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Abstract: Analyzing polysomnography (PSG) is an effective method for evaluating sleep health;
however, the sleep stage scoring required for PSG analysis is a time-consuming effort for an
experienced medical expert. When scoring sleep epochs, experts pay attention to find specific signal
characteristics (e.g., K-complexes and spindles), and sometimes need to integrate information from
preceding and subsequent epochs in order to make a decision. To imitate this process and to build
a more interpretable deep learning model, we propose a neural network based on a convolutional
network (CNN) and attention mechanism to perform automatic sleep staging. The CNN learns
local signal characteristics, and the attention mechanism excels in learning inter- and intra-epoch
features. In experiments on the public sleep-edf and sleep-edfx databases with different training and
testing set partitioning methods, our model achieved overall accuracies of 93.7% and 82.8%, and
macro-average F1-scores of 84.5 and 77.8, respectively, outperforming recently reported machine
learning-based methods.

Keywords: sleep stage classification; convolutional neural network; attention mechanism

1. Introduction

Sleep is an essential human activity that occupies one-third of people’s lives. Long periods
of unhealthy sleep can lead to various diseases [1,2]. Medical experts assess five components of
sleep health: duration, continuity, timing, alertness, and quality [3]. Most of these indicators can
be obtained via polysomnography (PSG) analysis. The acquisition and analysis process of PSG is
as follows. First, multiple sensors placed on the patient record physiological signals—producing an
electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram (ECG), and electromyogram
(EMG)—during sleep. Second, these signals are split into 30-s epochs that are classified by sleep state:
wake (W), rapid eye movement (REM), non-REM stage 1 (N1), non-REM stage 2 (N2), non-REM stage
3 (N3), and non-REM stage 4 (N4), as defined by the Rechtschaffen and Kales Manual (R&K) [4]; or
by merging stage N4 into stage N3, as defined by the American Academy of Sleep Medicine Manual
(AASM) [5]. Third, the scorer notes spontaneous arousals, cardiac arrhythmias, and respiratory events.
In this process, the second step is both crucial and time-consuming [6]. It requires that an experienced
medical expert observe each PSG epoch to look for its characteristic features and assign it to the
correct sleep stage. Figure 1 shows some examples. This labor-intensive process limits the efficiency of
PSG analysis. With extensive researches of machine learning methods in biomedicine [7–11], many
researchers have proposed a series of machine learning-based algorithms to carry out computer-aided,
or even fully automated, sleep stage classification [12–15].

In recent years, automated sleep stage classification research has focused on two machine learning
approaches [6]: traditional machine learning methods and deep learning-based methods. Traditional
machine learning methods combine manually chosen representative signal features and machine
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learning models to classify sleep stages. For example, Liang et al. [16] first proposed the use of
multiscale entropy as a signal feature, and employed an autoregressive model for classification.
Tsinalis et al. [17] extracted 557 features in the time-frequency domains of EEG signals as input to a
stacked sparse autoencoder model, and achieved 78.9% accuracy on the sleep-edf [18] database. A
study by Hassan et al. [19] handled a signal that needed to be decomposed into several sub-bands,
using the Tunable-Q wavelet transform. Classification based on a bootstrap aggregating model was
then implemented based on the statistical characteristics of the sub-bands. Jiang et al. [20] divided
sleep stage classification into three steps: feature extraction based on multimodal decomposition,
classification using a random forest, and result refinement based on sleep stage transition rules using a
hidden Markov model. The refinement process was particularly suited to improving the classification
accuracy of stage N1.
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Figure 1. Examples of the characteristic electroencephalogram (EEG) signal features of sleep stages
(from top to bottom): stage N1 with low amplitude mixed frequency (LAMF) and vertex sharp waves;
stage N2 with K-complexes; stage N3 with slow waves; and rapid eye movement (REM) sleep stage
with saw-tooth waves.

In deep learning models, feature extraction is automatically realized by a deep neural network
model [21,22], enabling end-to-end automated sleep stage classification. Deep learning-based methods
mainly use convolutional neural networks (CNNs) [23], recurrent neural networks (RNN), or a
combination of the two. CNNs have a strong capacity to learn shift-invariant features, and have already
achieved great success in the field of computer vision. ResNet is a powerful architecture in image
classification. Andreotti et al. [24] first employed a modified ResNet with 34 layers to realize automatic
sleep stage classification. Yildirm et al. [25] developed a one-dimensional CNN that used raw PSG
signals as input, and achieved 91% accuracy on the sleep-edf dataset. Phan et al. [26] proposed a
two-dimensional CNN-based model. Their method obtains a spectral map using a short-time Fourier
transform of the raw PSG and employs a classification process similar to that used for natural images.
However, labeling an epoch, whether using the R&K guideline or the AASM, sometimes requires
combining its data with information from the previous and following epochs. RNNs are often used



Int. J. Environ. Res. Public Health 2020, 17, 4152 3 of 13

to deal with problems, like this one, that include time dimension information. Among several RNN
methods, long short-term memory (LSTM) [27] is the most widely used, and can competently deal
with long-term temporal dependence. Michielli et al. [28] used a two-level LSTM structure to classify
EEG signals, which can effectively improve the classification performance of the N1 stage. The method
of combining a CNN and LSTM was first proposed by Supratak et al. [29]. The model used the CNN
module to extract epoch-wise features, and then used bidirectional LSTM to extract sequence features
to classify epochs.

In this study, we propose a neural network model based on a CNN and an attention mechanism [30]
for automated sleep stage classification, using a single-channel raw EEG signal. The main contributions
of this work are as follows:

• A neural network based on convolution and attention mechanism is built. The network uses
a CNN to extract local signal features and multilayer attention networks to learn intra- and
inter-epoch features. The recursive architecture is completely deprecated in our model.

• For the unbalanced dataset, the proposed method uses a weighted loss function during training
to improve model performance on minority classes.

• The model outperforms other methods on sleep-edf and sleep-edfx datasets utilizing various
training and testing set partitioning methods without changing the model’s structure or any of
its parameters.

2. Materials and Methods

2.1. Dataset and Preprocessing

In this study, the sleep-edf and sleep-edf expanded (sleep-edfx) databases were used to evaluate
our model’s performance. These two public datasets are published on PhysioNet [31] and are widely
used for research on automatic sleep stage classification algorithms. There are eight sleep records in the
sleep-edf database, four from healthy subjects and four from subjects with sleep disorders. Sleep-edfx
contains 197 records of 61 healthy individuals and 20 individuals with sleep disorders. Each record is
a whole-night PSG recording containing EEG Fpz-Cz, EEG Pz-Oz, EOG, EMG, and manual staging
records. We compared our results with those of state-of-the-art machine learning-based sleep staging
methods [19,25,26,29] on the complete sleep-edf database and on the first 20 healthy individual records
(subjects 0–19) from the sleep-edfx database. For each record in the sleep-edfx dataset, 30 min of wake
stage data were retrained from before the first sleep epoch and from after the final sleep epoch. As per
the latest AASM manual, we merged stages N3 and N4 into a single slow-wave stage. The distribution
of the processed data is shown in Table 1.

Table 1. Number of epochs of each stage in the datasets after processing.

Dataset W N1 N2 N3 REM Total

Sleep-edfx 8246 2804 17,799 5703 7717 42,269
Sleep-edf 8055 604 3621 1299 1609 15,188

The model used the Fpz-Cz channel as input. Due to differences between individuals, collection
equipment, and environments, the resulting data distributions also have distinct differences (Figure 2a)
that make the model difficult to train. In order to make the training more stable, we performed
z-score normalization on the data from each individual. The normalized data distribution is shown in
Figure 2b.
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Figure 2. EEG signal amplitude distribution: (a) raw data; (b) normalized data.

Machine learning algorithms require independent training and test sets for model training
and performance evaluation. There are two types of training data partitioning methods for clinical
data—subject-wise and record-wise (called epoch-wise in our work, see Figure 3); these are also called
independent and non-independent methods, respectively, in some papers [20,29]. This article uses the
epoch-wise method on the sleep-edf database and the subject-wise method on the sleep-edfx database.
In the epoch-wise method, the dataset is shuffled before partitioning.
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2.2. Model Architecture

Our model has three components: window feature learning, intra-epoch feature learning, and
inter-epoch feature learning (Figure 4). The model inputs multiple signal windows to the window
feature learning module in parallel. The module uses a deep CNN to construct a feature vector for
each window. The intra-epoch feature learning is based on the self-attention mechanism to obtain
the weight of each signal window in an epoch, and then adds windows features by these weights to
obtain the epoch feature. The window feature is updated in this part via a feed-forward layer [30]. The
inter-epoch feature learning component also uses the self-attention mechanism to learn the temporal
dependency between the current epoch and the adjacent epochs, to obtain more representative features
for the current epoch.
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Many features used in sleep staging are short-term, such as K-complexes and spindles. The
duration of these characteristics is usually only 0.5–1.5 s. Some overall features, such as LAMF, can
also be obtained by synthesizing short-term features. Therefore, in order to more effectively capture
short-term features, we divided the epoch into multiple windows and used CNNs to extract the
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features of the window. To avoid truncating a feature between two windows, some overlap was left
between the windows. In our experiment, the window length is 200 and the overlap length is 100,
so each epoch has 29 windows. The window feature learning model is detailed in Figure 4b. This
component consists of five convolution blocks and a global average pooling (GAP) layer [32]. Each
convolution block contains a one-dimensional convolutional layer, batch normalization layer [33], and
rectified linear unit (ReLU) activation layer [34]. The batch normalization parameters in the module are
momentum, set to 0.99, and epsilon, set to 0.001. The parameters of the convolution layer are shown in
Table 2.

Table 2. Convolutional layer parameters in the window feature learning component.

Module Number of Filters Kernel Size Stride Output Shape

Input - - - (200, 1)
Conv_1 64 5 3 (66, 64)
Conv_2 64 5 3 (21, 64)
Conv_3 128 3 2 (10, 128)
Conv_4 128 3 1 (8, 128)
Conv_5 256 3 1 (6, 256)

GAP - - - (1, 256)

Intra- and inter-epoch feature learning have the same model structure, which consists of positional
embedding [29], two identical attention blocks, and one GAP layer. They differ in their inputs:
intra-epoch feature learning uses window features with shape (29, 256) and inter-epoch feature learning
uses epoch features with shape (3, 256). The attention module has a structure similar to the Transformer
encoder [29], as shown in Figure 4c. Assuming that the input to the attention and feed-forward layers
is X = (x1, x2, . . . , xn)

T, xi ∈ R1×L, the operations of these two layers can be defined as follows:

Q = XWa + ba (1)

α = Softmax
(
Tanh

(
QXT

))
(2)

Attention(X) = αX (3)

FeedForward(X) = max(0, XWf1 + bf1)Wf2 + bf2 (4)

where Wa, Wf1, Wf2 ∈ Rd×d, ba, bf1, bf2 ∈ R1×d, weight dimension d is 256, and the dropout [35] and
layer normalization [36] parameters in this component are 0.1 and 0.001, respectively.

After the previous three components, we finally obtained the feature vector of the current epoch
with shape (1, 256). The model uses two fully connected layers as the classifier and will output each
stage class probability of the current epoch. The first fully connected layer contains the ReLU and
dropout layers. The second fully connected layer connects to the softmax layer, which normalizes the
output probability.

2.3. Training and Testing

2.3.1. Training Parameters

To reduce the impact of class imbalances and improve the model’s accuracy in identifying minority
classes, we used a class weighted cross-entropy loss function in training, defined as:

loss = βi ∗ yi ∗ log
(
ypred

i

)
. (5)

Weight βi corresponds to real category yi. In the sleep-edf experiment, the weights of the wake,
N1, N2, N3, and REM stages were 1.0, 4.0, 2.0, 2.0, and 2.0, respectively; in the sleep-edfx experiment,
they were 2.0, 4.0, 2.0, 1.0, and 2.0. We did not completely rely on the number of samples in each
category to set the parameters; we simply set the majority category to 1.0, intermediate categories to
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2.0, and the minority category to 4.0 to avoid overfitting in training. We used the Adam [37] optimizer
combined with a LookAhead mechanism [38], in which the initial learning rate was 1e−4, the learning
rate decay was 2e−4, and the gradient clip value was 0.1.

2.3.2. Testing Method

For the two datasets, which used different partitioning methods, we used different training and
testing methods. On the sleep-edf dataset, we divided the dataset into 70% training set and 30% test
set epoch-wise. The training set was trained with 100 epochs (the number of iterations on the entire
training set, which is different from sleep epochs) and the model performance was evaluated on the
test set. On the sleep-edfx dataset, which used the subject-wise partitioning method, we used the
leave-one-out method. That is, each training process used 19 subjects as a training set and tested the
remaining subject; this process was repeated 20 times to evaluate the model’s performance on the
entire dataset. Since there are more samples in the sleep-edfx dataset, each training consisted of only
35 epochs.

Since we do not use a validation dataset, the early stopping strategy was not used during training.
We used the ensemble method to improve the model’s generalizability and stability. The principle
underlying this method is that ensemble outputs are obtained by using multiple models to infer the
same input to get a final output, as shown in Equation (6), where Pi (Xt) is the stage probability vector
of model i for the input at time t, and yt is the final output stage. Here we save the parameters of the
last five epochs of the model during training to obtain multiple models.

yt = argmax
(∏

i∈Λ
Pi(Xt)

)
(6)

2.3.3. Performance Metrics

To comprehensively evaluate the model’s performance, we evaluated it per category and overall.
For each category, we calculated the precision, recall, and F1-score of the model, where the F1-score
is defined as in Equation (7). For the overall evaluation, we used the accuracy to obtain an intuitive
understanding of the model’s performance on the entire dataset. However, because the distribution of
each stage in the dataset is uneven, overall accuracy cannot reflect the model’s true performance. For
example, imagine a dataset with two categories, A and B, in which the proportion of A is 99%. Then,
even if the model incorrectly classifies all B as A, the model’s overall accuracy is still 99%. The negative
and positive proportions of some diseases in the population exist in similar proportions, meaning that
we cannot accept such classification results for clinical use. To better reflect the model’s performance
on imbalanced datasets, we used the macro average F1-score (MF1) to evaluate it. MF1 is defined in
Equation (8), with C = 5 to represent the number of sleep stage categories.

F1i = (precision + recall)/(2∗precision ∗ recall) (7)

MF1 = ΣC
i=1F1i/C (8)

3. Results

3.1. Model Performance

Table 3 shows the performance of our model on the sleep-edf dataset with epoch-wise partitioning.
Its overall accuracy is 93.7%, and its MF1 is 84.5. Table 4 shows the model’s performance on the
sleep-edfx dataset with subject-wise partitioning. Its overall accuracy is 82.8%, and its MF1 is 77.8,
which reached the inter-rater agreement (83%) among stages [39]. In these two experiments, the
accuracy of the wake, N2, N3, and REM stages were similar and relatively reliable; their F1-scores are
all greater than 80. In contrast, the classification accuracy of stage N1 is poor, significantly lower than
that of the other categories. Due to the small number of stage N1 samples, this problem is not reflected
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in the overall accuracy; however, the model’s poor performance in classifying stage N1 significantly
lowers the MF1. From the confusion matrix, we see that the wake stage is most likely to be misclassified
as the N1 and REM stages. Stage N1 and REM are rarely misclassified as stage N3, and stage N3 is
almost only misclassified as stage N2.

Table 3. Confusion matrix and overall performance on the sleep-edf dataset.

Stage Predictions Per-Class Metrics

Wake N1 N2 N3 REM Precision Recall F1

W 2388 33 6 1 5 99.1 98.2 98.6
N1 15 83 25 1 35 52.9 52.2 52.5
N2 2 28 1024 49 16 92.7 91.5 92.1
N3 2 0 44 336 1 86.8 87.7 87.3

REM 2 13 6 0 437 88.5 95.4 91.8

Overall accuracy: 93.7%, MF1 score: 84.5.

Table 4. Confusion matrix and overall performance on the sleep-edfx dataset.

Stage Predictions Per-Class Metrics

W N1 N2 N3 REM Precision Recall F1

W 7287 586 89 57 149 91.5 89.2 90.3
N1 279 1497 434 24 570 42.1 53.4 47.1
N2 259 846 14,596 1388 710 90.5 82.1 86.0
N3 39 31 586 5042 5 76.6 88.4 82.1

REM 103 598 422 69 6525 82.0 84.6 83.2

Overall accuracy: 82.8%, MF1 score: 77.8.

Figure 5 shows an example of the hypnogram on the first night of subject 6 from the sleep-edfx
database. The blue line is the sleep stage manually marked by human experts, and the red line is the
model’s prediction. The model has considerable reliability, but it is worth noting that the model is more
likely to make mistakes when sleeping transitions from one stage to another. We defined a transition
epoch as an epoch whose stage is different from the epoch before or after it, and then counted the data
of the first night of subject 6 in the figure below, where the accuracy of nontransition epochs is 96.1%,
and the overall accuracy of transition epochs is 57.4%.
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sleep-edfx database.

3.2. Visualization of Attention Weights

Figure 6 shows that the model uses the attention module to give different weights to different
signal regions. Signals with specific characteristics are given more weight, whereas regions with fewer
characteristics are given less weight. The blue line in the figure is the raw EEG Fpz-Cz channel signal,
and the red line is the weight corresponding to the signal. For the N2 and REM stages (Figure 6a,c),
the signal characteristics of different regions in an epoch differ, so the model gives different attention
according to the importance of each region. Intuitively, some regions with larger signal amplitudes
attract more attention. In stage N3 (Figure 6b), the signal exhibits slow-wave characteristics throughout
the epoch, so the model gives almost the same attention to all regions.
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Figure 6. Attention weights visualization of different stages. The blue line is the raw EEG signal and
the red line is the corresponding attention weights: (a) stage N2; (b) stage N3; (c) REM stage.

3.3. Ablation Analysis of Model Components

To explore the effectiveness of each model component, we used the same dataset and training
method to train and evaluate different combinations of window feature learning, intra-epoch attention
learning, inter-epoch attention learning, and weighted loss-based training. Each combination removed
one of the components. When removing window feature learning, the raw window signal was directly
used as input to the intra-epoch attention module. When removing the intra- or inter-epoch attention
module, the output of the previous module was directly connected to the subsequent GAP layer.
Table 5 shows the performance of different combinations. Taking the full model as the baseline, the
removal of any component will reduce the model’s MF1 metric. The removal of the window feature
caused the greatest decline in performance. After removing the weighted loss function, we found
that the model’s accuracy did not decrease, but that the MF1 decreased by 2.0 and 0.4 in the two
experiments, indicating that the weighted loss function plays an essential role in improving the model’s
accuracy in classifying the minority stage.

Table 5. Performance of different combinations of model components.

Window
Feature

Intra-Epoch
Attention

Inter-Epoch
Attention

Weighted Loss
Function

Overall Performance

Subject-Wise Epoch-Wise

Accuracy MF1 Accuracy MF1
√ √ √ √

82.8 77.8 93.7 84.5
×

√ √ √
76.7 70.5 83.5 68.2

√
×

√ √
81.3 76.3 92.3 82.2

√ √
×

√
82.0 76.9 93.1 83.7

√ √ √
× 82.8 75.8 93.8 84.1
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3.4. Comparison with Other Methods

Table 6 shows a comparison between our work and other methods in terms of overall accuracy,
MF1, and per-class F1-score. The comparison is based on experiments on sleep-edfx with subject-wise
partitioning and sleep-edf with epoch-wise partitioning. In both cases, our model achieved the best
results. In the subject-wise method, our model was better than other methods, except for stages N2
and N3; [26] achieved the highest accuracy on stages N2 and N3, but its F1-score for stage N1 was
only 33.2, which is the lowest among all methods. In the epoch-wise method, our model was better
than other methods in all metrics. The result shows that our model does not sacrifice the classification
accuracy of minority categories to improve the performance of majority categories.

Table 6. Performance of different methods on the sleep-edf and sleep-edfx datasets.

Methods Samples Per-Class F1-Score Overall Performances

Wake N1 N2 N3 REM Accuracy MF1

Sleep-edfx

Ref. [17] 37,022 71.6 47.0 84.6 84.0 81.4 78.9 73.7
Ref. [40] 37,022 65.4 43.7 80.6 84.9 74.5 74.9 69.8
Ref. [29] 41,950 84.7 46.6 85.9 84.8 82.4 82.0 76.9
Ref. [26] 46,236 89.8 33.2 86.7 86.0 82.6 82.6 74.2
Proposed 42,269 90.3 47.1 86.0 82.1 83.2 82.8 77.8

Sleep-edf

Ref. [19] 15,188 96.9 49.1 88.9 84.2 81.2 90.8 80.1
Ref. [41] 15,136 97.8 30.4 89.0 85.5 82.5 91.3 77.0
Ref. [25] 15,188 97.5 24.8 89.4 87.0 80.8 91.2 75.9
Proposed 15,188 98.6 52.5 92.1 87.2 91.8 93.7 84.5

4. Discussion

In recent years, many automated sleep stage classification methods based on deep neural networks
have used CNNs for feature extraction and vanilla RNNs or LSTM to capture temporal information.
These strategies have significantly improved sleep stage classification accuracy. In this study, we used
the sliding raw window signal as input to a CNN combined with multiple attention layers as the
epoch feature extractor, and used multiple attention layers instead of an RNN structure to ascertain the
temporal dependency between epochs. Our method achieved better overall classification accuracy
and better performance in minority categories than several state-of-the-art methods. In the feature
extraction stage, the CNN module can extract the features of each signal window well. As can be
seen from the results of the attention weight visualization component, the attention block can learn
that the model should give different attention to different windows based on the importance of each
signal window. When an epoch has prominent characteristics, the model should pay more attention
to significant areas, and when the characteristics of each signal window in the epoch are relatively
similar, the same attention should be given across the epoch. From the results of the module validity
analysis, we show that the multiple attention layers can play a role in processing temporal information
from multiple epoch inputs, and that the weighted loss function effectively balances the model’s
performance on the majority and minority stages.

In the future, we need to do the following work. First, in order to more accurately evaluate the
general performance of the automatic sleep staging classification method in actual clinical applications,
the model should be tested on additional independent external data, and transfer learning strategy
should be applied to improve the generalization of the deep learning model. Second, during manual
scoring, human experts combine EEG, EOG, EMG, and other signals to make a comprehensive
judgment. However, deep learning-based methods that directly use multichannel data as input have
not effectively improved classification accuracy, so we plan to use the attention mechanism employed
in this study on multiple channels to improve the model’s classification performance.
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5. Conclusions

In this study, we proposed a convolution- and attention-based neural network using a single EEG
channel to realize automated sleep stage classification. Compared to previous methods, we use the
CNN combined with an attention mechanism as a feature extractor, and use multiple attention layers
to replace an RNN architecture. The performance of the attention module is consistent with human
intuition when classifying sleep stages. Moreover, a weighted loss function played an essential role in
solving problems caused by sleep stage class imbalance. Without changing the model architecture and
training method, we demonstrate that our model can work well on different databases with different
data partitioning methods.
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