preserved
bones or from museum specimens in the case of recently
presumed bottlenecks would be necessary to directly
assess historical levels of MHC variation and to evaluate
the relative role of demographic changes in determining
existing levels of genetic diversity at the MHC [127].

Concerning the role of MHC in conservation genetics, the
potential functional role of background genes (non-MHC
genes) in disease resistance should not be ignored.
Human studies indicate that background genes might also
play an important role in determining pathogen and par-
asite resistance, either by themselves or in a epistatic man-
ner with MHC-genes (summarised by [179,204]. Many of
the regulatory genes show high polymorphism and, for
example, variation in the tumor necrosis factor gene pro-
motor, cytokines such as interleucin receptor, y-interferon
receptor vitamin and D receptor has been associated to
infectious diseases (summarised by [187,191,204].
Although evidence is accumulating that the MHC is one of
the main factors controlling resistance to diseases
[176,205] conservation genetics should focus on the pres-
ervation of both, MHC and genome-wide diversity.
Thereby, how much MHC diversity is required to ensure
long-term population viability remains a fundamental
question in conservation genetics [133] and can only be
investigated close follow-ups of the genetic and health sta-
tus of declining populations.

Conclusion

The diverse functions and characteristics place genes of
the MHC among the best candidates for studies of mech-
anisms and significance of molecular adaptation in verte-
brates. In contrary to neutral markers, MHC variability
reflects evolutionary relevant and adaptive processes
within and between populations and is very suitable to
investigate a wide range of open questions in evolutionary
ecology and conservation.

The selective effects from different pathogens appear to be
the major driving force in the maintenance of MHC vari-
ation. Evidence of balancing selection at MHC genes has
been found at different temporal scales. Selection in the
distant past has been documented as an excess of nonsyn-
onymous to synonymous substitutions, and as trans-spe-
cies polymorphism. Selection in the recent past has been
determined by excess heterozygosity compared to neutral
theory expectations, differences in Fg-values compared to
neutral theory, or excess linkage equilibrium. Selection in
the current generation has been identified by measuring
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deviations from Hardy-Weinberg or random mating pro-
portions, survival differences between homozygotes and
heterozygotes, and correlations of disease resistance with
MHC-allele or genotype [90]. Changes in certain amino
acids in the functional important MHC-coded antigen
binding sites and thus the amino acid compositions influ-
ence functional differences in pathogen and parasite
resistance. It is reasonable to assume that the maintenance
and even more renewal of variation in functional impor-
tant parts of the MHC such as in the antigen binding sites,
either from mutation, recombination or immigration
from other populations is an important genetic compo-
nent in the cascade leading to an appropriate immune
response, when combating new or coevolving virulent
pathogens and might be important in conservation genet-
ics. Studies indicate the functional importance of MHC
variability in pathogen and parasite resistance not only in
humans or in model organisms under experimental, lab-
oratory conditions where most of our current knowledge
derived from, but also in wild animal populations inves-
tigated in their natural environment. Only field studies in
free-ranging animal populations can reveal the effects of
conditionally advantageous or deleterious alleles in the
presence of natural stress (e.g. spatially and temporally
changes in climate, food availability, and competition),
associated levels of parasitism, and thus the ubiquity of
pathogen-driven selective mechanisms and the impor-
tance of MHC diversity across taxa. The combination with
an experimental approach under standardized laboratory
conditions is needed to prove the causal relationships
behind correlations observed in the field.

Right now it is not quite clear whether 'heterozygote advan-
tage' or 'frequency-dependent selection hypothesis' is most
important for balancing selection. Most studies investigat-
ing 'heterozygote advantage' compared the infectious dis-
ease outcomes of heterozygotes at a given MHC lodi, as a
group, to the outcomes of homozygotes at the same locus,
as a group ('population heterozygote advantage'). Comparing
the average performance of all heterozygotes against
homozygotes, instead of using allele specific tests for 'over-
dominance' (= 'allele-specific overdominance') circumvent
tests of the original hypothesis namely the superiority of
heterozygotes over either corresponding homozygote as
this hypothesis is conditional on the alleles involved.
Allele-specific analyses were most often impossible due to
restrictions in sample size. In humans, recently a new
approach to circumvent this problem was proposed by
classifying alleles to supertypes based on shared binding
motifs [176,177]. After more intense studies of the impli-
cations and limits of supertypes in large human data sets,
this classification approach of common functional traits
may also provide tools for the MHC research in natural
endangered populations, where high allelic diversity
causes problems in obtaining sufficiently large statistical
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sample sizes. Caution must be taken not to miss the
effects of new, rare alleles by clustering alleles in func-
tional types. So far, more evidence is available for the
importance of specific MHC-alleles in parasite resistance
or susceptibility. It is conceivable that a rare allele may
have a high fitness and at the same time a constant advan-
tage for heterozygotes thus both modes of balancing selec-
tion may act synergistically to enhance the maintenance
of polymorphism.

Ongoing investigations of the parasite-driven selection
mechanisms under natural conditions should focus on
temporal variation of pathogens, host fitness attributes
and allele frequencies to test whether allele frequencies
change accordingly in a cycling pattern. Assessing the
immunogenetic status of a population relative to another
experiencing different suites of antigenic challenges will
help to increase our knowledge on the importance of
adaptive genetic variability in free ranging animal
populations with respect to human impact and the role of
the MHC in evolutionary ecology and conservation.
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