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Male germ cell development depends on multiple biological events that combine
epigenetic reprogramming, cell cycle regulation, and cell migration in a spatio-temporal
manner. Sertoli cells are a crucial component of the spermatogonial stem cell niche and
provide essential growth factors and chemokines to developing germ cells. This review
focuses mainly on the activation of master regulators of the niche in Sertoli cells and their
targets, as well as on novel molecular mechanisms underlying the regulation of growth
and differentiation factors such as GDNF and retinoic acid by NOTCH signaling and
other pathways.
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INTRODUCTION

The Niche Microenvironment
Maintenance, repair, and regeneration of many mammalian organs depend on adult stem cells.
Stem cells proliferate and differentiate to replace mature functional cells within tissues that have
either high turnover such as blood, testis, and epithelia (intestine, skin, and respiratory tract), or
tissues that have low turnover but a high regenerative potential upon disease or injury such as liver,
pancreas, skeletal muscle, and bone (1). Precise regulation of adult stem cell fate is therefore critical
for the support of tissue homeostasis, and stem cell maintenance must involve a fine balance
between genetic and epigenetic mechanisms, external factors from the microenvironment and
systemic support, and multiple signaling pathways elicited by paracrine and juxtacrine factors.

Over the years, evidence has accumulated showing that stem cell self-renewal depends on the
constituents of their microenvironment called the niche (2, 3) and that in turn stem cells influence
their own environment (4–6). The constituents of the niche can be classified into adjacent
supporting cells such as fibroblasts, tissue macrophages, glial cells (brain), osteoblasts (bone
marrow), Sertoli cells (testis) and myofibroblasts (gut), together with paracrine and juxtacrine
factors secreted by these supporting cells, and the extracellular matrix. Once they leave the niche,
stem cells become progenitor cells that are less plastic and differentiate at the expense of their
immortality. Over the last 15 years, critical cellular and molecular components of the specialized
niche microenvironment have begun to be unveiled in several tissues. Advanced techniques in
lineage-tracing, endogenous cell and gene/protein deletions in animal models, and high-resolution
n.org June 2022 | Volume 13 | Article 8970621
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microscopy have significantly improved our understanding of
the molecular and cellular intricacies that maintain and integrate
the many activities required to sustain tissue homeostasis.

The Spermatogonial Stem Cell Niche
In the mammalian testis, the male germline produces a life-long
supply of haploid spermatozoa through the highly regulated and
coordinated process of spermatogenesis. This process starts with
the self-renewal of a small pool of diploid stem cells called
spermatogonial stem cells (SSCs or Asingle spermatogonia),
which can self-renew to maintain the pool or give rise to more
mature germ cells called Apaired and Aaligned spermatogonia.
Collectively, Asingle, Apaired and Aaligned spermatogonia are
called undifferentiated spermatogonia (7). These cells further
differentiate into differentiating spermatogonia and
spermatocytes that undergo meiosis, producing haploid
spermatids that will mature into spermatozoa. The longevity
and the high output of sperm cell production relies therefore
primarily on the proper maintenance of the pool of SSCs and
their proliferation. Like other types of stem cells, SSCs rely on
their micro-environment to sustain their growth and to initiate
differentiation that signals their release from the basal part of the
seminiferous epithelium and exit from the niche.

SSCs reside on the basement membrane that supports the
seminiferous epithelium. They are in intimate physical contact
with highly specialized somatic niche cells, the Sertoli cells,
which directly provide soluble growth factors and membrane-
bound signals to the germ cells (8). Other niche cell types have
been recently investigated, including peritubular myoid cells,
interstitial cells (macrophages and Leydig cells), and endothelial
cells from the vascular network, which all produce critical growth
Frontiers in Endocrinology | www.frontiersin.org 2
factors (Figure 1) (9–15). Because of their direct physical
association with germ cells, their secretion of growth factors
and basement membrane components, and their architectural
support of the seminiferous epithelium, Sertoli cells are
considered the most important contributor of the testicular
niche, and the regulation of their molecular communications
with SSCs and more mature premeiotic germ cells will be the
subject of this review.
SERTOLI CELLS AS STRUCTURAL
NICHE ORGANIZERS

It is now established that the number of Sertoli cells increases
during fetal development due to growth stimulation through
FSH/FSHR signaling. Sertoli cells proliferate up to day 15 after
birth in mice and 17 days after birth in rats, after which the
number of Sertoli cells reaches its peak and remain constant
throughout life unless altered by insult and aging. Therefore,
the number of Sertoli cells is finite and its maintenance is
crucial for life-long spermatogenesis. Several years ago, de
Franca et al. induced experimental hypothyroidism in the rat
with propylthiouracil (PTU) administrated neonatally. The
treatment significantly increased the period of Sertoli cell
proliferation and therefore increased their number at puberty
and beyond. This also increased germ cell number and the
size of the testes (16). However, direct evidence that Sertoli
cells indeed provide a structural and functional SSC niche
support was provided by Oatley and colleagues (17).
The authors treated male mouse pups with PTU, which led to
FIGURE 1 | Seminiferous Epithelium Organization and the Spermatogonial Stem Cell Niche. The seminiferous epithelium consists of germ cells (blue) and the somatic Sertoli
cells (yellow). Sertoli cells produce many factors needed at various developmental steps during the spermatogenic process. The blood-testis barrier separates diploid germ
cells from more mature cells and provide an immuno-privileged microenvironment for the completion of meiosis. Like Sertoli cells, the spermatogonial stem cells (SSCs) are
attached to the basement membrane. They rely on specific growth factors for self-renewal and maintenance of the pool. These molecules are produced by Sertoli cells,
peritubular myoid cells, Leydig cells, and macrophages, as well as the vasculature. The components of the SSC niche are highlighted in the grey area.
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increased Sertoli cell and germ cell numbers in the adult
testes. Next, by using these mice as germ cells recipients after
busulfan treatment destroyed their endogenous germ cells, they
showed a significant increase of colonization by normal donor
SSCs after transplantation. This demonstrated an increased
presence of functional niches. Because neither the vasculature
nor interstitial cell populations were altered in the PTU
recipient model, they concluded that Sertoli cells are the most
critical somatic cell type in the testis and that they create the
SSC niche.
MASTER REGULATORS OF THE NICHE

The germ cell and Sertoli cell behaviors leading to the
establishment of the spermatogenic stem cell niche in the early
postnatal testis are well known. In addition to Sertoli cell
proliferation leading to the expansion of the niche units until
puberty, one of the most striking cellular behavior is the
movement of pro-spermatogonia, or gonocytes, toward the
periphery of the cords at around day 3-4 after birth in rodents,
and 8-12 weeks after birth in humans (18, 19). By postnatal day 6
in the mouse, about 90% of pro-spermatogonia have reached the
basal lamina, have become SSCs and rapidly differentiate (20),
whereas germ cells that failed to migrate have died (21). The past
fifteen years have seen a growing interest in understanding how
these processes are regulated and the discovery of Sertoli cell-
specific genes that are master determinants of the niche has
become a priority.

DMRT1 (Doublesex and Mab-3 related transcription factor
1) is a conserved gene that is expressed in the testes of all
vertebrates. In the mouse, DMRT1 expression starts at the genital
ridge stage and continues throughout adult life. DMRT1 is
required for normal sexual development, and defective
expression leads to abnormal testicular formation and XY
feminization (22). While both germ cells and Sertoli cells
express the gene, Sertoli cell-specific knockout of Dmrt1 led to
testicular abnormalities at around day 7 post-partum (22–25).
Sertoli cells lacking DMRT1 re-expressed Forkhead box L2
(FOXL2), a female gonad determinant (26). The cells could not
polarize, reprogrammed into granulosa cells, and seminiferous
tubule lumens did not form (22). Consequently, SSCs and
undifferentiated spermatogonia were not maintained at the
tubule periphery, the germ cell population remained
disorganized, and germ cells died after meiotic arrest. This
indicated that DMRT1 antagonizes FOXL2 and functions as a
repressor of the female gonad development. Further, DMRT1 is
also a known activator of androgen receptor (AR) (27, 28) and is
crucial for cellular junction formation and function by driving
the expression of Claudin 11 (Cldn11), Vinculin (Vcl), and gap
junction protein alpha 3 (Gja3) (Table 1), therefore controlling
the structural niche as well (28, 48, 79, 120).

In 2015, Chen and colleagues demonstrated that targeted loss
of Gata4, a known Sertoli cell marker also involved in mouse
genital ridge initiation, sex determination, and embryonic testis
Frontiers in Endocrinology | www.frontiersin.org 3
development (72–74), resulted in a loss of the establishment and
maintenance of the SSC pool, and led to Sertoli cell-only
syndrome (41). Loss of Gata4 altered the expression of a
number of chemokines, including Cxcl12 (SFD1, binding to the
CXCR4 receptor) and Ccl3 (binding to the CCR1 receptor),
which are known to guide pro-spermatogonia toward the
basement membrane and the niche provided by Sertoli cells
(39, 40). Similarly, another Sertoli cell transcription factor,
ETV5, was found to directly bind to the promoter of the
chemokine Ccl9. CCL9 facilitated chemoattraction of stem/
progenitor spermatogonia, which express CCR1, the receptor
for CCL9 (42) (Table 1). Together, these results revealed a novel
role for GATA4 and ETV5 in organizing the SSC niche via the
transcriptional regulation of chemokine signaling shortly after
birth. More recently, Alankarage and colleagues demonstrated
that Etv5 in Sertoli cells is directly under control of SOX9, a
transcription factor that specifies the function of Sertoli cells and
their differentiation from somatic cell precursors (61).

Migration of pro-spermatogonia to the basement membrane
and niches provided by Sertoli cells is also dependent on AIP1, a
b-actin-interacting protein that mediates b-actin (ACTB)
disassembly (29, 31). Sertoli and germ cell-specific deletion of
mouse Aip1 each led to significant defects in germ cell migration
at postnatal day 4, which corresponded to elevated numbers of
actin filaments in the affected cells. Increased actin filaments
might have caused cytoskeletal changes that impaired E-cadherin
(CDH1) regulation in Sertoli cells and germ cells, decreasing
germ cell motility. Aip1 deletion in Sertoli cells did not affect the
expression and secretion of growth factors, suggesting that the
disruption of SSC migration and function results from
architectural changes in the postnatal niche.

Another determinant of the perinatal niche, CDC42, was
recently identified by Mori et al. (46). Together with RAC1 and
RHOA, CDC42 is a member of the RHO family of small GTP-
ases, which are mainly involved in cell polarity and migration
(43, 111). Importantly, a possible role of the small GTP-ases
CDC42 and RAC1 in the regulation of the blood-testis-barrier
(BTB), tight junction components, and Sertoli cell polarity was
suggested by several authors (45, 47, 109). While deletion of
Cdc42 expression in Sertoli cells in the Mori study did not lead to
major changes in the BTB integrity and cell polarity, it led to the
depletion of the growth factor glial cell line-derived neurotrophic
factor (GDNF), a major determinant of spermatogonial
proliferation, possibly through the downregulation of canonical
PAK1 activity downstream of CDC42 (44).
EPIGENETIC REGULATORS OF
THE NICHE

One of the first discovered epigenetic regulators of the SSC niche
was the Switch-insensitive 3a (SIN3A) co-repressor protein, part
of a massive transcriptional complex that interacts with a wide
array of epigenetic regulators (114). The SIN3A transcriptional
corepressor complex plays a role in diverse cellular processes
June 2022 | Volume 13 | Article 897062
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TABLE 1 | Names and functions of proteins discussed in this review.

Protein UniProt ID
(mouse, unless

specified)

Cell Type Function in the testis References

ACTB P60710 Sertoli cells Beta-Actin. Component of adherens junctions. 29, 30
AIP1
(WDR1)

P60710 Sertoli cells Actin-Interacting Protein 1. Functions as Actin disassembly factor, promotes germ cell
movement toward the basement membrane.

31

AIP1
(WDR1)

P60710 Pro-spermatogonia/
Undifferentiated
spermatogonia

Actin-Interacting Protein 1. Functions as Actin disassembly factor, promotes germ cell
movement toward the basement membrane.

31

AMH P27106 Sertoli cells, immature Anti-Mullerian Hormone. Regression of Müllerian ducts in male fetuses. 32, 33
AR
(NR3C4)

P19091 Sertoli cells Androgen receptor. Responsible for binding of Testosterone/Dihydrotestosterone. 27, 28, 34

ARID4A/
ARI4A

F8VPQ2 Sertoli cells AT-Rich Interaction Domain 4A. Maintains the blood-testis barrier. Knock-out induces
meiotic arrest.

33, 35

ARID4B/
ARI4B

A2CG63 Sertoli cells AT-Rich Interaction Domain 4B. Supports the SSC niche. Transcriptional coactivator for
AR.

33, 34, 36

BCL6B O88282 Spermatogonial stem
cells

B-Cell CLL/Lymphoma 6, Member B. Supports self-renewal. 37, 38

BEX1 Q9HBH7 (human) Human Sertoli cells,
Stage b (8-11 year old)

Brain Expressed X-Linked Protein 1. Transcription regulator. Plays a role in cell cycle
progression in Stage b human Sertoli cells.

30

CCL3 P10855 Sertoli cells, perinatal C-C Motif Chemokine Ligand 3. Guides pro-spermatogonia toward the basement
membrane.

39–41

CCL9 P51670 Sertoli cells, perinatal C-C Motif Chemokine Ligand 9. Guides pro-spermatogonia toward the basement
membrane. Maintains SSCs within the niche.

42

CCR1 P51675 Pro-spermatogonia,
undifferentiated
spermatogonia

C-C Motif Chemokine Receptor 1. Receptor for CCL3 and CCL9. 39

CDC42 P60766 Sertoli cells Cell Division Cycle Protein 42. Involved in cell polarity and migration. Regulation of the
blood-testis barrier and Sertoli cell polarity.

43–47

CDH1 P09803 Sertoli cells E-cadherin/cadherin-1. Calcium-dependent cell adhesion protein. 29
CLDN11/
CLD11

Q60771 Sertoli cells Claudin 11. Tight junction protein at the blood-testis barrier. 28, 48

CSF1 P07141 Leydig cells Macrophage Colony Stimulating Factor 1. Enhances self-renewal of spermatogonial stem
cells.

12

CST9L Q9H4G1 (human) Human Sertoli cells,
Stage c (17 year old to
adult)

Cystatin 9 Like. Tissue remodeling during early testis development. Also present in adult
Sertoli cells.

30, 49

CTNNB1 Q02248 Spermatocytes and
spermatids

Catenin Beta 1. Maintenance of post-mitotic germ cells. 50–52

CXCL12/
SDF1

P40224 Sertoli cells C-X-C Motif Chemokine Ligand 12. Guides pro-spermatogonia toward the basement
membrane. Maintains SSCs within the niche.

41 53

CXCR4 P70658 Pro-spermatogonia,
undifferentiated
spermatogonia

C-X-C Motif Chemokine Receptor 4. Receptor for CXCL12. 40

CYP26B1 Q811W2 Sertoli cells, immature
and postnatal

Cytochrome P450 Family 26 Subfamily B Member 1. Inactivates retinoic acid through
oxidation.

54–56

DEFB119 Q8N690 (human) Human Sertoli cells,
Stage c (17 year old to
adult)

Defensin Beta 119. Anti-microbial defense in the male reproductive tract. 30, 57

DMRT1 Q9QZ59 Sertoli cells, immature
and adult

Doublesex And Mab-3 Related Transcription Factor 1. Required for normal testis
development and maintenance. Antagonist of FOXL2.

22, 23, 28,
58

DMRT1 Q9QZ59 Germ cells Doublesex And Mab-3 Related Transcription Factor 1. Required for SSC maintenance
and germ cell mitosis/meiosis decision.

24, 25

EGF P01133 (human) Human Sertoli cells,
Stage a (2-5 year old)

Epidermal Growth Factor. Produced by Sertoli cells. Germ cell maintenance/proliferation. 30, 59

EGR3 Q06889 (human) Human Sertoli cells,
Stage a (2-5 year old)

Early Growth Response 3. Induced by mitogenic stimulation of Sertoli cells. 30

ENO1/
ENOA

P06733 (human) Human Sertoli cells,
Stage b (8-11 year old)

Enolase 1. Growth control, cell metabolism. 30

ERK5/
MAPK7

Q13164 (human) Human Sertoli cells,
Stage a (2-5 year old)

Mitogen-Activated Protein Kinase 7. Proliferation, differentiation, transcription regulation
and development of Sertoli cells.

30

ETV5 Q9CXC9 Sertoli cells ETS Variant Transcription Factor 5. Induces the production of chemokines and maintains
SSC homing within the niche

42, 60, 61

(Continued)
Frontiers in E
ndocrinology | www
.frontiersin.org
 June 2022 | Volume 13 | A4
 rticle 897062

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Hofmann and McBeath-Fujiwara Sertoli Cell-Germ Cell Interactions
TABLE 1 | Continued

Protein UniProt ID
(mouse, unless

specified)

Cell Type Function in the testis References

ETV5 Q9CXC9 Spermatogonial stem
cells

ETS Variant Transcription Factor 5. Induces the production of CXCR4 and Brachyury (T)
and maintains SSC homing within the niche.

62
63

FGF2 P15655 Sertoli cells Fibroblast Growth Factor 2. SSC self-renewal. 38, 64–68
FOXL2 O88470 Granulosa cells Forkhead Box L2. Ovarian development and function. Repression of somatic testis

determination. Antagonist of DMRT1.
22, 26

FSH Q60687 Anterior pituitary cells Follicle Stimulating Hormone Subunit Beta. Induces Sertoli cell proliferation in early
development. Induces Sertoli cells to secrete androgen-binding proteins (ABPs), and
stimulates inhibin B secretion.

69, 70

FSHR P35378 Sertoli cells Follicle Stimulating Hormone Receptor 71
GATA4 Q08369 Sertoli cells GATA Binding Protein 4. Embryonic testis development, Sertoli cell maintenance,

production of chemokines, SSC niche maintenance.
41, 58, 72–
74

GDNF P48540 Sertoli cells, postnatal Glial Cell Derived Neurotrophic Factor. SSC self-renewal 66, 75;
GDNF P48540 Sertoli cells, prenatal Glial Cell Derived Neurotrophic Factor. Pro-spermatogonia maintenance. 76
GFRA1 P97785 Undifferentiated

spermatogonia
GDNF Family Receptor Alpha 1. Co-receptor of RET 77, 78

GJA3
(CX46)

Q64448 Sertoli cells Gap Junction Protein Alpha 3. Connexin 46. Gap Junction Protein, component of the
blood-testis barrier.

28, 79

HES1 P35428 Sertoli cells HES Family BHLH Transcription Factor 1. Target/mediator of NOTCH signaling. Inhibits
GDNF and CYP26B1 expression.

56, 80

HEY1 Q9WV93 Sertoli cells Hes Related Family BHLH Transcription Factor With YRPW Motif 1. Target/mediator of
NOTCH signaling. Inhibits GDNF and CYP26B1 expression.

56, 80

HOPX Q9BPY8 (human) Human Sertoli cells,
Stage c (17 year old to
adult)

HOP Homeobox. Growth suppression and differentiation. 30, 81

IGF1 P05019 (human) Human Sertoli cells,
Stage a (2-5 year old)

Insulin-Like Growth Factor 1. Produced by Sertoli cells. Germ cell proliferation. 30, 82

INHBB Q04999 Sertoli cell Inhibin Subunit Beta B. Testis development. Marker of Sertoli cells function and germ cell
numbers. Regulation of FSH secretion by pituitary.

33, 83, 84

JAG1 Q9QXX0 Undifferentiated
spermatogonia

Jagged 1. Canonical NOTCH ligand. 55, 85

JUN P05627 Sertoli cell Jun Proto-Oncogene. AP-1 transcription factor complex subunit. Sertoli cell function,
maintenance of the blood-testis barrier.

30, 86

KIT P05532 Differentiating
spermatogonia

KIT Proto-Oncogene, Receptor Tyrosine Kinase. Proliferation and differentiation. 87–89

KIT P05532 Primordial germ cells KIT Proto-Oncogene, Receptor Tyrosine Kinase. Proliferation and Survival. 90
KIT P10721 (human) Seminoma cells KIT Proto-Oncogene, Receptor Tyrosine Kinase. Mutated and constitutively activated in

25% of seminoma.
91

KITL P20826 Sertoli cell KIT Ligand. Proliferation and differentiation of germ cells. 89, 92–95
LIF P42703 Sertoli cell Leukemia Inhibitory Factor. Maintenance of spermatogonial stem cell survival. 10, 66, 96
LIN28 Q8K3Y3 Pro-spermatogonia,

undifferentiated
spermatogonia

Lin-28 Homolog A. Pluripotency and SSC self-renewal. 97, 98

NFKB1 P25799 Sertoli cell Nuclear Factor Kappa B1. Pleiotropic transcription factor. 99
NOTCH1 Q01705 Sertoli cell NOTCH Receptor 1. Intercellular signaling pathway regulating cell fate specification and

differentiation
56, 80, 85,
100

NR3C1 P06537 Fetal and perinatal
Sertoli cell

Nuclear Receptor Subfamily 3 Group C Member 1. Glucocorticoid receptor. Possible link
between stress and testicular function.

33, 101,
102;

NR3C1 P06537 Germ cell
(spermatogonia)

Nuclear Receptor Subfamily 3 Group C Member 1. Glucocorticoid receptor. Possible link
between stress and testicular function.

101

NR4A1 P22736 (human) Human Sertoli cells,
Stage a (2-5 year old)

Nuclear receptor subfamily 4 group A member 1. Proliferation, chemotaxis. 30

PAK1 O88643 Sertoli cell P21 Protein (Cdc42/Rac)-Activated Kinase 1. Canonical target of RHO GTPases. 44
PDGFA P20033 Sertoli cells, perinatal Platelet-derived growth factor subunit A. Germ cell proliferation. 103–106
PDGFB P31240 Sertoli cells, perinatal Platelet-derived growth factor subunit A. Germ cell proliferation. 103–106
PLZF
(ZBTB16)

A3KMN0 Undifferentiated
spermatogonia

Zinc Finger And BTB Domain Containing 16. Represses KIT in undifferentiated
spermatogonia.

107, 108

RAC1 P63001 Sertoli cell Ras-related C3 botulinum toxin substrate 1. Sertoli cell polarity. 109
RARA/G P18911 Germ cells,

undifferentiated
Retinoic acid receptor alpha/gamma. Germ cell differentiation. 68

RBPJ P31266 Sertoli cells Immunoglobulin Kappa J Region Recombination Signal Binding Protein 1.
Transcription factor, mediator of all activated NOTCH receptors

80, 100,
100

(Continued)
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such as proliferation, differentiation, tumorigenesis, apoptosis
and cell fate determination (113). The classical mechanism of
action of this complex is transcriptional silencing through
histone deacetylation mediated by HDAC1/2. In the mouse
testis, Sertoli cell specific Sin3a deletion resulted in a decrease
of undifferentiated spermatogonia after birth. The Sertoli
cell markers Kit Ligand (KITL) and Gdnf, which support
germ cell proliferation, were not diminished. However,
chemokine signaling molecules such as CXCL12/SDF1
and CXCR4, expressed by Sertoli cells and germ cells,
respectively, were not detected. This again demonstrates that
regulators of germ cell movement toward the periphery of
testicular cords and the basement membrane after birth are
critical for the establishment of the initial postnatal niche.
However, the relationship between SIN3A and the signaling
networks governed by GATA4 and ETV5 in Sertoli cells are
not yet known.

In 2013, Wu and colleagues identified ARID4A and ARID4B
(AT-rich interactive domain-containing protein 4A/B) as
additional master regulators critical for the establishment of
the niche, in particular during the pro-spermatogonia to SSC
transition phase (35, 36). Interestingly, ARID4B is a subunit of
the SIN3A transcriptional repressor complex. Sertoli cell
ablation of Arid4B expression resulted in Sertoli cell
detachment from the basement membrane, which precluded
niche formation and the movement of pro-spermatogonia
Frontiers in Endocrinology | www.frontiersin.org 6
toward the periphery of the testicular cords. Without niche
support, the germ cells underwent apoptosis. The authors also
showed that ARID4B can function as a transcriptional
coactivator for androgen receptor (AR) and identified
reproductive homeobox 5 (Rhox5) (124) as the target gene
critical for spermatogenesis (34).

Another epigenetic regulator of the niche is WTAP, or Wilms
Tumor 1-associated protein (33). WTAP regulates transcription
and translation of genes by depositing N6-methyladenosine (m6A)
marks directly on RNA transcripts or indirectly on transcriptional
regulators (125). Jia and colleagues demonstrated that conditional
deletion of Wtap in mouse Sertoli cells modified pre-mRNA
splicing, diminished RNA export and translation, and therefore
altered the transcription and translation of many Sertoli cell genes
normally marked by m6A modification. Many of these genes were
critical for SSC maintenance, spermatogonial differentiation,
retinol metabolism, and the cell cycle, including Inhbb, Wt1,
Arid4a, Arid4b, Etv5, Ar, Dmrt1, and Sin3a (Table 1) (23, 27,
35, 60, 83, 114, 126, 127). Consequently, progressive loss of
undifferentiated spermatogonia was observed in WTAP-deficient
testes and mice were sterile. Interestingly, while not normally
marked by m6A modification, Gdnf, which is required for SSC
maintenance and self-renewal, was also downregulated. The
authors surmised that several of the key transcription regulators
that have been reported to be important for Gdnf transcription
contained m6A sites and were dysregulated by Wtap knockout.
TABLE 1 | Continued

Protein UniProt ID
(mouse, unless

specified)

Cell Type Function in the testis References

RET P35546 Germ cell,
undifferentiated

Ret Proto-Oncogene, Rearranged During Transfection. SSC self-renewal,
undifferentiated spermatogonia proliferation.

77, 78;

RET P35546 Germ cell, fetal Ret Proto-Oncogene, Rearranged During Transfection. Maintenance of fetal germ cells. 110
RHOA P61586 (human) Human Sertoli cells,

Stage b (8-11 year old)
Transforming protein RhoA. Sertoli cell polarity, junction remodelling 30, 111

RHOX5 P52651 Sertoli cells Homeobox protein Rhox5. Regulation of germ cell apoptosis. 34, 112,
S100A13 Q99584 (human) Human Sertoli cells,

Stage b (8-11 year old)
S100 Calcium Binding Protein A13. Cell cycle progression and differentiation. 30

SIN3A Q60520 Sertoli cell Switch-insensitive 3a (SIN3A). Co-repressor, regulation of chemokines expression. 113, 114
SOHlH1 Q6IUP1 Differentiating

spermatogonia
Spermatogenesis- and oogenesis-specific basic helix-loop-helix-containing protein
1. Upregulation of KIT receptor expression.

115;

SOHlH2 Q9D489 Differentiating
spermatogonia

Spermatogenesis- and oogenesis-specific basic helix-loop-helix-containing protein
1. Upregulation of KIT receptor expression.

115;

SOX9 Q04887 Sertoli cells SRY-Box Transcription Factor 9. Sex determination. Maintenance of Sertoli cell functions. 58, 61, 116
VEGFA Q00731 Sertoli cells, perinatal Vascular endothelial growth factor A. Maintenance of spermatogonial stem cells. 117, 118
VEGFA Q00731 Germ cells, perinatal Vascular endothelial growth factor A. Maintenance of spermatogonial stem cells. 117
VEGFA Q00731 Interstitial cells Vascular endothelial growth factor A. Maintenance of spermatogonial stem cells. 117
VEGFA164 Q00731 Sertoli cells Vascular endothelial growth factor A, VEGFA164 isoform. SSC self-renewal. 119
VCL Q64727 Sertoli cells Vinculin. Actin filament (F-actin)-binding protein. Cell-cell adhesion, adherens junction,

ectoplasmic specializtion.
28, 120

WNT5A P22725 Sertoli cells Wingless-Type MMTV Integration Site Family, Member 5A. SSC maintenance and
survival. CTNNB1 independent.

50, 121

WNT3A P27467 Sertoli cells Wingless-Type MMTV Integration Site Family, Member 5A. Proliferation of progenitor
spermatogonia exiting the SSC state. CTNNB1-dependent.

122

WT1 P22561 Sertoli cells, fetal and
adult

Wilms tumor protein homolog 1. Testis development, lineage maintenance of Sertoli cells. 27, 33

WTAP Q9ER69 Sertoli cell Wilms tumor protein homolog 1-associated protein. Mediates N6-methyladenosine
(m6A) methylation of RNAs.

33, 123
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SINGLE CELL RNA-SEQ AND SPATIAL
TRANSCRIPTIONAL DISSECTION OF
PERINATAL AND MATURE SERTOLI CELLS

Single cell characterization of developing and mature Sertoli cells
in rodents and humans, as well as their spatial transcriptional
dissection, uncovered many genes potentially important for the
organization of the niche, and are providing a large resource for
functional analysis of possible signaling pathway networks (102,
128–132). All studies demonstrated that mouse Sertoli cells
undergo stepwise changes during the perinatal period, which
are dependent on the expression of SOX9, AMH, GATA1-4,
DMRT1, NR3C1 and their target genes (Table 1) (32, 58, 101,
102, 116). Notably, as predicted, expression of cell cycle genes
decreases as Sertoli cells mature after birth. Further, these data
demonstrated a postnatal increase in expression of Sertoli-Sertoli
cell junctions and germ cell-Sertoli cell junction signaling (102).
Zhao and colleagues identified three stages of postnatal Sertoli
cells maturation in humans. In stage a (2-5 years old), the top
three differentially expressed genes were EGR3, JUN, and NR4A1
(Table 1) (30, 86). In stage b (8-11 years) S100A13, ENO1,
and BEX1 were prominently expressed, while in stage c (17 years
to adult) HOPX, DEFB119, and CST9L were upregulated
(Table 1) (49, 57, 81). Gene Ontology and Ingenuity Pathway
Analysis (IPA) at each of the three stages indicated that genes
ensuring proliferation and maintenance of cell numbers were
prominently expressed in stage a (EGF, IGF, and ERK5
signaling), RHOA/ACTB motility and remodeling of Sertoli-
Sertoli epithelial junctions were a feature of stage b, and
pathways of cholesterol biosynthesis and germ cell-Sertoli cell
junction signaling were increased in stage c (59, 82). In addition,
protein transmembrane transport, phagosome maturation, and
cellular metabolic processes were upregulated in stage c,
confirming that the most important functions of mature Sertoli
cells are the production of growth factors, phagocytosis of germ
cells and metabolites processing. Collectively, these data indicate
that single cell RNA-seq and spatial transcriptomic
characterization of Sertoli cells generate reliable resources for
future mechanistic studies of master regulators of the niche and
their targets at different time points.
SERTOLI CELL FACTORS
CONTROLLING SSC MAINTENANCE
AND SELF-RENEWAL.

In the seminiferous epithelium, Sertoli cells produce a number of
soluble factors that are under the control of the above-described
master regulators. These growth factors are critical for pro-
spermatogonial maintenance in the fetus, maintenance of the
SSC pool, self-renewal of SSCs after birth, and the onset of germ
cell differentiation. The most critical factors include glial cell
line-derived neurotrophic factor (GDNF) (75), colony-
stimulating factor 1 (CSF1) (12), fibroblast growth factor 2
(FGF2) (65, 66), leukemia inhibitory factor (LIF) (10) and
Frontiers in Endocrinology | www.frontiersin.org 7
WNT family proteins (50, 122). They all bind to their cognate
receptors at the surface of SSCs or undifferentiated
spermatogonia and activate the MAPK or PI3K/AKT pathway
to drive the cell cycle. They also promote SSC proliferation in
vitro, which can be demonstrated by increased testes
colonization after transplantation. KITL, the ligand for KIT
receptor, and retinoic acid (RA) are considered major
determinants of germ cell differentiation after birth, promote
the switch between undifferentiated and differentiating
spermatogonia and trigger meiotic entry (94, 133, 134).

Glial Cell Line-Derived
Neurotrophic Factor
GDNF is a member of the transforming growth factor beta
(TGF-b) superfamily that binds to the GFRA1/RET receptor
complex at the surface of SSCs, Apaired and some Aaligned

spermatogonia (75, 77). Meng and colleagues were first to
demonstrate that GDNF haploinsufficiency in mice induced
fertility defects after birth (75). The mice were fertile but
exhibited increased numbers of seminiferous tubules lacking
spermatogonia as they aged. In addition, transgenic animals
overexpress ing Gdnf accumulated undi fferent ia ted
spermatogonia. In 2006, Naughton and colleagues disrupted
the expression of Ret and Gfra1 at the surface of SSCs, which
resulted in their loss and led to the definitive proof of the critical
function of this receptor-ligand interaction (78). Together with
FGF2 and LIF, GDNF is critical for the self-renewal of SSCs in
short- and long-term cultures (66). Because of its importance for
spermatogenesis, efforts were made to understand the temporal
regulation of its expression. Low levels of GDNF and RET are
already present in the fetal gonad (76, 110). Since pro-
spermatogonia do not proliferate until after birth, GDNF is
therefore only necessary for their maintenance, highlighting
the importance of its dosage (98). GDNF expression then
increases until it reaches a peak at days 3-7 after birth (110,
135, 136). One interesting feature of GDNF expression in the
adult is its cyclic pattern throughout the stages of the
seminiferous epithelium. Cyclical production of soluble factors
according to stages was demonstrated earlier by Johnston and
colleagues using transillumination-assisted microdissection and
microarray analysis (137). In the rat, GDNF expression is highest
at stages XIII-I, and lowest at stage VII of the seminiferous
epithelium (138), while in the mouse its expression is highest at
stages IX-I and lowest at stages V-VIII when most cells are
quiescent and the majority of Aaligned spermatogonia transition
to the differentiating A1-A4 cells (85, 98, 139). When GDNF was
ectopically overexpressed by Sertoli cells in Stages V-VIII, the
number of GFRA1+/LIN28- germ cells, a subtype of As

spermatogonia with enhanced self-renewal capacity, was
increased (97, 98).

Several mechanisms regulating GDNF expression have been
recently proposed. Garcia and colleagues established Sertoli cell-
specific gain-of-function and loss-of-function mouse models of
NOTCH receptor signaling (80, 100). Constitutive activation of
this pathway in Sertoli cells led to a complete lack of germ cells by
P2, and infertility. Expression of GDNF by Sertoli cells was
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significantly downregulated in the perinatal and adult testis and
was due to upregulation of Hes/Hey transcription factors, which
are canonical NOTCH targets and transcriptional repressors that
bind to the GDNF promoter (80, 85). Further, loss-of-function of
Rbpj, a mediator of NOTCH, and downregulation of Hes/Hey,
led to upregulation of Gdnf expression (80) (Table 1).
Importantly, the NOTCH ligand JAG1 was expressed mainly
by undifferentiated spermatogonia (85). Consequently, the
accumulation of undifferentiated spermatogonia around stage
VII might increase NOTCH activity in Sertoli cells through
JAG1, triggering the observed increase of Hes/Hey inhibitors at
this stage and decrease in GDNF expression, leading to its cyclic
expression. Therefore, spermatogonia, when in sufficient
numbers , regulate their own homeostas is through
downregulation of GDNF (55). These data are consistent with
the observation that in wild type mice, the absence of germ cells
triggered by busulfan treatment correlated with higher
expression of GDNF (85, 135, 140) (Figure 2A).

Other interesting mechanisms of GDNF regulation have been
recently proposed. Given the fact that retinoic acid (RA)
concentration is high when GDNF is low during the cycles of
the seminiferous epithelium (141), Saracino and colleagues
tested whether RA was a direct inhibitor of GDNF expression
(142). Using ex vivo cultured immature testes and staged adult
seminiferous tubules, they showed that negative regulation of
Gdnf by RA indeed takes place in these models and
demonstrated that Gdnf expression is directly regulated by RA
through a mechanism involving a RARE-DR5 binding site on the
Gdnf promoter. Negative regulation requires retinoic acid
receptor (RARa) and induces a strong decrease of histone H4
acetylation levels around the transcription start. Further, because
of the existence of a NF-kappaB binding site in the GDNF
promoter, the same group investigated how TNF-alpha might
Frontiers in Endocrinology | www.frontiersin.org 8
influence GDNF expression (99). They demonstrated that in
primary Sertoli cells, TNF-alpha induces the expression of the
transcriptional repressor Hes1 by a NF-KappaB-dependent
mechanism, which in turn downregulates GDNF. Therefore,
TNF-alpha and NOTCH signaling may converge to regulate
the expression of Hes1 and its target genes, including
GDNF (Figure 2A).

Fibroblast Growth Factor (FGF2)
While GDNF is a critical component of the niche, many in vivo
and in vitro experiments demonstrated that other factors are
needed to support maintenance and self-renewal of SSCs. Earlier
examination of perinatal Sertoli cells demonstrated that they
expressed FGF2, and that this expression was stimulated by
follicle-stimulating hormone in vitro (FSH) (64). Together with
EGF, LIF, and GDNF, fibroblast growth factor (FGF2) has been
used to sustain the long-term proliferation of SSCs in culture (66,
143). Further, Takashima and colleagues demonstrated that
FGF2 could induce SSC self-renewal alone in culture through
activation of the transcription factors ETV5 and BCL6B
(Table 1) (37, 38, 60, 62, 63, 67). They also showed that FGF2-
depleted mouse testes produced increased levels of GDNF, which
correlated with SSCs enrichment. This suggests that a balance or
complementation between FGF2 and GDNF exists to maintain
the stem cell pool (67). More recently, additional studies
comparing the effects of GDNF and FGF2 on the proliferation
of undifferentiated spermatogonia demonstrated that while both
factors expanded the GFRA1+ population, FGF2 rather
expanded a subpopulation of cells expressing RARG, which
were therefore more susceptible to differentiate (68). This
emphasizes the complex nature of signaling and a growth
factor demand that is modulated upon the need to maintain
germ cell homeostasis.
A B

FIGURE 2 | Proposed Model of Regulation of Germ Cell Homeostasis by NOTCH Signaling. (A) Regulation of GDNF expression in Sertoli cells. GDNF is produced
by Sertoli cells and normally increases Asingle, Apaired and some Aligned spermatogonia proliferation. However, as the number of undifferentiated spermatogonia
increases, more JAG1 ligand is available to activate NOTCH signaling in Sertoli cells. Activated NOTCH will down-regulate the expression of GDNF through HES/
HEY, which will decrease the number of undifferentiated spermatogonia, re-establishing GDNF production. Inhibition of GDNF by HES/HEY can be potentiated by the
TNF-alpha/NF-KappaB pathway. (B) Regulation of CYP26B1 expression in Sertoli cells. CYP2681 is produced by Sertoli cells and normally degrades retinoic acid.
However, as the number of undifferentiated spermatogonia increases, in particular Aaligned spermatogonia, more JAG1 ligand is available to activate NOTCH
signaling in Sertoli cells. Activated NOTCH will down-regulate the expression of CYP26B1, which a llows retinoic acid to trigger the transition from undifferentiated to
differentiating spermatogonia.
June 2022 | Volume 13 | Article 897062

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Hofmann and McBeath-Fujiwara Sertoli Cell-Germ Cell Interactions
Other Growth Factors
Platelet-derived growth factor (PDGF) is specifically produced by
Sertoli cells. In rodents, PDGF is critical for prospermatogonia
proliferation after birth (103, 104) and cooperates with estrogen
signaling (106). Exposure to xenoestrogens in the environment
might disrupt crosstalk between PDGF and estrogen-driven
signaling pathways. This could lead to alteration of
prospermatogonia behavior and induce preneoplastic states (105).
Vascular endothelial growth factor A (VEGFA) family members
and their receptors are all produced by germ cells, Sertoli, cells and
interstitial cells (117, 118). However, only the pro-angiogenic
isoform VEGFA164 promotes SSC self-renewal, as determined by
the SSC transplantation assay (119). WNT signaling plays a role in
SSCmaintenance (50, 144). WNT5A is produced by Sertoli cells but
does not induce self-renewal. It rather promotes SSCs survival
through a b-catenin (CTNNB1)-independent mechanism that
activates mitogen-activated protein kinase 8 (MAPK8 or JNK)
(50). Confirming this data, CTNNB1 ablation in germ cells led to
spermatogenesis disruption but not to SSC loss (51, 52). Finally,
leukemia inhibitory factor (LIF) has been used for decades to
maintain undifferentiated embryonic stem cells in vitro, therefore
an investigation of its expression in Sertoli cells and its effects on
SSCs, at least in vitro, was attempted early on (96). LIF production
in Sertoli cells was shown to depend on tumor necrosis factor
(TNFa) (96) and is still widely used in cultures of primordial germ
cells, pro-spermatogonia, and SSCs of many different species.
However, LIF does not induce SSC self-renewal, and is rather
used to maintain survival and start long-term SSC cultures (10).
SERTOLI CELL FACTORS CONTROLLING
SPERMATOGONIAL DIFFERENTIATION

Regulation of KIT/KITL
Activation of the KIT tyrosine kinase receptor by its ligand KITL is
required for the survival and proliferation of primordial germ cells
(PGCs) (90). KIT is downregulated in pro-spermatogonia, which
stop proliferating once they enter the fetal gonads. After birth, KIT
is re-expressed in differentiating spermatogonia (87, 88), which
proliferate under the influence of KIT ligand (KITL) produced by
Sertoli cells. Together with retinoic acid (RA), the KIT/KITL system
is important for triggering meiotic entry of type B spermatogonia
(92, 93), and KITL has been recently used in culture to differentiate
rat spermatogonia without serum or somatic cells (95). Because
KIT/KITL signaling is important not only for germ cells, but also for
haematopoietic stem cell and melanoblasts, mechanisms controlling
KIT transcription have been extensively studied. Further, KIT is
mutated in about 25% of seminoma (91), and accounts for
secondary mutations that confer resistance to drugs in other
cancers. Therefore, regulation of its expression and identification
of downstream effectors as druggable targets are of particular
interest. Earlier studies have demonstrated that KIT expression in
undifferentiated spermatogonia is repressed by PLZF
(promyelocytic leukemia zinc finger), which is a transcriptional
repressor with local and long-range chromatin remodeling activity
(107, 108). Further, Dann and colleagues demonstrated that RA
Frontiers in Endocrinology | www.frontiersin.org 9
triggered spermatogonial differentiation through downregulation of
PLZF (145). Thus, one mechanism by which PLZF maintains the
pool of spermatogonial stem cells is through a direct repression of
Kit transcription. The main mechanism of KIT upregulation
involves the helix-loop-helix transcription factors SOHLH1 and
SOHLH2 (Spermatogenesis and Oogenesis HLH1/2). Both factors
are expressed in differentiating spermatogonia and their deletion
leads to the disappearance of KIT-expressing spermatogonia.
Further, ChIP-PCR analysis demonstrated that SOHLH1 binds
the Kit promoter to activate its transcription (115). While
investigations have mostly focused on the regulation of KIT, few
studies have explored the regulation of KITL expression in the past
10 years. However, one study by Correia and colleagues
demonstrated that 100 nM estrogen induced a decrease in Kit
expression while increasing expression of Kitl in adult rat
seminiferous tubules cultured ex vivo (89). Altered expression of
the KIT/KITL system decreased germ cell proliferation and
promoted apoptosis, which is not in accord with the data of
previous studies (146).

Regulation of Retinoic Acid Activity
Rats and mice deprived of dietary retinoic acid (RA) can only
produce Aundiff spermatogonia and are sterile (147, 148). Since these
earlier studies, it has been well documented that retinoic acid (RA)
activity is a major determinant of the transition between
undifferentiated and differentiating germ cells, and that RA also
drives the meiotic process and spermatid maturation at stage VIII of
the seminiferous epithelium (134, 149). It has been proposed that
pulses of RA are triggered around this stage by somatic cells and
germ cells to allow proper germ cell differentiation and maturation
(150). This implies that RA must be degraded during the other
stages. Recently, Parekh and colleagues demonstrated an inverse
relationship between the expression of cytochrome P450 family 26
subfamily B member 1 (Cyp26b1), an enzyme that degrades RA (54),
and NOTCH activity in Sertoli cells (56). They further provided
evidence that in the adult testis activated NOTCH signaling in Sertoli
cells down-regulates Cyp26b1 expression through the HES/HEY
transcriptional repressors that bind to the Cyp26b1 promoter (56).
Importantly, expression of these inhibitors is highest at stage VIII of
the seminiferous epithelium (85). They also demonstrated that
Aaligned spermatogonia, through their expression of the NOTCH
receptor JAG1, were activating the NOTCH/HES/HEY axis in
Sertoli cells and were responsible for Cyp26b1 down-regulation at
stage VIII, allowing RA activity and therefore triggering their own
differentiation into A1 spermatogonia (Figure 2B).

CONCLUSION

The Sertoli cell orchestrates spermatogenesis and is a major
component of the SSC niche. The past decade has seen an increase
in our understanding of these processes at the molecular level. In the
perinatal testis, Sertoli cells support multiple aspects of germ cell
development through paracrine factors, but the master regulators of
the niche and the signaling networks regulating these soluble factors
have just begun to be identified. State-of-the-art technologies exist
that should help dissect the functions of novel genes and signaling
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pathways in Sertoli cells in the future. The efforts that were spent
understanding the cyclic regulation of GDNF and Cyp26b1, and by
extension RA, should be expanded to other growth and differentiation
factors. In particular, surprisingly little is known about the signals that
germ cells send to Sertoli cells and their neighboring germ cells. We
hope that the use of spatial transcriptomics will help uncover the
molecular signals and pathways that germ cells and Sertoli cells use to
communicate between each other to direct testis function and
maintain homeostasis. We have highlighted JAG1/NOTCH
signaling as one possible mechanism that fulfills this role, but other
modes of germ cell to Sertoli cell communication exist that still need
to be identified.
Frontiers in Endocrinology | www.frontiersin.org 10
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