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Abstract

Hepatocellular Carcinoma (HCC) is one of the leading causes of cancer-associated mortality worldwide. However, the role of
epigenetic changes such as aberrant DNA methylation in hepatocarcinogenesis remains largely unclear. In this study, we
examined the methylation profiles of 59 HCC patients. Using consensus hierarchical clustering with feature selection, we
identified three tumor subgroups based on their methylation profiles and correlated these subgroups with
clinicopathological parameters. Interestingly, one tumor subgroup is different from the other 2 subgroups and the
methylation profile of this subgroup is the most distinctly different from the non-tumorous liver tissues. Significantly, this
subgroup of patients was found to be associated with poor overall as well as disease-free survival. To further understand the
pathways modulated by the deregulation of methylation in HCC patients, we integrated data from both the methylation as
well as the gene expression profiles of these 59 HCC patients. In these patients, while 4416 CpG sites were differentially
methylated between the tumors compared to the adjacent non-tumorous tissues, only 536 of these CpG sites were
associated with differences in the expression of their associated genes. Pathway analysis revealed that forty-four percent of
the most significant upstream regulators of these 536 genes were involved in inflammation-related NFkB pathway. These
data suggest that inflammation via the NFkB pathway play an important role in modulating gene expression of HCC
patients through methylation. Overall, our analysis provides an understanding on aberrant methylation profile in HCC
patients.
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Introduction

Hepatocellular Carcinoma (HCC) is ranked the fifth most

commonly diagnosed cancer in men and seventh in women [1]. It

is particularly prevalent in Asia, with a majority of the cases

diagnosed in China [2]. Presently, the molecular pathogenesis of

hepatocellular carcinoma remains elusive. Even though studies

have identified TP53 [3,4], CTNNB1 [5,6], and AXIN1 [7,8] to

be mutated in HCC, these events remain rare [9,10]. In addition

to genetic abnormalities, studies have begun to focus on epigenetic

changes in HCC patients as alternative mechanisms playing roles

in hepatocarcinogenesis. Aberrant DNA methylation is one such

example. In fact, in early single-gene analysis, tumor suppressor

genes including P16 [11,12], CDH1 and GSTP1 [13,14] were

found to be hypermethylated in HCC. With the advent of high

throughput technology, a few genome-wide methylation profiling

studies reported CpG dinucleotides to be differentially methylated

between tumors and adjacent non-tumorous liver tissues

[15,16,17,18,19,20,21], as well as between cirrhotic liver and

HCC [22,23]. Nonetheless, much remains to be studied with

regards to the role of aberrant methylation in hepatocarcinogen-

esis as we have only just begun to unveil the methylome of HCC.

The heterogeneity of the methylome amongst different tumor

samples is particularly important and is yet to be investigated.

In this study, we investigated the methylome of Asian HCC

patients by comprehensively profiling the methylation levels of 59

HCC samples from Singapore. We explored the feasibility of

subgrouping the tumors molecularly based on their methylation

profiles and determine if any of these subgroups can predict the

clinical prognosis of the patients. We also integrated data from
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both the methylation as well as the gene expression profiles to give

us a glimpse of the pathways affected by the deregulation of

methylation in HCC patients.

Materials and Methods

HCC samples
Fifty nine tumorous and adjacent non-tumorous liver tissues of

Hepatocellular Carcinoma patients were obtained from the

National Cancer Centre of Singapore (NCCS)/SingHealth Tissue

Repository with patients’ written informed consent. Tissue

samples were surgically resected, flash-frozen in liquid nitrogen

and stored at 280uC until use. All research protocols were

approved by the SingHealth Centralized Institutional Review

Board (CIRB; approval 2008/440/B).

DNA extraction and bisulfite treatment
Genomic DNA was extracted from patients’ tissue using

QIAamp DNA mini kit (Qiagen, Germany) according to

manufacturer’s protocol. Eight hundred nanogram of genomic

DNA was bisulfite converted using EZ-96 DNA methylation kit

(Zymo Research, USA) for Infinium array and Qiagen Epitect kit

(Qiagen, Germany) for pyrosequencing, according to respective

manufacturer’s protocol. Purified bisulfite-treated DNA was stored

at 220uC until use.

Methylation profiling
Methylation level of patient’s DNA was quantified using the

Infinium HumanMethylation27 BeadChip (Illumina, USA) ac-

cording to manufacturer’s manual. Replicate samples of one

subject were included as quality control for reproducibility of the

assay. The Infinium BeadChip contains 27,578 CpG sites,

encompassing 14,495 genes for interrogation. CpG probes with

detection p-value greater than 0.05 were removed from subse-

quent analysis as they were not significantly different from the

negative control probes and background noise. This array

interrogates the methylation status at ,97% of promoter regions

defined as 2 kb around the transcription start site. Methylation

values of CpG sites and their associated genomic characteristics

were obtained from the IlluminaH Genome Studio software

(Illumina, USA). Methylation levels were reported as b-values,

with a range from 0 to 1. A b-value of zero indicates a low level of

methylation, while a b-value close to 1 indicates a high level of

methylation. All BeadChip assays were processed at the Duke-

NUS Genome Biology Facility, Singapore. Data have been

deposited into the Gene Expression Omnibus (GEO) database,

under the accession number GSE57956.

Pyrosequencing
Pyrosequencing was used to validate the methylation profile

observations and was carried out according to manufacturer’s

protocol using the Pyromark Q24 machine (Qiagen, Germany). 20

out of the 59 patient samples were randomly chosen for validation.

Genomic DNA was first bisulfite modified according to Epitect kit

protocol (Qiagen, Germany) and its purified product was

subsequently amplified using Pyromark PCR kit (Qiagen,

Germany). The sequencing primers, biotinylated PCR primers,

paired primers and annealing temperature used in the PCR step

Table 1. Clinicopathological data for 59 HCC patients.

Parameters Available Data Variables n %

Age at diagnosis (Median = 65, range 35–85) 59 $65 years old 31 53

,65 years old 28 47

Gender 59 Male 53 90

Female 6 10

HBV status 59 Postive 36 61

Negative 23 39

Tumor size 59 $5 cm 33 56

,5 cm 26 44

Differentiation (Edmonson) 59 I 5 8.5

II 23 39

III 26 44

IV 5 8.5

TNM staging 58 1 32 55

2 16 28

3 10 17

Cirrhosis 58 Absent 37 64

Present 21 36

Tumor multifocality 55 Absent 45 82

Present 10 18

Tumor encapsulation 53 Absent 35 66

Present 18 34

AFP level 51 $100 ng/ml 36 71

,100 ng/ml 15 29

doi:10.1371/journal.pone.0104158.t001
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are listed in Table S1. The sequencing results were analysed and

exported by Pyromark CpG software (Qiagen, Germany).

Gene expression profiling
Gene expression profiling was carried out using RNA extracted

by Qiagen RNeasy mini kit (Qiagen, Germany) from 59 patients’

tissue samples using two different microarray platforms. The first

batch of twenty samples was profiled as described previously [24].

Briefly, five hundred nanograms of total RNA from each sample

were processed and hybridized to Agilent Whole Human Genome

Oligo Microarray according to manufacturer’s protocol (Feature

number: G4112A, Agilent Technologies, USA). Microarray

images were read out using Agilent Feature Extraction Software

(Agilent Technologies, USA). The remaining thirty nine samples

were assessed using Illumina Human WG-6 expression BeadChip

(Illumina, USA). Briefly, seven hundred and fifty nanogram of

total RNA from each sample was processed and hybridized to the

BeadChip according to the manufacturer’s manual. All BeadChip

assays were processed at the Duke-NUS Genome Biology Facility,

Singapore. Data have been deposited into the GEO database,

under the accession number GSE57957.

Real-time quantitative PCR
Observations obtained from expression profiling were validated

using Bio-Rad CFX96TM real-time PCR detection system (Bio-

rad, USA) according to manufacturer’s protocol. Primers and

annealing temperatures used in these validation assays are listed in

Table S2. Each assay consists of 5 ml of 2X MaximaTM SYBR

Green qPCR master mix (Fermentas, USA), 0.2 mM of forward

and reverse primers, and 1 ml of 5-times diluted cDNA as

template. Real-time PCR reactions were done in triplicates, and

threshold cycle numbers (Ct) were determined at the level that

showed the best kinetic PCR parameters. No-template control was

used as negative control, and melting curves were obtained to

confirm specificity of the PCR product. The 22DDCt method was

used to measure the relative quantification of a target gene [25].

Analysis of methylation data
b-values were first imported into the Partek Genomics Suite

(Partek Inc, USA) and then quantile normalized. CpG probes

located in sex chromosomes were excluded from the analysis to

avoid gender bias. Differentially methylated CpG loci between

tumors and adjacent non-tumorous tissues were identified using

analysis of variance (ANOVA) method, where p-values generated

were subjected to multiple test correction using Benjamini and

Hochberg (B-H) method. A CpG site is considered differentially

methylated when its false discovery rate (FDR) adjusted p-value is

less than 0.05 and change of b-value is greater than 0.1.

Hierarchical clustering of the 4416 differentially methylated

probes was performed using the Pearson correlation coefficient

as a distance metric and the average linkage agglomerative

method.

Analysis and integration of gene expression data
Raw data from Agilent and Illumina microarrays were log2-

transformed and subsequently loaded into R session. Annotation

packages, namely ‘‘lumiHumanAll.db’’ [26], ‘‘lumiHumanID-

Mapping’’ [27] and ‘‘hgug4112a.db’’ [28] were used to map

Figure 1. Clustering analysis of 59 HCC tumors reveals 3 subgroups. (A) Consensus matrix (B) 2D hierarchical clustering of 170 probes that
overlapped between 4416 differentially methylated CpG sites (between tumors and adjacent non-tumorous tissues) and 199 CpG loci that divided
tumors into three subgroups. Subgroups were labeled as Group-1 (red), Group-2 (blue), Group-3 (green) and adjacent non-tumorous tissues, NT
(white). Group A represents both Group-1 and Group-3, while Group B is Group-2. (C) Survival curves for the original 3 subgroups identified by CHC-
FS. (D) Survival curve for Group B versus Group A. P-value was calculated by generalised Wilcoxon method. OS, overall survival; DFS, disease free
survival.
doi:10.1371/journal.pone.0104158.g001
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array probes to accession numbers. Accession numbers between

the two arrays were matched and merged into a single table. To

ensure that the datasets generated from the two types of arrays are

comparable and can be analysed together meaningfully, batch

correction method [29] was performed to remove platform specific

effects (Figure S1A). We profiled two patient samples on both

arrays and used them for quality assessment of the dataset. As

evident in Figure S1B, mapped probes intensities from the two

microarray platforms are highly correlated (R2$0.93). Differen-

tially expressed genes between samples were identified based on

previously published method [30]. FDR adjusted p-value of less

than 0.05 and an absolute fold change of greater than 1.2 were

used as cut-offs for analysis. For genes with multiple probes, the

probe with the most significant difference was selected. DNA

methylation and gene expression data sets were merged using

Partek Genomics Suite (Partek Inc, USA) and their correlations

were measured using the Pearson correlation coefficient.

Consensus hierarchical clustering with feature selection
Consensus clustering, a resampling-based class discovery

method, is commonly used for clustering of gene expression data

[31]. In this study, a modified method called consensus

hierarchical clustering with feature selection (CHC-FS) [32] was

performed to identify HCC subgroups based on methylation

profiles of tumors. The R package ConsensusClusterPlus was used

to carry out CHC [33]. CHC applies hierarchical clustering on

80% of all the samples, which was repeated one thousand times,

using Pearson correlation as a distance metric between samples.

The frequency by which two tumors clustered together in one

thousand repeats was recorded as consensus index. Consensus

indices of each pair of samples were then visualized as consensus

matrix. A value close to zero or one will signify that a pair of

tumors almost never or always clustered together in 1000

iterations of clustering. To retain the probes that are more

informative towards the tumor subgroups, CpG probes (features)

with the most significant difference between subgroups were

selected by using a modified limma method [30] with FDR as

multiple test correction. Such feature selection improved clustering

stability. We repeated the analysis with the consensus k-means

clustering method with feature selection to validate the subgroups

found by CHC-FS.

Pathway and gene ontology analysis
Pathway and gene ontology analysis using Ingenuity Pathway

Analysis (IPA) software (IngenuityH Systems, www.ingenuity.com)

were performed on shortlisted genes. Biological functions and

pathways were deemed statistically enriched when the FDR

adjusted p-values were less than 0.05 in Fisher’s exact test. Z-

scores and p-values were used to predict potential upstream

regulators. Briefly, Z-score is calculated based on the vector of

gene expression in an input gene list. A positive Z-score indicates

that the upstream regulator is predicted to be ‘‘activated’’ as a

result of activation of downstream genes. A negative Z-score on

the other hand indicates that it is predicted to be ‘‘inhibited’’ as a

result of repression of downstream genes. P-value tests the

probability of the genes in the gene list being regulated by an

upstream regulator by chance.

Table 2. Univariate analysis of clinicopathological variables for overall survival (OS) and disease-free survival (DFS) in 58 patients
(one patient did not have survival information).

Parameters Variables OS DFS

HR (95% CI) p-value* HR (95% CI) p-value*

Age at diagnosis ,65 years old 1 0.23 1 0.68

$65 years old 2.6 (0.55–12.25) 0.84 (0.36–1.96)

HBV status Postive 1 0.95 1 0.97

Negative 0.96 (0.27–3.42) 0.99 (0.42–2.31)

Tumor size Lower quartile 1 0.006 1 0.021

Upper quartile 3.74 (1.45–9.65) 2.17 (1.13–4.20)

Differentiation (Edmonson) I, II 1 0.38 1 0.41

III, IV 0.57 (0.16–2.01) 0.70 (0.30–1.63)

TNM staging 1 1 0.034 1 0.025

2, 3 4.37 (1.12–17.05) 2.66 (1.13–6.27)

Cirrhosis Absent 1 0.067 1 0.062

Present 3.31 (0.92–11.89) 2.23 (0.96–5.17)

AFP level ,100 ng/ml 1 0.102 1 0.045

$100 ng/ml 3.02 (0.80–11.43) 2.67 (1.02–6.98)

Tumor encapsulation Absent 1 0.936 1 0.973

Present 0.95 (0.24–3.78) 1.02 (0.4–2.55)

Tumor multifocality Absent 1 0.887 1 0.754

Present 1.16 (0.14–9.36) 1.22 (0.36–4.18)

Group A 1 0.017 1 0.003

B 4.73 (1.32–16.91) 3.99 (1.61–9.86)

*p-values less than 0.05 were in bold.
doi:10.1371/journal.pone.0104158.t002
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Statistical analysis
Statistical tests and data visualization were performed using

either Partek Genomics Suite (Partek Inc, USA) or statistical

package in R (www.r-project.org). P-values less than 0.05 were

considered significant unless otherwise stated. Fisher’s exact test

was used to study the association between clinical variables and

tumor subgroups. Survival analysis was done using Kaplan-Meier

method with generalised Wilcoxon test. Prognostic factors were

evaluated based on Cox proportional hazards model.

Results

Characteristics of HCC samples
Fifty-nine HCC patients were recruited into the study and their

clinicopathological data is summarized in Table 1. Patients were

all Asian, with median age of 65. Among the tumor samples, 90%

of them were male. This is consistent with the report given by the

Singapore Cancer Registry [34], where HCC was more prevalent

in men. About 60% of the patients had been infected with

Hepatitis B Virus (HBV) confirming the observation from

epidemiological studies which reported HBV infection as a major

risk factor for HCC, especially in Asia [35]. Coefficients of

determination (R2) of methylation values within triplicates were

consistently 0.96 (Figure S2). Such high concordance was similarly

observed in other studies [17,22], thus confirming the reproduc-

ibility of the array.

Consensus hierarchical clustering reveals distinct tumor
subgroups in HCC

As there is more variability in the methylation profile amongst

the tumors of HCC patients compared to the adjacent non-

tumorous tissues, we explored if there are subgroups of patients

based on their methylation profile that can be correlated with

clinicopathological features. Consensus hierarchical clustering

with feature selection (CHC-FS) was thus performed on the top

5% most variable CpG probes within the 59 tumors. Three tumor

subgroups were identified as evident from the consensus matrix in

Figure 1A. K-means consensus clustering [36] confirmed the

result as it yielded similar subgroups (Figure S3). 199 probes

(features) were found to be sufficient in defining the subgroups

(Figure S4). Among 199 probes, 85% (170 CpG probes) were

found differentially methylated between tumors and adjacent non-

tumorous tissues. The genes associated with 20 of these 170 CpG

Figure 2. Methylation profiling of 59 HCC patients. (A) Hierarchical clustering of 4416 most significantly differentially methylated CpG probes
between tumor and adjacent non-tumorous tissues. (B) Volcano plot for DNA methylation profiles of 59 patients. Y-axis indicates the minus log10 of
p-value for each probe, and X-axis shows the mean methylation difference between tumor and adjacent non-tumor. CpG sites that were statistically
significant (FDR adjusted p-value,0.05) and had |Db|.0.1, were labeled in red. (C) Characteristics of differentially methylated CpG sites. Percentage
of significantly hyper- or hypo-methylated CpG sites located in CGI were compared against overall CpG sites in Infinium HumanMethylation27
BeadChip. (D) Top 10 biological functions that are most significantly enriched in our dataset using IPA. X-axis shows the minus log10 of FDR adjusted
p-value for Fisher’s exact test.
doi:10.1371/journal.pone.0104158.g002
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Figure 3. Validation of aberrantly methylated genes in tumors compared to adjacent non-tumorous tissues. Validation of methylation
data was done using pyrosequencing. T-test was used to test the difference between tumors and adjacent non-tumorous tissues. Correlation
between Infinium’s b-values and pyrosequencing’s percentage of methylation was measured using Pearson’s method. R2 is the squared value of the
Pearson correlation coefficient.
doi:10.1371/journal.pone.0104158.g003
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probes exhibited differential gene expression between the tumors

and adjacent non-tumorous tissues (Table S3).

As evident from the heat-map shown in Figure 1B, based on

hierarchical clustering, these 170 CpG probes alone can distin-

guish the 3 subgroups of tumors. The methylation profile of one

tumor subgroup, Group-2, was found to be the most distinctly

different from the non-tumorous liver tissues out of the 3

subgroups (Figure 1B). Although methylation should convention-

ally be inversely correlated with gene expression, however, gene

expression profiles were not able to distinguish these subgroups.

Tumor subgroup associated with poorer overall and
disease-free survival

As three subgroups of patients were identified based on their

methylation profile, we examined whether these subgroups are

correlated with clinicopathological characteristics or survival

potential. These tumor subgroups were found not to be statistically

associated with any of the clinicopathological parameters exam-

ined (p-value.0.05, Table S4). Survival analyses, however,

revealed that Group-2 patients consistently had worse overall (p-

value = 0.087) and disease-free survival (p-value = 0.11) compared

to the other subgroups, although the difference was not statistically

significant (Figure 1C). To evaluate if Group-2 patients have

poorer survival potential compared to the other groups, we

reanalysed the data, combining Group-1 and Group-3 patients

together to form Group A while Group-2 patients were renamed

to Group B. As evident in Figure 1D, Group B patients have

significantly poorer overall (p-value = 0.049) and disease-free

survival (p-value = 0.038) compared to all the other patients

(Group A). Univariate analysis further confirmed this observation.

Group B patients were found to have ,4 times increased risk of

death/morbidity compared to Group A (Overall survival: p-

value = 0.017; Hazard ratio = 4.73; 95% Confidence inter-

val = 1.32–16.9 and Disease-free survival: p-value = 0.003; Hazard

ratio = 3.99, 95% Confidence Interval = 1.61–9.86) (Table 2).

Differentially methylated CpG loci between tumors and
adjacent non-tumorous tissues

Differentially methylated CpG sites were identified between the

tumor and the adjacent non-tumorous tissues. Analysis of variance

(ANOVA), with FDR adjusted p-value of less than 0.05 was

employed to analyse the significance of differences between the

methylation profiles of tumors versus non-tumorous tissues. With a

minimum mean b-value difference of 0.1, 4416 CpG sites were

identified to be differentially methylated. Using hierarchical

clustering, these 4416 probes were able to clearly distinguish

tumors from non-tumorous tissues, except for one tumor tissue

which clustered together with non-tumorous tissues (Figure 2A).

Figure 4. Integrated analysis of methylation and gene expression in 59 HCC patients. (A) Hierarchical clustering of the 3185 most
significantly differentially expressed genes between tumors and adjacent non-tumorous tissues. (B) Starburst plot was constructed by plotting
transformed log10 p-value of differentially expressed genes (Y-axis) versus transformed log10 p-value of methylation difference (X-axis) between
tumor and adjacent non-tumorous tissues. Genes with FDR adjusted p-value,0.05 were labeled in black. Genes with absolute fold change .1.2,
difference in b-value greater than 0.1 and which met the statistical cut-off (FDR adjusted p-value,0.05) were labeled in red. Directional change of
expression and methylation are indicated by the black arrow head. Table at lower panel shows the percentage of genes with significant positive and
negative correlations between gene expression and methylation data. (C) Validation results for SH3YL1, CYB5R2, SPINT2 and GSTP1. Methylation and
gene expression data were validated by pyrosequencing and quantitative PCR respectively. T-test was used to compare the difference in methylation
or gene expression between two groups; Pearson correlation was used to measure association between pyrosequencing and Infinium data, and
between gene expression and methylation data. (D) Top network derived from the 536 aberrantly methylated and deregulated genes where NFkB
complex served as primary node. (E) Predicted upstream regulators from IPA. Eleven upstream regulators (including NFkB complex) were associated
with the NFkB pathway. Red spheres indicate genes that were upregulated in tumor; green spheres indicate downregulated genes in tumor
compared to adjacent non-tumorous tissues; grey boxes represent complexes and white spheres represent upstream regulators.
doi:10.1371/journal.pone.0104158.g004
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54% of the probes (2379 probes) were hypomethylated, while 46%

(2037 probes) were hypermethylated in tumors (Figure 2B, C).

Frequently methylated genes in HCC such as P16/CDKN2A

[11,12], CDH1 and GSTP1 [13,14] were also found to be

similarly hypermethylated in our tumor samples (Table S5).

Further characterization of these sites revealed that ,90% (p-

value = 0.004) of the hypermethylated probes were localized at

CpG islands (CGI) while only 27% (p-value,0.0001) of the

hypomethylated probes were found to reside within CGI

(Figure 2C) suggesting that hypermethylation tends to occur

primarily in CGI regions while hypomethylation tends to occur

outside CGI. Such distribution has been consistently observed in

other studies as well [17,22,37].

Ingenuity Pathway Analysis (IPA) was employed to further

elucidate the possible biological functions of the genes associated

with aberrant methylation. As shown in Figure 2D, genes

associated with aberrant methylation are primarily genes involved

in cell-to-cell signaling (FDR adjusted p-value = 1.28610215),

cellular movement (FDR adjusted p-value = 1.52610215), cellular

function and maintenance (FDR adjusted p-value = 7.88610211).

Detailed gene sets that are aberrantly methylated are listed in

Table S6.

Pyrosequencing confirms aberrant methylation
To validate results obtained from Infinium HumanMethyla-

tion27 BeadChip, an independent method, pyrosequencing, was

employed to determine the methylation status of two hypomethy-

lated (CYB11B1 and SPRR3) and seven hypermethylated

(SPDY1, TSPYL5, PKDREJ, ZNF154, TUBB6, CYB5R2 and

SH3YL1) genes. These genes were selected primarily based on

their statistical significance and availability of optimised primers

for pyrosequencing. As shown in Figure 3, pyrosequencing

successfully confirmed the aberrant methylation of these genes in

the direction observed on the Infinium BeadChip. To evaluate the

robustness of the analysis, TUBB6, which is ranked very low based

on significance (774th, FDR adjusted p-value,0.001), was

included in the validation. As evident from Figure 3, aberrant

methylation was clearly observed for TUBB6 by pyrosequencing

with a modest p-value of 0.002. Overall, b-values determined by

the Infinium BeadChip correlated well with data from pyrose-

quencing (R2 values range from 0.66 to 0.97, Figure 3).

Integrative analysis reveals that the NFkB pathway plays
a central role in modulating gene expression of HCC
patients through methylation

To elucidate the genes and pathways deregulated through

aberrant methylation, we integrated data from the methylation

profiles with those from the gene expression profiles. Using FDR

adjusted p-value of less than 0.05 and fold change of 1.2 as

threshold criteria, 3185 genes were identified to be differentially

expressed between the tumors and adjacent non-tumorous tissues

(Figure 4A). About 17% of these genes (536/3185 genes, Table

S7) were found to be associated with aberrant methylation. Among

the 536 genes, almost half of them showed inverse correlation with

methylation (44%, Figure 4B), consistent with the conventional

association between gene expression and methylation. The other

56% of the genes were positively correlated, suggesting that the

regulation of gene expression may be more complex and may

involve other epigenetic and non-epigenetic mechanisms [38,39].

Four potential tumor suppressor genes which were amongst the

top 15 significantly hypermethylated genes (based on FDR-

adjusted p-value) with corresponding down-regulated gene

expression were selected for further validation. Two of these,

GSTP1 [13,40] and SPINT2 [41,42] were previously reported

tumor suppressor genes which were hypermethylated in tumors

with corresponding down-regulated gene expression, while the

other 2 (CYB5R2 and SH3YL1) represent potential novel tumor

suppressor genes. Quantitative real-time PCR and pyrosequencing

successfully validated all four genes (Figure 4C). Liver cancer cell

lines expressing CYB5R2 were found to grow slower compared to

control cells (Figure S5).

The top biological functions associated with these aberrantly

methylated and deregulated genes were similar to those identified

for aberrantly methylated genes only as described earlier. Cellular

movement (FDR adjusted p-value = 5.17610212), cell-to-cell

signaling and interaction (FDR adjusted p-value = 7.8061027),

cellular function and maintenance (FDR adjusted p-val-

ue = 2.4861025) were similarly enriched in this dataset (Table

S8). Interestingly, the top network associated with these 536

aberrantly methylated and deregulated genes was found to have

NFkB as its primary node (Figure 4D). Notably, when we

investigated the potential regulators of these 536 deregulated

genes, the NFkB complex was again found to be the most

significantly enriched upstream regulator (44% or 11/25, p-

value,0.05) (Figure 4E, Table S9).

Discussion

Genome-wide DNA methylation profiles (GWMP) may serve as

a promising useful tool to subtype tumors for correlation with

clinical characteristics and/or outcomes. Thus far, GWMP has

been successfully employed to identify subgroups of breast cancer

[36] and glioma [43] patients with different survival outcomes.

However, GWMP has yet to be employed to identify subgroups of

HCC patients.

In this study, GWMP was employed to identify a subgroup of

HCC patients (Group B) who have worse disease-free as well as

overall survival compared to the other patients. Notably, several

genes such as ALX4 [44], CHD5 [45], MYOD1 [46], NEU-

ROG1 [47], and RASSF5 [48], whose methylation profile

distinguishes this group of HCC patients from the other HCC

patients, were previously reported to be similarly hypermethylated

and associated with poor prognosis in colorectal cancer (Table S3).

Our data is consistent with the multistep process of HCC where

methylation events accumulate as the disease progresses [49,50].

All 170 methylation probes of Group B patients with poorer

disease-free and overall survival were found to be distinctly

different from the methylation profiles of non-tumorous liver

tissues. On the other hand, patients in Group A have subsets of

170 methylation probes with similar methylation profile as the

non-tumorous tissues, thus leading to better disease-free and

overall survival profile. Hence, GWMP may supplement existing

strategies in the molecular characterization of HCC to classify

groups of patients with different prognostic outcomes.

There are currently numerous studies examining CpG sites

which were differentially methylated between the tumor and

adjacent non-tumorous tissues in HCC patients (please see review

[51]). However, these studies do not integrate GWMP with gene

expression profiles to identify genes and pathways that are

deregulated through aberrant methylation. Integrating methyla-

tion with gene expression, we found that cellular movement and

cell-to-cell signaling and interaction were highly enriched among

genes that were deregulated by aberrant methylation.

Notably, the top network associated with aberrantly methylated

and deregulated genes, as well as potential regulators of these

aberrantly methylated and deregulated genes were centered on the

NFkB complex. As the NFkB pathway was found to be a pivotal
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link between inflammation and cancer [52] and HCC is a typical

inflammation-associated cancer [53], our data suggest that the

inflammatory process during hepatocarcinogenesis may deregulate

genes associated with the NFkB pathway through aberrant

methylation. This is consistent with the observation that aberrant

CpG methylation is often seen during chronic inflammation and in

precancerous lesions, suggesting that aberrant methylation may be

an early event in tumorigenesis which could serve as a useful

tumor biomarker [54]. A recent study reported that hepatitis virus

infection could activate innate immune response and lead to

alterations in DNA methylation in chimeric mice with humanized

livers [55]. NFkB was also found to be induced in these hepatitis-

infected samples [55]. It may thus be worthwhile to further explore

the link between inflammation, aberrant methylation and the

NFkB pathway to facilitate the rational design of therapeutic

strategies targeting methylation and the NFkB pathway for HCC

treatment.

Conclusions
In conclusion, genome-wide methylation profiling facilitated the

identification of a subgroup of HCC patients with poorer

prognosis which can potentially serve as a prognostic biomarker.

Integration of genome-wide methylation and gene expression

profiles highlighted the NFkB pathway as the central pathway

associated with aberrant methylation paving the way for further

elucidation of the link between inflammation, methylation and the

NFkB pathway to facilitate the development of novel therapeutic

strategies for HCC.

Supporting Information

Figure S1 Quality assessment of batch correction
between two microarrays. (A) PCA plots for tumor (T) and

adjacent non-tumorous tissues (NT) before (top) and after (bottom)

batch correction. The variance caused by difference in profiling

microarrays was removed through batch correction. (B) Correla-

tions of batch corrected and quantile normalized log2 intensities of

the same patient sample profiled with different microarrays. R2

values range from 0.93 to 0.96. This indicates that although

different microarrays were used, the biological variance within the

same sample was still preserved after batch correction.

(TIF)

Figure S2 Quality assessment of reproducibility of
Illumina HumanMethylation27 BeadChips. Sample 43T

was repeated 3 times and correlations between replicates were

measured. R2 is the squared value of the Pearson correlation

coefficient.

(TIF)

Figure S3 Heatmap of K-means consensus clustering
matrices after feature selection. Three subgroups were

observed.

(TIF)

Figure S4 Hierarchical clustering of tumors using the
probes identified in CHC-FS. 3 subgroups were identified and

labeled as Group-1 (red), Group-2 (blue) and Group-3 (green).

Group A represents both Group-1 and Group-3, while Group B is

Group-2.

(TIF)

Figure S5 Characterization of CYB5R2 in liver cell
lines. Experimental validation of (A) methylation levels, (B)

transcript levels, (C) protein levels of CYB5R2 in respective liver

cell lines. (D) Cells infected with adenoviral vector carrying control

and CYB5R2 gene were monitored under microscope and images

were captured every 2 hours to track their proliferation rate based

on the surface area of zsGreen fluorescence. Y-axis is the

difference in zsGreen area between time zero and the time when

the next image was taken; X-axis is the number of hours after 24

hours post infection. *t-test, p-value,0.05. (E) Representative cell

images at 24 and 48 hours post infection.

(TIF)

Table S1 Primers used in pyrosequencing.
(PDF)

Table S2 Primers used for quantitative real-time PCR.
(PDF)

Table S3 170 differentially methylated CpG loci that
were selected in Consensus Hierarchical Clustering with
feature selection. 20 out of 170 genes have differential

expression between tumor and adjacent non-tumorous tissues.

(PDF)

Table S4 Correlation between tumor subgroups and
clinicopathological parameters in HCC samples. Fisher’s

exact test was used to test the correlation between tumor

subgroups and clinicopathological parameters.

(PDF)

Table S5 4416 differentially methylated CpG loci be-
tween tumors and adjacent non-tumorous tissues.
(PDF)

Table S6 IPA results for top biological functions
enriched in differentially methylated dataset.
(PDF)

Table S7 536 genes with aberrant methylation and
associated change of expression.
(PDF)

Table S8 IPA results for top biological functions
enriched in 536 genes with differential methylation and
associated expression change.
(PDF)

Table S9 Potential upstream regulators predicted by
IngenuityH knowledge base. Z-score was computed based on

the direction change of gene expression in input dataset. Overlap

p-value tests the probability of having the targets of upstream

regulator in our input dataset by chance.

(PDF)
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