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Dendritic cells (DCs) are a type of innate immune cells with major relevance in the

establishment of an adaptive response, as they are responsible for the activation of

lymphocytes. Since their discovery, several reports of their role during infectious diseases

have been performed, highlighting their functions and their mechanisms of action. DCs

can be categorized into different subsets, and each of these subsets expresses a wide

arrange of receptors and molecules that aid them in the clearance of invading pathogens.

Interferon (IFN) is a cytokine -amolecule of protein origin- strongly associatedwith antiviral

immune responses. This cytokine is secreted by different cell types and is fundamental

in the modulation of both innate and adaptive immune responses against viral infections.

Particularly, DCs are one of the most important immune cells that produce IFN, with

type I IFNs (α and β) highlighting as the most important, as they are associated with

viral clearance. Type I IFN secretion can be induced via different pathways, activated

by various components of the virus, such as surface proteins or genetic material.

These molecules can trigger the activation of the IFN pathway trough surface receptors,

including IFNAR, TLR4, or some intracellular receptors, such as TLR7, TLR9, and TLR3.

Here, we discuss various types of dendritic cells found in humans and mice; their

contribution to the activation of the antiviral response triggered by the secretion of IFN,

through different routes of the induction for this important antiviral cytokine; and as to how

DCs are involved in human infections that are considered highly frequent nowadays.

Keywords: dendritic cells, IFN, antiviral response, viruses, immune response

INTRODUCTION

Dendritic cells (DCs) are known to be professional antigen-presenting cells (APC), as these cells
are capable of presenting processed peptides from various antigens, initiating and modulating the
adaptive immune response by activating both T and B lymphocytes (1, 2). Therefore, they are
considered to be of great importance for the induction of an adequate adaptive immune responses
(1, 3). DCs were first reported in 1973 by Steinman et al., where their morphological characteristics
were defined, although it was not until 1998 that their function, as well as the proteins expressed on
their surface, were characterized (1, 4). Since then, the knowledge acquired about DCs has increased
over time.
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During an infection, several molecules might be recognized
and used to initially activate the innate immune system. These
can be classified as pathogen-associated molecular or damage-
associated patterns (PAMPs and DAMPs, respectively) (5, 6).
These molecules will be recognized by pattern recognition
receptors (PRRs) -expressed in most innate cells-, among
which Toll-like receptors (TLRs), RIG-I-like receptors (RLRs),
and NOD-like receptors (NLRs) are included. The interaction
between PAMPs and PRRs promotes the release of cytokines,
chemokines, and other chemical mediators that induce the
inflammation of the infected tissue (7–9). TLRs are type
I transmembrane glycoproteins that can be classified as
extracellular or intracellular (10). Both TLR types have
an N-terminal domain named leucine-rich repeat (LRR), a
transmembrane domain, and a C-terminal cytosolic region
named Toll/IL-1R (TIR). The main function of TLRs is to
recognize a distinct set of ligands, such as proteins, genetic
material, and carbohydrates (9–11). While ten different receptors
of this type have been described up to date to be expressed by
human cells, thirteen haven been described in mice (12, 13).

Identification of either PAMPs or DAMPs by immature DCs
leads to the activation and consequent maturation of these cells
(14, 15). This phenomenon is associated with changes in the
phenotype and function of DCs, including the upregulation
of costimulatory and adhesion molecules (16, 17). These cells
are then capable of capturing antigens derived from pathogens,
process, and present them to naïve T lymphocytes as peptides
bound to class II major histocompatibility molecules (MHC)
located on the surface of DCs. This structure is known as peptide-
MHC complex and works as a cognate ligand for the T cell
receptor (TCR), expressed by T lymphocytes (18–20). Antigen
cross-presentation can allow the presentation of exogenous
antigens on class I MHC molecules (21). Aside from this, the
main function of MHC-I is to present antigens derived from the
cytosol (22).

DCs are considered to be of great relevance in the clearance
of viruses. Accordingly, significant amounts of cytokines, such as
type I interferon (IFN), are required to achieve this clearance (2,
23, 24). In this review, we will discuss the classically and currently
defined subsets of DCs, the importance of IFN in the antiviral
response, and as to howDCs behave in some viral infections. This
article aims to give insights into -and a better understanding of-
the role played by DCs in the antiviral response toward important
human viruses.

Classically Defined Subsets of DCs and
Their Phenotypes
Since their initial discovery, DCs have been deeply studied,
and their immunophenotyping has allowed the definition of
several subsets of DCs in the murine model, as well as in
humans. Considering the immunobiology of the murine model,
we highlight 2 important subgroups of DCs: conventional (cDCs)
and plasmacytoid (pDCs). Both are derived from a common
DC precursor (CDP), which is of myeloid origin (25, 26). Two
precursor cell types arise from the CDP: a preDC and a pre-
pDC. Moreover, the common lymphoid progenitor (CLP) has

also been proposed to give rise to pDCs by numerous studies (27–
29), suggesting that this particular cell type has amixed ontogeny.
Furthermore, murine cDCs are classified into two subsets: cDC1
and cDC2, which develop in the bone marrow (30). The cDC1
compartment comprises CD8α+ DCs and CD103+ DCs, while
the cDC2 compartment comprises CD11b+ DCs (31). Recent
findings regarding DC ontogeny are described in section Single-
Cell RNA-seq Approach for the Characterization of Novel DCs
Subtypes and Precise DC Ontogeny.

Human homologs of these subtypes have been discovered
through various comparative phenotypic and functional analyses
and, more recently, through genomic, transcriptomic, and
proteomic analyses. Human CD141+ DCs are homologous to
both CD8α+ murine DCs and CD103+ murine DCs, human
CD1c+ DCs are homologous to murine CD11b+ DCs, and
both humans and mice possess pDCs with similar functional
characteristics (32). Classically defined DC sub-typing, their
location, and commonly expressed surface markers can be found
in Table 1. Functional and phenotypical characteristics of these
cell types will be discussed in the following sections, and novel
findings regarding DC subtypes will also be discussed.

Murine DCs

Among the murine cDC1 subset, CD8α+ DCs are of particular
importance. As their name suggests, this class of DCs is
characterized by the expression of a CD8αα homodimer (distinct
from the CD8+ T cell CD8αβ heterodimer) (37, 61), although
no clear biological function has been attributed to it (62).
CD8α+ DCs reside in both central and peripheral lymphoid
organs, namely thymus, spleen, and lymph nodes (62–64).
Some of the PRRs expressed by this subset are TLR3, TLR9,
and TLR11/12 (65–68), and unlike other DC subtypes, CD8α+

DCs do not express TLR7 (68). These cells are capable of
secreting large amounts of IL-12p70 upon activation (69), hence
driving powerful TH1 responses when presenting antigens, and
are specialized in cross-presentation of antigens on MHC-I
molecules (70). These DCs are incapable of secreting interferon
IFN-γ, although other DC subtypes do (69). Nonetheless, they
are an important source of IFN-λ once they are activated
via TLR3 (71). CD8α+ DCs are characterized by surface
expression of CD205, langerin (CD207), C-type lectin receptor
9A (CLEC9A), and chemokine receptor XCR1 (33–36) Finally,
murine CD8α+ DCs are alsoMHC-II+, CD4−, Ly6C−, CD11blo,
CD11chi, CD24hi, and B220−.

Another cDC1 subset relevant for the understanding of viral
pathogenesis is the CD103+ DCs compartment, characterized by
the expression of the αE integrin CD103. These cells are present
inmany tissues, including the gut, lungs, spleen, skin, and various
lymph nodes (38). CD103+ DCs have a developmental relation
with CD8α+ DCs (72) and share characteristic surface markers
like CD24, CD205, and langerin (39–42). However, CD103+ DCs
are capable of inducing a more robust TH17 response through
IL-1β and IL-6 secretion (73), and lack the expression of TLR3,
although they remain responsive to polyI:C, a TLR3 agonist (74).
Immunophenotyping has revealed an extensive heterogeneity
among CD103+ DCs, although some common features among
each compartment are the expression of different surfacemarkers
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TABLE 1 | DCs subsets, their location, and their surface markers.

DCs subset Location Surface markers Reference

cDCs Mouse cDC1 (CD8α+) Lymphoid organs MHC-II+

Ly6C−

B220−

CD4−

CD8α+

CD11blo

CD11chi

CD24hi

CD205+ (DEC-205+)

CD207+ (Langerin+ )

CLEC9A+

XCR1+

(33–36)

Mouse cDC1 (CD103+) Lymphoid organs and

Non-lymphoid organs

MHC-II+

Ly6C−

B220−

CD8−

CD86+

CD80+

CD11b+

CD11c+

CD24+

CD103+

CD205+ (DEC-205+)

CD207+ (Langerin+ )

XCR1+

(37–43)

Human cDC1 (CD141hi) Lymphoid organs and

Non-lymphoid organs

CD11clo

CD45+
CD141hi (BDCA-3hi)

CLEC9A+

XCR1+ (44–46)

Mouse cDC2 (CD11b+) Lymphoid organs and

Non-lymphoid organs

MHC-II+

F4/80−

CD4+

CD11b+

CD11c+

CD24+

CD64+

CD103−

CD172ahi (SIRPαhi )

XCR1 lo/−

(47, 48)

Human cDC2 (CD1c+) Lymphoid organs MHC-II+

CD1alo/+

CD1c+ (BDCA-1+)

CD11c+

CD14−

CD16−

CD172a+ (SIRPα+ )

XCR1−

FcεRI+

CD207− (Langerin− )

(47, 49–53)

pDCs Mouse pDCs Blood, lymph nodes

and lymphoid tissues

MHC-IIlo

CD4+

CD11b−

B220+

CD11clo

CD25lo

CD38+

CD40−

CD43+

CD62Lmid

Ly6C hi

(54–56)

Human pDCs Blood and bone

marrow

MHC-IIlo

B220+

CD1a−

CD4+

CD11a+

CD11c−

CD13−

CD14−

CD16−

CD18+

CD33−

CD38lo

CD40lo

CD44+

CD54+

CD62L+

CD123+ (IL-3Rα+)

CD127− (IL-7Rα−)

CD303+ (BDCA-2+)

CD304+ (BDCA-4)

(57–60)

such as Ly6C−, CD11b+, CD11c+, CD80+, CD86+, B220− and,
of course, CD103+ (38). Most of them are CD8−, except for
those that reside in the gut (namely, colon) (43) and spleen
(37). Extensive murine subgroup immunophenotyping can be
reviewed in del Rio et al. (38).

Importantly, CD103+ DCs have enhanced antigen cross-
presentation capacities, which is employed by the immune
system for the resolution of some viral infections, as well as for
the maintenance of self-tolerance and tumor immune control,
since phagosome-derived peptides can be presented on MHC-I
molecules to activate -or inhibit- cytotoxic CD8+ T cells (75, 76).
Regarding viral infections, skin, and lung CD103+ DCs subtypes
have been shown to prime CD8+ T cells more efficiently than
their CD103− counterparts (77, 78), and those that are liver-
resident can prime CD8+ T cells in situ (79). On the other hand,
mediastinal lymph node (80) and splenic marginal zone (81)
CD103+ DCs contribute to the maintenance of self-tolerance
through cross-presentation of self-antigens, especially to CD4+ T
cells (38, 82). As a matter of fact, CD103+ DCs have been shown
to secrete TGF-β and induce the expression of the transcription
factor Foxp3 on T cells, promoting the development of Tregs

(80, 83, 84).
Even though the cDC2 subset has been less studied than

the cDC1 compartment, their contribution to the activation

of an immune response should be deeply characterized. These
cells reside in both lymphoid and non-lymphoid tissues, such
as lungs and guts. Unfortunately, their characterization has
been hampered by their innate heterogeneity (85–88), the lack
of various specific cDC2 markers, and their similarity with
macrophages and other members of the phagocytic mononuclear
system (89, 90). However, recent transcriptomic studies have
circumvented these difficulties, making it possible to characterize
adequately these cells due to their development routes (91).
Contrary to cDC1 cells, cDC2 cells do not efficiently cross-
present antigens. They can efficiently prime TFH cells (92, 93)
and tend to polarize adaptive immune responses toward TH17
and TH2 profiles (86, 94–96). In addition, cDC2s have been
proven to be relevant mediators of asthma-like responses (94),
hypersensitivity responses (94), and infections of bacteria (97,
98), fungi (86), and parasites (99, 100). Moreover, they have
been regarded as important modulators of mucosal immunity,
given their abundance in the gut and respiratory tract (47).
This subset expresses particularly high levels of TLR4, TLR5,
and TLR11 (18, 101, 102), which partly differentiates them from
other DC subsets. Their hallmark marker is CD172a (SIRPα) and
expresses virtually no XCR1, which are key characteristics for
differentiating them from the cDC1 subset, (47). Phenotypically,
these cells have been defined as F4/80−, MHC-II+, CD4+,
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CD11b+, CD11c+, CD24+, CD64+, CD103−, CD172ahi, and
XCR1lo/− (47), although lamina propria-residing intestinal
cDC2s are CD103+ (48).

The last type of DCs we review are pDCs, which were
first described in 2001 for mice (103) and in 1999 in human
blood (57, 104). These cells are characterized both in mice
and humans for their plasmacytoid appearance, their capacity
to secrete large quantities of type I IFN (57, 103), and are
mainly found circulating in the blood and secondary lymphoid
organs (105–107), although they can migrate to inflamed skin
(108), gut (109, 110), and epithelia (111). As mentioned above,
pDCs arise not only from a myeloid precursor -the CDP-
but also from a lymphoid precursor -the CLP-, giving this
class of DCs a mixed ontogeny. Moreover, some murine pDCs
may undergo conversion toward a cDCs phenotype (112, 113),
which blurs the limit between myeloid and lymphoid DCs
lineages even more. pDCs exhibit poor antigen presentation
capabilities, are characterized by lower-than-average MHC-II
levels in comparison to cDCs (54, 55), and have been found to
aid in plasma cell differentiation through type I IFN and IL-
6 secretion (114). Most notably, these cells represent a major
source of IFN-α upon viral infections and express abundant TLR7
and TLR9 in their endosomal membranes (27). Regarding their
pattern of expression of surface markers, the classical definition
of pDCs involves medium-to-low levels of CD11c expression
and high levels of B220, although such a definition may lead to
confusion since it is too vague. Additionally, murine pDCs are
CD4+, CD11b−, CD25lo, CD38+, CD40−, CD43+, CD62Lmid,
Ly6Chi, and, as previously stated, express lower MHC-II levels
than cDCs (56).

Human DCs

In humans, CD141hi DCs (BDCA-3+ DCs) represent the
functional homolog of murine cDC1 cells (CD8α+ and CD103+

DCs), mainly due to their similar localization—both are found in
lymphoid and non-lymphoid tissues, such as thymus and lymph
nodes, show enhanced antigen cross-presentation to CD8+ T
cells, TH1 response polarization, and extensive secretion of
TNF-α and IFN-α/β/λ under TLR3 activation (44–46, 71, 115).
Unexpectedly, a controversial study reported that CD141hi DCs
secrete neither IL-23p19 nor IL-12p70 in response to TLR3
activation by polyI:C or a cocktail of pro-inflammatory cytokines
(45). Nonetheless, other reports suggest that CD141hi DCs do
indeed secrete IL-12p70 in response to TLR3 stimulation with
polyI:C and other TLR3 agonists, further supporting the notion
that these cells induce TH1 polarization (44, 115). CD141hi DCs
have been described as CD11clo, CD45+, CD141hi (BDCA-3hi),
and vastly express XCR1, CLEC9A, and TLR3 (44–46), consistent
with their cross-presentation capabilities and activation by
soluble nucleic acids.

On the other hand, CD1c+ DCs (BDCA-1+ DCs) are the
human homolog of CD11b+ murine DCs (cDC2s). These cells
are present in blood, lungs, gut, skin, and lymphoid organs,
such as the spleen, tonsils, and lymph nodes (88). In agreement
with what has been observed in mice, human cDC2s express
a wide variety of TLRs, such as TLR1, TLR2, TLR4, TLR5,
TLR6, and TLR8 (116–118). Contrary to murine cDC2s, human

CD1c+ DCs are more versatile when priming CD4+ T cells
and can also polarize them toward a TH1 profile (117, 119),
which is consistent with their ability to secrete high amounts
of IL-12 (117, 120), and have been shown to efficiently drive
TFH responses (121). Moreover, they are also capable of cross-
presentation of antigens to CD8+ T cells quite efficiently (120,
122). Thus, given their PRR repertoire and their cytokine
secretion profile, CD1c+ DCs are excellent APCs in the context of
either bacterial, viral, or fungal infections. Lastly, regarding their
surface marker expression profile, these cells are characterized
as MHC-II+, CD1alo/+, CD1c+ (BDCA-1+), CD11c+, CD14−,
CD16−, CD172a+ (SIRPα+), XCR1−, FcεRI+, and langerin−

(47, 49–52), although CD1a, CD1c and langerin expression is
variable and/or inducible (50, 53).

Finally, human pDCs (BDCA-2+ DCs) share many of their
characteristics with murine pDCs: they are found mainly in
blood, secrete high amount of IFN-α upon activation (123, 124),
and share some but not all immunophenotypic characteristics
since human pDCs are CD4+ and B220+, but pDCs additionally
have CD11c−, CD14− and CD16− as surface markers (58).
It is important to note that pDCs’ repertoire of PRRs is very
specialized and consists almost exclusively of TLR7 and TLR9
(58, 123, 125). Because of their enhanced type I IFN secretion and
nucleic acid-oriented sensing of pathogens through endosomal
TLRs, pDCs exhibit vast antiviral activities and are only mildly
permissive to viral infections compared to cDCs (126, 127).
Moreover, they express lower-than-average levels of MHC-II and
are CD1a−, CD11a+, CD13−, CD18+, CD33−, CD38lo, CD40lo,
CD44+, CD54+, CD62L+, CD123+ (IL-3Rα+), CD127− (IL-
7Rα−), CD303+ (BDCA-2+), and CD304+ (BDCA-4+) (57, 59,
60) The different surface markers, and specific characteristics
associated with each dendritic cell type describe above are shown
in Figure 1 and in Table 1.

Single-Cell RNA-Seq Approach for the
Characterization of Novel DCs Subtypes
and Precise DC Ontogeny
Even though the classical definition of DCs subtypes involves two
classes of cDCs and one class of pDCs, the recent development
and more widespread application of single-cell RNA sequencing
(scRNA-seq) and cytometry by time-of-flight (CyTOF), have
shown that DC subsets can be far more diverse than previously
thought. While CyTOF has shown to be useful for the thorough
characterization and definition of DC subtypes based on the
expression of surface markers, scRNA-seq provides a useful
and versatile technique that has allowed to define previously
overlooked DC subsets and trace their ontogeny, as well as
of other hematopoietic progenitors using transcriptomic data
analyses. These approaches have allowed to further characterize
several features for each subclass (91, 128–131).

For instance, the transcriptomic changes associated with LPS
exposure in splenic DCs by scRNA-seq was recently characterized
(132). Not only did they find significant differences in gene
expression among cDC1s, cDC2s, and pDCs before and after LPS
exposure, but they also found significant and inherent diversity
among the classically defined cDC2 subset (132). Thus, they were
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FIGURE 1 | Dendritic cell subsets. Dendritic cells (DCs) are derived from a common myeloid precursor, from which two precursors can be developed. The first

precursor corresponds to the pre-conventional DCs and in murine models they can become conventional DCs (cDCs) type 1 and 2, and within these cells there are

different subtypes of DCs. In the cDC1 found two subtypes of cells can be found: CD8+ DCs which has the markers CD8+, XCR1+, CLEC9A+, CD205+, and

CD207+, and CD103+ DCs that has the markers CD103+, CD11c+, CD80+, CD86+, and CD11b+. The functional homolog of these cells in human are the CD141hi

DCs, and their markers correspond to CD141hi, CD45+, CD11clo, XCR1+, and CLEC9A+. In the cDC2 subsets are comprised the CD11b+ DCs which has the

markers CD11b+, CD172ahi, XCR1lo/−, CD4+, and CD11c+. The functional homolog of these cells in human are the CD1c+ DCs, and their markers are CD1c+,

CD11c+, CD172a+, XCR1−, and FcεRI+. The second precursor corresponds to the pre-plasmacytoid DCs that can become plasmacytoid DCs (pDCs), and in murine

models its markers correspond to CD11lo, B220+, CD4+, Ly6Chi, and CD38+, while in human, their markers correspond to CD11−, B220+, CD4+, CD11a+,

and CD38lo.

able to identify 4 classes of cDCs, as well as one class of pDCs, by
the analysis of transcriptional profile for each cell (132).

Three years later, Villani et al. found 6 classes of DCs in
human peripheral blood by FACS sorting, followed by scRNA-
seq and named them DC1-6 accordingly (133). The DC1
cluster corresponded to classically defined cDC1s (133). The

DC2 and DC3 clusters corresponded to two transcriptomic
profiles found to be distinct among classically defined cDC2s,
and the DC3 cluster was found to possess an inflammatory
gene expression signature (133). The finding of two distinct
subclasses of cDC2s is not surprising, considering the evidence
of functional and transcriptional heterogeneity among this group
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(130, 132, 134). The DC4 cluster corresponded to an MHC-
II+, CD11c+, CD1c−, CD141− population, that did not meet
neither cDC1, cDC2, nor pDC inclusion criteria (133). The
DC5 cluster was unprecedented and corresponded to MHC-II+,
CD11c−, CD123−/+ DCs. This cluster was characterized by a
high expression of AXL and SIGLEC6 and was named AS DCs
(133). These cells were found to be in close relation to pDCs
(DC6, the last cluster), since they expressed a few similarmarkers,
such as CD123 and CD303. However, they were functionally
distinct, since they did not produce IFN-α upon stimulation.
Moreover, they secreted IL-12p70 and IL-8, upregulated CD86
upon activation, and were able to prime T cells, whereas sorted
“pure” pDCs -gated excluding AS DCs- did not (133). This is
quite remarkable, as previous studies show IL-12p70 secretion,
CD80 upregulation, and differences in the expression of the
pDC hallmark transcription factor E2-2 among pDCs (135–
137), a result that could be biased because of the lack of
discrimination between pDCs and the newly discovered AS DC
subset. Moreover, they could explain some of the heterogeneity
observed in this subset (137–139).

The existence of a new class of cDCs (cDC3) was proposed
both mice and humans based on their transcriptomic fingerprint
using scRNA-seq (140). Interestingly, this new type of DC
was discovered in lung tumors of patients and were also
found in murine lung carcinomas. Although these cells shared
many features with cDC1s, they lacked the expression of key
markers, such as XCR1 and CLEC9A and clustered as an
independent group (140). Moreover, cDC3s expressed high levels
of transcripts associated with an LPS-activated state defined in
a previous study (141). The authors did not find the AS DC
subset (DC5 cluster) previosuly described in tumor samples
(140). Reciprocally, this last study did not find the cDC3 subset
described in blood samples (140). Thes sudies have suggested that
this is likely attributed to differences in DC states between blood
samples from healthy patients and the tumor environment they
analyzed (140).

Lastly, three phenotypic variants for human pDCs where
defined after stimulation with the influenza virus, which were
named P1, P2, and P3 (142). The definition of these subsets
was made based on the expression of CD80 and PD-L1.
Different morphologies, as well as distinct surface markers
and transcriptomic fingerprints between subsets, were observed
(142). Moreover, only cells from the P1 subset (CD80−, PD-L1+)
were able to secrete IFN-α in response to virus stimulation and
cells of the P3 (CD80+, PD-L1−) subset had higher migration
and CD4+ T cell expansion (142). What is interesting about this
study is that their gating strategy allowed the sorting of pDCs,
while avoiding AS DCs and pre-DC contamination, as previously
reported (142). These findings indicate that the observed effects
are due to bona fide pDC subsets, rather than pDC contamination
with other DC subsets (142).

scRNA-seq has also been used to elucidate the intricate
network that represents myeloid stem cell differentiation (143–
145), which has shown to be particularly useful in the field
of DC ontogeny. Classically defined human cDC1, cDC2,
and pDC transcriptomic phenotypes are imprinted during
ontogeny, rather than by environmental cues in DCs found in

blood and secondary lymphoid organs Further, recent studies
strongly support the notion that myeloid common DC precursor
can give rise to pDC and pre-DC precursors, from which
arise pre-cDC1 and pre-cDC2 progenitors, each committed to
maturation toward cDC1 and cDC2, respectively (49, 146, 147).
Common upregulated and downregulated genes between pre-
cDC1 and pre-cDC2, as well as pre-cDC1- and pre-cDC2-specific
upregulated genes, and their temporal onset of expression have
been determined in mice (147). Moreover, SiglecH and Ly6C can
serve as lineage markers during DC development and lineage
commitment among pre-DCs occurs in the bone marrow in mice
-SiglecH+ precursors develop into SiglecH− pre-DC precursors,
which in turn can be cDC1-committed pre-cDC1s if they are
Ly6C−, or cDC2-committed pre-cDC2s if they are Ly6C+ (147).

Altogether, these results suggest that we should rethink the
current classification of DCs and then evaluate a more thorough
definition of DC subtypes in future studies, considering the
possible contamination between subsets that could occur [e.g.,
pre-DCs and pDCs in mice (146), or AS DCs and pDCs in
humans (133)]. Undoubtedly, scRNA-seq, as well as CyTOF, are
powerful tools that will continue to unravel the immunobiology
of DCs.

IMPORTANCE OF INTERFERON
REGULATION FOR THE IMMUNE
RESPONSE AGAINST VIRAL INFECTIONS

IFN is a characteristic antiviral cytokine able to modulate the
innate and adaptive immune response (148). This cytokine was
discovered in the 1950s (149) and is divided into three different
groups: Type I, II, and III IFN, whose function is regulated by the
JAK-STAT pathway (150). In humans, type I IFN is divided into
IFN-α, IFN-β, IFN-ε, IFN-κ, IFN-ω; type II into IFN-γ; and type
III into IFN-λ, which is divided in IFN-λ1, IFN-λ2, IFN-λ3, IFN-
λ4 (151, 152). Similarly to humans, in mice, IFNs are divided into
three groups—type I IFN includes IFN-α, IFN-β, IFN-ε, IFN-κ
(153, 154), type II comprises IFN-γ, and type III considers IFN-λ.

Type I IFN is secreted in response to viral infections when
PRRs identify viral proteins or genetic materials, triggering the
IFN secretion (155, 156). The IFN secreted is later recognized by
the IFNAR receptor into the surface of infected cells, promoting
the activation of the JAK-STAT pathway. The activation of
these pathways starts with the phosphorylation of IFNAR by
two enzymes, Janus Kinase 1 (JAK1) and Tyrosine Kinase
2 (TYK2). This phosphorylation modulates the activation of
both STAT1 and STAT2, through their phosphorylation and
later heterodimerization. This phosphorylated STAT1/STAT2
complex interacts with IRF9 to make the ISGF3 complex that
is translocated to the nucleus. Once this complex is in the
nucleus, it binds to the DNA sequence where it can activate the
IFN-stimulated response elements (ISREs), some antiviral genes
and the expression of IFN stimulated genes (ISGs), which are
essential to promote the antiviral response in the host (157–161)
(Figure 2).

Additionally, two other pathways can be activated when
IFN is recognized by IFNAR. The first is triggered by
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FIGURE 2 | Regulation of type I IFN due to the activation of IFN receptors. Upon activation of the IFNAR receptor induced by the cytokine IFN, three different

pathways can be activated. One pathway involves the phosphorylation of the IFNAR cause by Janus Kinase 1 (JAK1) and Tyrosine Kinase 2 (TYK2), which generates

the phosphorylation of both STAT1 and STAT2 that come together to form a heterodimer. This heterodimer interacts with IRF9, forming the ISGF3 complex that is

translocated to the nucleus where it binds to DNA activating the regions of ISG and ISRES, promoting an antiviral response. An alternative pathway involves the

phosphorylation of the IFNAR caused by JAK1 and JAK2, which produces the phosphorylation of STAT1 and two of them come together in order to form a

homodimer. This homodimer is able to translocate to the nucleus where it binds to DNA, activating the regions of GAS, and promoting a pro-inflammatory response.

Another alternative pathway involves the phosphorylation of the IFNAR, caused by JAK2, which generates the phosphorylation of STAT3, and two of these come

together in order to form a homodimer. This homodimer is able to translocate to the nucleus where it binds to DNA, activating the regions of GAS and promoting the

inhibition of the pro-inflammatory response.

the homodimerization of the phosphorylated STAT1 that is
translocated into the nucleus and recognizes the gamma-
activated sequence (GAS) within the DNA, activating a pro-
inflammatory response (162). The other pathway is triggered by
the homodimerization of the phosphorylated STAT3, which is
translocated to the nucleus, where it is also able to recognize GAS.
This interaction promotes the inhibition of the pro-inflammatory
response, probably by an unknown self-control system able to
sense the damage (163, 164) (Figure 2).

Another pathway described to promote an antiviral immune
response associated with type I IFN response is through the
activation of different Toll-like receptors (TLR) (165–167).
TLR7 is activated by guanosine/uridine-rich ssRNA from viruses
(168–170), while TLR9 is characterized by the recognition of
methylated CpG rich DNA (171). However, both TLR7 and
TLR9 trigger a common pathway mediated by MYD88 (167).
Specifically, TLR9 can promote IFN-α or IFN-β, depending on
the type of dendritic cells and their stimuli. In plasmacytoid DCs

(pDCs), TLR9 recognizes type A CpG oligonucleotides (CpGA)
promoting the binding ofMYD88 that later interacts with TRAF6
triggering IRF7 activation. This activation of IRF7 is dependent
on the ubiquitin E3 ligase activity of TRAF6. Once IRF7 is
activated, it can phosphorylate independently of TBK1/IKK,
and it can be translocated into the nucleus to promote the
activation of the type I IFN-α/β (172–175). Additionally, TLR9
can recognize type B CpG oligonucleotides (CpGB) in pDCs,
stimulating the maturation of this cell type but inducing low
levels of IFN-α (176). On the other hand, in cDCs and other cell
types -such as macrophages-, TLR9 recognizes CpGB promoting
the binding of MYD88 and the later interaction with IRF1, which
is translocated into the nucleus to promote the activation of the
only type I IFN-β (173). This pathway, unlike the one described
above for pDCs, does not require the use of IRF3 or IRF7 (173)
(Figure 3).

Another typical TLR associated with the antiviral response
is TLR3, which is found in endosomes of cDCs and is
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FIGURE 3 | Regulation of type I IFN due to the activation of Toll-like receptors. Upon activation of Toll-like receptor (TLR) induced directly by viruses, different

pathways can be activated. TLR7 recognize ssRNA, promoting the binding with MYD88, that will later interact with TRAF6, activating IRF7 which is translocated to the

nucleus where it binds to DNA, promoting the release of IFN-α/β. TLR3 recognize dsRNA, promoting the interaction with TICAM-1 and TRIF, that activates AP-1,

NF-κB, and IRF3, which are translocated to the nucleus, where they bind to DNA, promoting the release of IFN-β. The dsRNA can activate an alternative pathway,

which can be sensed by either retinoic acid-inducible gene I (RIG-I) or by melanoma differentiation-associated protein 5 (MDA5). These receptors activate

mitochondrial antiviral-signaling protein (MAVS), and by doing so they promote the IRF3 and/or IRF7 activation, and later translocation into the nucleus where they

bind to DNA, promoting the release of IFN-α/β. There are two ways of activating TLR9, one is through the recognition of a type A CpG-DNA, which activates the

pathway mediated by MYD88, similar to TLR7, while the other one involves the recognition of a type B CpG-DNA, where TLR9 binds with MYD88, activating IRF1,

which is then translocated into the nucleus where it binds to DNA promoting the release of IFN-β. On the other hand, TLR4 is able to recognize viral peptides,

activating a MYD88 -depending pathway similar to TLR7.

capable of recognizing dsRNA (177). Once it identifies the
dsRNA, TLR3 interacts with the adaptor protein TIR-containing
adaptormolecule-1 (TICAM-1/TRIF). This interaction promotes
the activation of AP-1, IRF3, and NF-κB, which then are
translocated into the nucleus to promote the expression of IFN-
β. Additionally, the activation of the NF-κB pathway allows the
expression of pro-inflammatory genes (178–180).

Finally, TLR4, who is localized in the surface of cells, is able
to identify different viral proteins, triggering the signaling and
activation of type I IFN genes through the MYD88 pathway
(181). Additionally, TLR4 can modulate the activation of type
I IFN genes through other ways associated with TRIF, where
TLR4 interacts with TRIF through TRAM, triggering a late
activation of the MYD88 pathway, and the expression of type I
IFN genes against viral infection (182, 183) (Figure 3). Similar
to TLR4, TLR2 -which is also localized in the surface of the

cells- has also been associated with the identification of viral
proteins (184).

ANTIVIRAL ACTIVITY OF DCs AGAINST
RNA VIRUSES

As was mentioned above, DCs subsets are crucial players
in the host defense against pathogens, particularly viruses.
In this section, we will discuss the antiviral role of DCs
against RNA viruses that we consider epidemiologically
relevant and elicit a well-described antiviral activity of DCs,
such as the human respiratory syncytial virus, the human
metapneumovirus, Influenza virus, the hepatitis C virus, and the
human immunodeficiency virus. The different PAMPs from each
virus are mentioned in Table 2.
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TABLE 2 | Viruses and some of their PAMPs.

Type of virus Virus PAMPs References

RNA genome Human respiratory

syncytial virus

(-)ssRNA

Nucleoprotein (N)

(185–187)

Human

metapneumovirus

(-)ssRNA

Glycoprotein (G)

(188–190)

Influenza virus (-)ssRNA

Hemagglutinin (HA)

Neuraminidase (NA)

(191–193)

Hepatitis C virus (+)ssRNA

Non-structural (NS)3

Non-structural (NS)4A

Non-structural (NS)5

(194–197)

Human

immunodeficiency virus

(+)ssRNA (198, 199)

DNA genome Papillomavirus dsDNA

E6 protein

E7 protein

(200–203)

Adenovirus DNA (204)

Hepatitis B virus DNA (205, 206)

Human alphaherpvirus DNA

US11 proteins

(205–207)

Human

alphaherpesvirus 3

DNA (208)

Human

gammaherspesvirus 4

dsDNA (209)

Human Respiratory Syncytial Virus
Human respiratory syncytial virus (hRSV) is an enveloped
member of the Pneumoviridae family, which has a single-
stranded negative-sensed RNA genome (185, 186). The disease
caused by hRSV is characterized mainly by the infiltration
of eosinophils and neutrophils into the airways. An increase
infiltration of neutrophils can contribute to lung damage (210–
212). Even though CD8+ T cells are key in the clearance
of the virus, it has been reported that the depletion of the
CD4+ and CD8+ T cells in mice decreased the severity of the
illness (213–215).

As expected, the antiviral immune response against hRSV is
commanded by DCs. The different subsets of DCs in the lung
play a specific role in the antiviral immune response against this
virus. The pDCs are susceptible to hRSV infection in humans
(127) and mice (216), increasing the expression of molecular
surface markers such as CD80, CD86, and CD40, indicating the
maturation of these cells (217). Interestingly, a report indicated
that upon infection with hRSV, the amount of pDCs was less
in preterm infants as compared to those born at term (218).
Studies in human monocyte-derived DCs (moDCs) and pDCs
showed that both subsets of DCs could be infected by hRSV,
and their infection promotes the secretion of several cytokines
such as IL-6, IL-10, TNF-α, IL-1β, and IL-12p70 (24). One of the
differences of the effect of hRSV infection is that the induction of
IFN-α was detected only in pDCs, and this infection can inhibit
the production of type I IFN in cDCs and pDCs through the
recognition of TLRs agonist (24, 219). However, the absence of

pDCs does not alter the levels of IFN-α during the infection with
hRSV (220).

In a murine model, Smit et al. described that the number of
cDCs and pDCs were increased in the lung and also, in the lung-
draining lymph nodes of BALB/c hRSV-infected mice during the
acute phase of the infection (221). Moreover, when pDCs were
depleted, the immunopathology caused by hRSV was enhanced
in the lung of infected mice, as seen by an increase in the viral
loads. This result demonstrated that pDCs are relevant during
hRSV clearance (221). According to this, in the absence of pDCs,
the levels of IFN-α were drastically decreased, consistently with
previous reports (216, 221, 222).

Moreover, it has been described that hRSV infection of cDCs
does not alter the expression of maturation surface markers
in adult mice. However, in neonates, the CD80 and CD86
maturation markers are decreased (223). These findings are in
accordance with the severity of the immunopathology described
in neonatal and adults mice models (223). As APCs, cDCs are
important in the activation of T cells, but this essential function
is altered by hRSV infection (224). Interestingly, hRSV infection
on cDCs impairs the immunological synapses mediated by the
surface expression of the hRSV nucleoprotein (187, 224). This
impairment can explain why the host displays an inefficient
immune response against hRSV and why the host can be re-
infected by this virus throughout its life.

hMPV
The human metapneumovirus (hMPV) also belongs to the
Pneumoviridae family, and it has a single-stranded RNA genome
with a negative sense (188). This virus is globally recognized as
the second most important agent that causes bronchiolitis and
pneumonia in susceptible individuals (225). Noteworthily, the
mechanisms by which hMPV can evade the establishment of
an appropriate immune response are still poorly characterized
in humans, but recent studies in BALB/c mice suggest that
infiltrating T cells play a pathogenic role during hMPV infection
(226, 227).

It has been described that DCs are susceptible to be infected by
hMPV and, depending on the strain and the host, the replication
in these cells can be productive or abortive in an in vitro model
of human cDCs (228) or mouse bone-marrow-derived DCs
(BMDCs) (229), respectively. Moreover, hMPV can infect both
human moDCs and pDCs, which promote the maturation of the
cells (24). Furthermore, in hMPV-infected DCs, the production
of IFN-α is increased, but this effect is inhibited in response to
TLR agonists (24). Compared to hRSV, hMPV ismore susceptible
to the antiviral effect of IFN-α. This observation can be explained
by the lack of NS1 and NS2 proteins in hMPV, present in
hRSV, that have been described to interfere with the type I IFN
signaling (230).

The infection of DCs by hMPV also impairs the ability of these
cells to establish an efficient immunological synapse that allows T
cell activation (229). One of the most important virulence factors
of hMPV is the G glycoprotein (189, 190, 231). This protein
has a role in the inhibition of the TLR4-depending signaling
in moDCs. Kolli et al. demonstrate that human hMPV-infected
moDCs downregulate the expression of the TLR4. Moreover,
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when evaluating DCs obtained from a mouse with a silenced
TLR4 and infected with hMPV, the cytokines induced by the
infection, such as IL-6, IL-10, CCL5, and IFN-β, were also
decreased (190). Besides, to demonstrate the role of the G-
hMPV glycoprotein, the authors tested a recombinant hMPV-
1G virus. The data showed that, in the absence of the G-hMPV
glycoprotein, there was increased production of cytokines and
a moderate change in the IFN type I expression (190, 231).
According to these results, TLR4 plays an important role in the
activation of DCs during an hMPV infection.

Influenza Virus
Influenza virus (IV) belongs to the Orthomyxoviradae family,
with a negative-sensed, single-stranded, and segmented RNA
genome (191, 192). This virus can be classified into types A,
B, C, and D, being the influenza A virus (IAV), the most
prevalent and responsible for the pandemics (192, 232). In the
viral surface, themajor glycoproteins are the hemagglutinin (HA)
and neuraminidase (NA), being these proteins the basis of the
classification of the IVs subtypes such as H1N1, H2N3, and
H7N9, among others (193). As hRSV and hMPV, IAV also infects
humans (233) and murine (234) DCs, although this infection is
lower in murine DCs, and its infectivity depends on the type of
HA protein in the virus (234). In the case of human DCs, the
cDCs are more susceptible to the IAV infection than pDCs,and,
in this context, the IAV-infected cDCs are less efficient to activate
CD8+ T cells (233).

During IAV infection, DCs are one of the most relevant cell
types in the initiation of the host immune response. It has been
described that the recombinant HA proteins from A/WSN/33
(H1N1) and A/Thailand/KAN-1/2004 (H5N1) can induce cDCs
maturation, and therefore the production of cytokines such as
TNF-α and IL-12p70 (235). Also, TLRs on DCs are relevant for
the recognition of IAV infection. The cDCs’ activation occurs via
TLR3 and TLR9 signaling (235, 236), whereas the activation of
pDCs is via TLR7 (237) (Figure 3).

Hepatitis C Virus
Hepatitis C virus (HCV) is part of the Flaviviruses family and
presents a positive-sensed, single-stranded RNA genome (194).
The prevalence of HCV represents a 2.2% infected subjects
worldwide, and it is known for causing hepatitis to a chronic level
that can even lead to hepatocellular carcinoma (195, 238, 239).
Two potential antiviral targets are the nonstructural (NS) protein
3, which has a helicase and protease activity, and NS5, which
has an RNA-dependent RNA polymerase activity. However, the
peculiarity of this virus allows it to mutate frequently and
generates up to six different genotypes (195). Even though
hepatocytes are its principal target cell, it has been found that
this virus can infect DCs at a minor level, interfering with its
capacity to stimulate allogeneic T cells and to secrete IFN-γ
(238, 240, 241).

HCV can evade the antiviral response due to the activity of
the NS3/4A protease, which can inhibit the RIG-1 pathway, and
the pathway where the TRIF protein participates (196, 197). It
has been reported that when HCV infects hepatocytes, it can
inhibit type I IFN secretion. However, evidence suggests that

there are other cells in the liver capable of stimulating the ISG,
during infection with this virus (242–244).Within a liver infected
by HCV, pDCs are found in great numbers, even though the
infection with this virus can decrease the number of pDCs and
inhibit their function (245–247). It seems that through cell-to-cell
contact between the cells infected with HCV and pDCs, the latter
can secrete type I IFN as a result of the signal produce by TLR7,
due to the sensing of the RNA of the virus, without infecting
pDCs directly (243).

Human Immunodeficiency Virus
The human immunodeficiency virus (HIV) belongs to the
Retroviridae family and has two positive-sensed and single-
stranded RNA molecules (198, 199). This virus is divided into
two types, HIV-1 and HIV-2, where HIV-1 is the one described
as a pandemic affecting ∼37 million people (248–250). The
progression of the disease due to the continuous activation
of the immune system and the low levels of CD4+ T cells
can lead to the development of the acquired immunodeficiency
syndrome (AIDS) (251, 252). Studies in vitro with human DCs
have demonstrated that some of these cells are susceptible to the
infection with HIV, such as Langerhans cells, cDCs, and pDCs
(253, 254). Interestedly, cDCs from HIV patients have shown
low levels in the blood, and their function is compromised (255).
WhenHIV infects DCs, it can travel within the cell until it locates
memory CD4+ T cells into the lymphoid tissue, spreading the
infection in this way (256, 257). Langerhans cells are the first cells
that interact with HIV, and studies in these types of cells have
demonstrated that Langerin receptors can block the transmission
of the virus, making it possible to avoid the infection (258). Upon
the HIV-infection of cDCs, the anti-viral pathways within these
cells are changed, and as a result, it promotes the viral spreading.
However, the use of antiretroviral therapies (ART) can return
completely the functionality of the pathways IL-1 and type I IFN
(255, 259).

The HIV ssRNA is recognized by TLR7, stimulating the
MYD88 pathway to activate IRF7 in pDCs (260, 261). The
secretion of IFN-α promotes the expression of the HIV
restriction factor through the stimulation of IFNAR, thus
inducing the activation of the JAK1/TYK2 pathway (262). The
activation of pDCs is desirable to stimulate the production of
IFN-α/β since it can control the spreading of the virus, but the
continuous secretion of this cytokine can cause more damage
than benefit (263, 264). The negative effect of a continuous
induction of type I IFN involves the chronic activation of the
immune system, immunosuppressive pathways are activated, and
immunopathogenesis, along with immunodeficient syndromes
are detected (264). Even though pDCs are no the main source
of IFNs during HIV-infection, these cells play an important role
during the infection due to the capability to target infected-cells
and, at the same time, promote the immunopathogenesis (265).
Even more, as a consequence of the constant activation of pDCs
and the immune system, the chances of developing AIDS are
increased (266, 267). There is an alternative pathway by which
TLR7 is able to activate NF-κB, which can trigger the production
of type I IFN as well (261, 268). Even though pDCs have two
different pathways that promote the secretion of type I IFN, the
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amount of IFN secreted is lower compared to LPS-stimulated
DCs (269).

ANTIVIRAL ACTIVITY OF DCs AGAINST
DNA VIRUSES

The role of DCs during DNA virus infections have also
been characterized -thoroughly or partially, depending on
the pathogen. In this line, infections and diseases caused by
Papillomavirus, Adenovirus, hepatitis B virus, and Herpesvirus
will be discussed in the following section, as DNA viruses
that are considered to be epidemic viruses. Accordingly, these
viruses have been described as epidemiologically relevant, since
they cause several diseases with high incidences worldwide. The
different PAMPs from each virus are mentioned in Table 2.

Papillomavirus
Human papillomavirus (HPV) is a dsDNA virus recognized
as the main etiological agent of cervical cancer, and it is also
associated with carcinomas of the vulva, vagina, anus, and penis
(200–202). However, infection with this virus can lead to several
pathologies, such as cutaneous warts, squamous intraepithelial
lesions, and even respiratory papillomatosis (200, 201). In this
line, HPV exhibits a tropism for cutaneous andmucosal epithelial
cells -without inducing the destruction of the infected cells-,
thus explaining the type of carcinomas that it can cause (200).
Remarkably, there are over 200 different species of HPV, divided
into five different groups -alpha, beta, gamma, mu, and nu-
and they are categorized according to their tropism and genetic
composition (202, 270). The alpha group is the most studied and
characterized so far, with HPV species in this subset dived as high
or low risk (201).

Since immune surveillance is crucial for the establishment of
persistence and the appearance of skins lesions, and epithelial
cells -particularly keratinocytes- are the main target of infection
for this virus, the DCs subtype that will play a more critical
role in the regulation of this infection are Langerhans cells
(LCs) (271–273). Remarkably, infection of LCs with HPV results
in no expression of the genes of this virus, therefore being
non-productive (271, 272). In light of this, cross-presentation
performed by LCs is a fundamental step for the activation of
T cells, once the former reaches the LN, during infection with
HPV (274). A down-regulation of MHC-I has been reported
during cervical carcinomas in human studies, which has also been
associated with HPV-related carcinoma (275). This suggests that
there is a decrease in the achievement of a proper T cell activation
in this HPV-associated cancer, which, along with its immune
evasion-associated capacities, makes this virus more virulent.

Upon infection, keratinocytes will secrete several pro-
inflammatory cytokines that will induce the recruitment and
activation of LCs (276–278). Recognition of HPV by DCs
will induce their activation and eventual maturation (271–
273). However, keratinocytes have also been reported to secrete
anti-inflammatory molecules -such as TGF-β and IL-10- upon
infection with HPV and once the tumor has been established,
therefore down-modulating the activation of LCs (277). This

results in an increased capacity for immune evasion for this
virus. In this line, it has also been described that TLR3, TLR5,
TLR8, and TLR9 pathways are activated during HPV infections
(203, 278–280). However, two proteins of HPV (E6 and E7)
have been described to down-modulate TLR9 expression -and
IFN synthesis along with it-, once again favoring its immune
evasion capabilities (203). Remarkably, overexpression of TLR4
has been described in HPV-infected cells, and this is correlated
with resistance to apoptosis in these infected cells (280).

DCs -particularly LCs- will also play a significant role during
cervical cancer that may induce HPV (272). As expected,
immature LCs will sense their environment, capture and process
antigens, and migrate to their respective LN. However, several
studies have shown that, during HPV infections, these cells
exhibit an impaired phenotype (281–286). For instance, lower
numbers and frequencies of LCs (281–283), changes in their
morphological characteristics (284), and decreased capacities to
induce a proper immune response have been reported in this
context (286, 287). In light of all this, the critical role that LCs
play during infections, and the persistence of HPV infection is
more than evident. Therefore, further studies and insights in the
role of these cells during this disease are mandatory to elucidate
and suggest new approaches for its treatment.

Adenovirus
Adenovirus (AdV) are non-enveloped viruses responsible for
diseases associated with the upper and lower respiratory tract,
reaching even the gastrointestinal tract and the conjunctiva and
cornea, depending on the species of the AdV and the immune
condition of the host (288). Considering all this, it is important
to describe how the innate immune response, and particularly
DCs, are capable of detecting and responding once AdV reaches
an organism, although the mechanisms associated with this are
not completely well understood.

AdV targets of infection are both dividing and quiescent cells,
with specific tropism associated with the species of the virus
(289). In this line, DCs can be transformed with AdV, with entry
mechanisms that differ from those of epithelial cells, and with
the capability of being modulated by cytokines and chemokines
(288–290). Remarkably, it has been described that AdV is
capable of inducing maturation of DCs strongly upon encounter
(290, 291). Moreover, studies indicate that AdV presented as
immunocomplexes to DCs can induce pyroptosis -a type of
apoptosis associated with the formation of the inflammasome-
in these cells (291).

It has been described that AdV can be recognized by TLR2,
TLR4, and TLR9 (292–295). Engagement of TLR2 during AdV
has been shown to be necessary for the activation of NF-κB
and the mount of an effective humoral response, as KO mice
for these receptors show deficiencies in these responses (294).
Accordingly, TLR4 activation -by AdV complexes- leads to the
IL-1β-associated inflammatory response, possibly modulating
the formation of the inflammasome that will induce pyroptosis
(295). Finally, the recognition of TLR9 in PBMCs and pDCs
leads to the secretion of many pro-inflammatory cytokines and
the activation of the type I IFN pathway (292, 293). Since all
these receptors require the adaptor protein MYD88 to properly
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signalize, the upregulation of this protein has been described
upon infection (296, 297). Besides these TLRs, AdV can also be
recognized by other PRRs, such as Lectin receptors -for instance,
Siglecs and Galectins (298, 299)- and inflammasome-associated
DNA sensings receptors -such as NLRs AIM2 and NALP3 for
AdV (300, 301). Activation of all these receptors will induce
maturation and activation of DCs, leading to the mounting of a
classical antiviral response. However, further studies are required
to properly elicit the role of DCs in the infection of this virus.

Hepatitis B Virus
Hepatitis B virus (HBV) is the etiological agent responsible
for either a self-limiting or a chronic infection that affects the
hepatocytes in the liver of over 250 million people worldwide
(302, 303). The disease caused by this virus is characterized
by an inadequate immune response and, in the long-term, the
development of hepatitis, cirrhosis, and hepatocellular carcinoma
(302). The interaction between this virus and the immune system
is both innate- and adaptive-related, although the role of the
latter has been more thoroughly described than the former (194,
207, 302). Accordingly, the adaptive immune response seems
to play a more significant role in the modulation of chronic
infection (194, 207, 302). In this point, DCs are fundamental
since they work as the bridge between the innate and the
adaptive response.

HBV induces an inefficient innate immune response -and
also an impaired activation of DCs-, due to several of its
characteristics and its infectious cycle (207). For instance, most of
its DNA is recognized just as host genetic material -therefore not
triggering an immune response-, although certain conformations
of the HBV’s DNA may be recognized by RIG-I or TLR9,
as described by some authors (205–207). Accordingly, acute
exposure of this virus does not induce the secretion of IFN
or pro-inflammatory cytokines by either pDCs (the responsible
for secreting type I IFN) or other immune cells, therefore not
mounting the first line of defense against viral infection (207,
304). Even so, increased secretion of IL-10 upon infection has
been reported, which could explain the lack of response described
for this virus, as this cytokine will induce a state of tolerance in the
surveilling immune cells (305, 306). Remarkably, since it has been
described that pDCs from HBV infected patients are impaired
in their capacities to secrete IFN, this also results in a decreased
capacity to induce the proper activation of NK cells (302, 307).

Recognition of PAMPs derived from HBV by PRRs -and
therefore the innate immune system and DCs- is currently a
controversial field, as in vitro studies of HBV are hard to perform.
These difficulties are associated with the high multiplicity of
infection (MOI) required to achieve a productive infection
in human primary hepatocytes (308). Moreover, several other
factors difficult in vitro studies with this virus, such as an
inadequate capacity of this virus to diffuse in monolayers (308),
the differences in the inoculum used, and the generation of
artifactual results obtained from all these points (207, 308).
Despite all this, it has been suggested that the nucleocapsid of this
virus may act as a TLR2 ligand, leading to the secretion of several
pro-inflammatory cytokines (309, 310). Also, Vanlandschoot
et al. reported that subviral particles might be recognized by

one of the co-receptors of TLR4, inducing the activation of
myeloid cells (311, 312). Therefore, more studies are required to
elicit further the role of DCs and the innate response during an
HBV infection.

A study performed recently by Yonejima et al. analyzed the
gene expression and function of DCs in a cohort of 64 humans
infected with HBV (313). In this article, the authors show that
there are no differences in the number of circulating DCs in
the PBMCs samples of the subjects, as previously reported for
HBV infected patients (314, 315). Accordingly, no differences in
the levels of expression of CD80, CD83, CD40, and CCR7 were
found in the cDCs subset analyzed. However, DCs obtained from
these patients exhibited impaired antigen-presenting capacities,
a decrease in their capacities to migrate, and impaired levels
of cytokine production, as seen during in vitro assays. Other
studies have also shown similar results, still supporting the notion
that HBV induces a tolerogenic state (316, 317). By performing
microarray assays, the authors also suggest that one of the genes
responsible for this impairment is the IL-6 signal transducer
(IL6ST), since rescuing the proper expression levels of this gene
resulted in the recovery of the previously indicated function of
DCs. Thus, IL6ST may constitute a possible therapeutic target to
treat HBV infection (313).

Indeed, DCs seems to play a pivotal role during the self-
limiting and the chronic disease caused by HBV, but further
researches are required in order to thoroughly comprehend the
magnitude of these cells in this disease.

Herpesvirus
The orderHerpesvirales comprisesmany species of herpesviruses,
among which we can highlight the human alphaherpesvirus
1 and 2 -commonly known as human herpes simplex virus
1 and 2 (HSV-1 and HSV-2)-, the human alphaherpesvirus 3
-commonly known as varicella-zoster virus (VZV)- and the
human gammaherpesvirus 4 -commonly known as Epstein-
Barr virus (EBV) (318). All these viruses, among others of the
same order, are responsible for different diseases in humans,
with symptoms ranging from blisters to severe neurological
alterations (319).

As stated above, human alphaherpesvirus comprises HSV-
1 and HSV-2. Upon HSV infection, and as expected for most
viruses, the type I IFN pathway is activated, leading to the
secretion of IFN-α and IFN-β (320, 321). This activation is
mediated by PRRs that can recognize HSV, such as TLR3 and
TLR9, which will be activated in the presence of viral-related
genetic material. Moreover, TLR2 and TLR4 have also been
described to be activated upon HSV infection (322). RIG-I will
detect viral-related genetic material -particularly dsRNA- and
induce the production of type I IFN and other proinflammatory
cytokines (321). Remarkably, it has been described that US11,
an HSV-1 tegument protein, is capable of inhibiting the antiviral
protein elicited upon RIG-I activation by degrading downstream
signals of this pathway (323). Since most of these PRRs are
expressed in DCs, they are relevant in their role for the
modulation of this infection. Remarkably, HSV-1 is capable
of infecting DCs, and HSV-infected DCs are not capable of
achieving maturation (324). Despite this, HSV-infected and
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non-matured DCs are capable of secreting proinflammatory
cytokines, which will help other DCs to achieve maturation
if they are not infected (324). Once matured, DCs will be
able to internalize the virus, either as a free particle or by
phagocyting other infected cells -even infected DCs-, degrade it,
and eventually cross-present it to the adaptive immune system,
which will initiate a new response (321, 324). Furthermore,
depletion of the IgD glycoprotein in HVS-2 has been found to
promote efficient activation of DCs and effective activation of
CD4+ and CD8+ T cells (325).

The main target of infection and replication of human
alphaherpesvirus 3 or VZV are epithelial cells of the respiratory
tract. Initial viral replication will eventually lead to viremia and
the characteristic rash -commonly known as chickenpox- that
is particular for the disease caused by this virus (326). Upon
resolution of this stage, the virus achieves latency in the nerve
cells that innervate the portions of skin affected with the rash
(326). In order to be reactivated, the virus must be mobilized
by anterograde transport into the skin cells. As seen for HSV,
DCs in the skin can be infected by VZV -as reported in ex vivo
experiments (327). Moreover, infection by VZV induces a change
in the repertoire of DCs available in the zone of the skin affected,
which could be mainly related to the movement of these cells
from and into the LN (327). It may be significant to highlight that
the repertoire of DCs commonly detected in the skin are cDCs
and LCs, and, after infection, monocyte-derived inflammatory
DCs and pDCs are found (326–328). Accordingly, and as seen for
HSV, DCs are capable of mounting a primary antiviral response
upon VZV infection, therefore prompting the secretion of type
I IFN and other proinflammatory molecules. However, VZV
infection of DCs can be one of the mechanisms that this virus
could use to disseminate in the organism (326).

Finally, human gammaherpesvirus 4 or EBV has been
reported to infect over 90% of the world population, achieving
latency and persistence in its host (329). This virus is associated
with many diseases in humans, among which the appearance
of tumors can be included -Hodgkin’s lymphoma is one of the
most remarkable among these (330). Surprisingly, EBV can also
infect DCs, as seen for HSV and VZV (330). This virus can
also be recognized by TLR3 and TLR9, therefore leading to
the activation of the type I IFN pathway (331). The activation
of this pathway has been shown to render B cells less prone
to transformation induced by this virus, therefore partially
restricting the symptoms of this disease (332). This environment
will also induce the activation of other innate cells, such as NK
cells and PMNs, that will aid in the control and clearance of this
virus (331).

CONCLUSIONS

In this article, we have stated the significant part that DCs play
during important infectious diseases that affect humans. Not only
are they effector phagocytic cells that can contribute to IFN-
mediated antiviral responses, but they must also act as a bridge
between the innate and adaptive immune response, activating
lymphocytes, the key players of the adaptive response, so that
these cells can effectively face the respective viral infection. DCs
must perform this by recognizing either PAMPs or DAMPs
through their vast arrays of PRRs, which will guide DCs -and
another cells type- to the correct effector profile. Triggering of
PRRs will induce signaling cascades that will eventually promote
the secretion of several molecules with immune-related roles,
such as cytokines and chemokines. Interferon is one of the most
important cytokines related to the antiviral response, key to
efficient clearance of the viruses from the hosts. Although several
types of cells are capable of activating the type I IFN pathway -and
therefore secreting this molecule-, DCs have a fundamental role
in this process. They are strongly associated with the secretion
of this cytokine, as they can recognize different components of
the virus to activate this antiviral response efficiently, through
the previously mentioned PRRs. Therefore, further therapeutic
approaches against the discussed pathogens will require to focus
on the role of these cells in order to effectively promote an
immune response that comprises both the innate and adaptive
branch of the immune system.
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