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Abstract

The human adenovirus 40 (Ad40) is a promising tool for gene therapy of intestinal diseases. Since the production of Ad40
in vitro is extremely inefficient, chimeric Adenovirus 5/40S vectors carrying the Ad40 short fiber on the Ad5 capsid have
been developed. However, Ad5/40S productivity is low. We hypothesized that low productivity was a result of inefficient
viral entry into producer cells during amplification. To this end, we have developed a production strategy based on using
211B cells (expressing Ad5 fiber) during amplification steps, while Ad5/40S infectivity is further improved by adding
polybrene during infections. In addition, the optimal harvesting time was determined by evaluating the Ad5/40S viral cycle.
The developed production strategy significantly reduces the number of amplification cycles and duration of the process.
Finally, to further facilitate Ad5/40S production, 211B cells were adapted to suspension thus allowing to easily upscale the
production process in bioreactors.
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Introduction

Human Adenovirus 40 serotype (Ad40) is an enteric adenovirus

of the subgroup F. This adenoviral serotype is an important

etiologic agent of gastroenteritis in children [1–3]. Due to its

enteric tropism, vectors derived from Ad40 constitute interesting

candidates for gene therapy of intestinal diseases such as Crohn’s

Disease. Initial attempts to grow Ad40 in HeLa or other cell lines

commonly used to isolate and propagate intestinal viruses from

patients stool samples were unsuccessful. This led to the idea that

Ad40 viruses were unable to grow in vitro. However, subsequent

experiments revealed that Ad40 could grow in some cells, for

instance HEK293 cells, enabling its propagation in the laboratory

[4–6]. Although the Ad40 is able to infect HEK293 cells, its

production in vitro is very inefficient, resulting in low titers in

comparison to other adenoviral serotypes [7,8].

On the other hand, vectors derived from adenovirus type 5

(Ad5) are widely used in human clinical trials (Journal of Genetic

Medicine Website, www.wiley.co.uk/genmed/clinical). Ad5 first

interaction with the host cell is through the binding of the fiber

protein and the coxsackievirus and adenovirus receptor (CAR).

Since CAR is widely distributed on the cell surface of many cell

types, Ad5 vectors display a broad tropism [9–12]. In order to

restrict vector tropism, chimeric Ad5 vectors containing the fiber

protein of other adenoviral serotypes have been developed [13,14].

In fact, the possibility of infecting host cells by CAR-independent

entry pathways is an interesting tool to limit the characteristic

broad tropism of Ad5 viruses [15]. For instance, it has been

described that Ad40 contains two different fibers: a long one

(F40L) and a short one (F40S) [10,16,17]. Only the long fiber

binds CAR while the short fiber is believed to be responsible for

the enteric tropism [18]. In this regard, the generation of chimeric

Ad5/40S mutants (Ad5 capsid with the F40S protein) has shown

to ablate CAR binding while conferring a novel tropism to Ad5

viral vectors, and thus, intravenous administration of Ad5/40S

vectors resulted mainly in liver and spleen transduction, as shown

by the presence of viral DNA and transgene expression in these

organs, while the virus was hardly detected in the intestine [15].

However, and contrary to the reduced affinity of Ad5/41S vectors

for human intestinal epithelium [19], when given directly into the

gastrointestinal tract by rectal administration in vivo, chimeric

Ad5/40S vectors mantain the enteric tropism [20].

Interestingly, Lu and collaborators [21] have recently reported

efficient amplification of Ad41 vectors (another enteric adenovirus

of the subgroup F) by using a new producer cell line expressing

E1B55K from Ad41. However, although genomes from both,

Ad40 and Ad41 viruses have been sequenced, the oncogenic

potential of their proteins is unknown. Since there is leaky

expression from viral genes from recombinant adenovirus vectors

[22], the use of Ad40 and Ad41 as gene therapy vectors in humans

should be restricted for biosafety reasons.
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To address both, the difficulty of Ad40 vector production and

the biosafety concerns, the use of chimeric Ad5/40S vectors,

combining the capsid structure of fully characterized Ad5 vectors

and enteric tropism mediated by the F40S fiber proteins, is

attractive. Various production protocols to amplify chimeric Ad5

vectors including the short fiber proteins F40s and F41S have been

reported [7,8] [23–25] Unfortunately, although the production of

the chimeric adenoviral vector Ad5/40S in vitro is more efficient

than that of wild type Ad40, the purity and the productivity per

cell is still not sufficient to achieve the desirable viral titres. In this

work, we describe the development of a new production protocol

that allows fast and scalable production of Ad5/40. The pro-

duction strategy has been optimized by i) studying the Ad5/40S

viral cycle to determine the optimal harvesting time, ii) using the

211B cell line for vector amplification, iii) adapting the producer

cell line to grow in suspension culture and low serum media, iv)

improving infection conditions using polybrene, v) reducing the

production time.

Results

Adaptation and Characterization of 211B Cells to
Suspension Culture
In order to address the inefficient infection of Ad5/40S vectors

in HEK-293 cells, we selected 211B as producer cells. This cell line

derives from HEK-293 cells and constitutively expresses the fiber

protein from Ad5 (F5) [26,27]. Ad5/40S production in 211B cells

will generate mosaic virions containing both F5 and F40S fiber

proteins. Fiber mosaicism should improve the infectivity of the

Ad5/40S virions during the amplification cycles by allowing

a more efficient entry mediated by CAR-F5 interaction on 211B

producer cells.

Adherent 211B cells were routinely cultured in DMEM

(Dulbecco’s Modified Eagle’s Medium) media supplemented with

10% fetal bovine serum (FBS). To allow scalability of the process

[28], we adapted the 211B cell line to grow in suspension and low

protein medium. To this end, culture medium DMEM containing

10% FBS was sequentially substituted by a serum-free growth

medium (SFMII) in the presence of a low dose of FBS (1% FBS or

0.5% FBS) or no FBS at all. Addition of 0.5% FBS allowed better

cell growth and viability in comparison with cultures grown in the

absence of FBS, while addition of 1% of FBS led to the formation

of large cell aggregates (data not shown). The cells newly adapted

to low-protein suspension conditions were named 211BS. 211BS

cells were transferred into shake flasks at a density of 76105 cells/

ml and kept in suspension at 110 rpm. After 18 serial passages,

adapted cells grew individually or in small aggregates of 4–5 cells,

and up to a density of 2.56106 cells/ml.

To determine the kinetics of growth of 211BS cells, cells were

seeded in triplicate at 3.56105 cells/ml. Viability and cell density

were evaluated daily. As observed in the growth curve (Figure 1A),

the viability of 211BS cells was over 80% during exponential cell

growth. Cells grow to high densities (,2.56106 cells/ml) in batch

mode. The m (growth constant) was 0.0148 (Figure 1B) implying

a duplication time of 46.83 hours.

Once 211BS cells were adapted to grow in suspension and low

serum concentrations (0.5%), we proceeded to demonstrate that

the mosaic-chimericAd5/40S vectors produced with these cells

(displaying both F40S and F5 fibers on the capsid) could infect cell

lines expressing the CAR receptor better, and thus produce better

yield when propagated on such cells. For this purpose, 293F cells

(CAR-expressing cells) were infected with different concentrations

(30, 100 and 300pp/cell) of Ad5/40S vectors (Figure 2). Results

have shown that mosaic/chimeric Ad5/40S generated in 211BS

cells infected 4 to 5 times more the 293F cells (p-value ,0.001)

than chimeric Ad5/40S, regardless the condition used, indicating

that the presence of Ad5 fibers helps mosaic vectors to infect 293F

cells.

Polybrene Improves Chimeric Adenovirus 5/40S Infection
in 211BS Cells
Cationic polymers such as polybrene are well known enhancers

of retrovirus and lentivirus vectors gene transfer efficiency [29–31].

Polybrene increases retrovirus transduction by enhancing re-

ceptor-independent virus adsorption on target cell membranes.

We hypothesized that addition of polybrene during amplification

cycles would also facilitate the entry of Ad5/40S particles into

producer cells. In fact, cationic polymers like polybrene were also

reported to interact with negatively charged Ad5 capsids

facilitating their interaction with the cell membrane [32]; [33].

However, when adenovirus particles have a more neutral charge,

as it happens to CAV-2, cationic molecules (including polybrene)

do not interact well to virions [34]. Of note, the tail and shaft

domains of the F40S protein have a high content of basic amino

acids, which results in a pI of 9.1 compared to a pI of 6.1 for Ad5

fiber protein (pI values were calculated by the EMBL WWW

Gateway to Isoelectric Point Service). Based on the above, the

overall negative charge of Ad5/40S particles should be lower than

that of Ad5 particles. Therefore, it was unclear whether polybrene

would have an effect on the chimeric adenovirus entry to target

cells.

To test the effect of polybrene on chimeric adenovirus infection,

293F and 211BS cells were infected with increasing MOI’s of

Ad5/40S-CMV-GFP, in presence or absence of polybrene (9 mg/
ml or 0 mg/ml, respectively). The percentage of infected cells and

the level of the GFP expression per cell were determined by FACS

analyses. As observed in Figure 3, polybrene significantly enhances

both, the percentage of infected 293 and 211BS cells (A-D, E-P)

and the gene expression per cell (C, D), while cell viability seems to

be not affected.

Study of Ad5/40S Viral Cycle in 211BS
Ad5/40S produced by 211BS cells are expected to have both,

F5 and F40S proteins (mosaic-chimeric Ad5/40S) whereas Ad5/

40 produced by 293F cells should only display F40S on their

surface (chimeric Ad5/40S) (Figure 4A). In order to maximize

productivity of Ad5/40S, we envisioned a production scheme in

which amplification of the chimeric vector is performed in 211BS

(Figure 4B). However, in order to obtain pure chimeric (not

mosaic) Ad5/40S particles, the last step of amplification needs to

be performed in 293F cells.

We had previously reported that chimeric adenovirus Ad5/40S

had a viral cycle between 48 and 60 hours [20]. To more

accurately determine the optimal harvesting time, a more precise

analysis of Ad5/40S viral cycle was performed. In this study, viral

titers were measured every 4 hours between 44 and 64 hours post-

infection. In addition, we worked at a low MOI (0.5) to avoid

saturation and displacement of the curve associated to the entry of

several particles per cell, which may accelerate the virus cycle. As

it can be observed in Figure 5, at a MOI of 0.5, the main

production peak is at 56 hours post-infection.

Vector Ad5/40S Production with the Optimized Protocol
To confirm the strength of the developed production strategy,

suspension growing 211BS cells were infected with Ad5/40S-

CMV-GFP at a MOI of 1 in the presence of polybrene. At 56

hours post-infection cells were harvested, lysed by freeze-thaw and

Amplification of Chimeric Ad5/40S in Suspension

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e42073



cell debris was removed by centrifugation. The resulting lysate was

used to infect 46108 293F cells. Fifty six hours post-infection, cells

were harvested and centrifuged to separate cell pellet and

supernatant. Since the Ad5/40S-CMV-GFP virus contains the

Death Protein (ADP) gene, which may facilitate virus release into

the supernatant by cellular lysis [35], supernatants were concen-

trated by ultrafiltration using a hollow fiber utrafiltration system.

Subsequently, adenovirus particles from both, the cell pellet and

the concentrated supernatant were purified by CsCl gradients

followed by gel filtration. Viral titers in physical particles and

infectious particles have an average yield of 0.8561012 pp and

3.86109 IU, for the original protocol, and 1.7561012 pp and

6.96109 IU, for the optimized protocol (Table 1), with an average

productivity around 250pp/cell. As observed in Figure 4C, the

number of viral amplification steps required is considerably lower

in the optimized protocol vs. the original protocol; which translates

into the reduction of consumables and time needed for vector

production.

Discussion

One of the key factors for successful gene therapy is to have

a vector that efficiently and selectively infects target cells, thereby

minimizing the side effects associated with transgene expression in

unwanted cells. Previous results reported by our group showed

that chimeric Ad5/40S vectors display a marked intestinal tropism

likely attributable to the Ad40 short fiber protein [20]. These

chimeric vectors could be used for gene therapy of diseases

affecting the gastrointestinal tract. However, Ad5/40S vectors

cannot be efficiently amplified, probably because of the absence or

low abundance of the primary receptors for F40S in the permissive

producing HEK-293 cells, resulting in poor virus production.

Figure 1. Characterization of 211BS cells. (A) Cell growth curve and viability of suspension-adapted 211BS cells. (B) Duplication time of the
suspension-adapted cell line.
doi:10.1371/journal.pone.0042073.g001
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In order to improve Ad5/40S viral titers, we have designed an

optimized production strategy using 211B producer cells. These

cells constitutively express F5, and therefore upon infection with

Ad5/40S, fiber mosaic virus particles (displaying both F5 and

F40S on their capsids) are formed. The 211B cell line was

originally used to retarget non-Ad5 or fiberless-Ad5 particles in

order to easily and rapidly change their tropism in vivo [26]. In

this work, we have used this retargeting strategy to facilitate re-

entry of the mosaic-chimeric Ad5/40S virions during amplifica-

tion steps, through interaction between the F5 fiber protein of the

virus capsid and the CAR receptors on 211B producer cells. An

attractive aspect of this dual strategy is its flexibility, since it can be

used to amplify any chimeric Ad5 vector by substituting the F5

protein with the fiber protein from another serotype, especially

when the chimeric vector does not efficiently infect permissive

HEK-293 cells.

To further facilitate the entry of Ad5/40S particles into

producing cells we have also added polybrene during amplification

cycles. One of the major advantages of polybrene is that it can be

added directly to the media, as it does not require previous

formation of complexes with pure adenovirus particles, thus

avoiding the need for purification of the vector during the

amplification process. Of note, polybrene-mediated enhancing

effects on adenovirus infection are only observed when using

Freestyle serum-free medium, whereas SFMII medium completely

blocks the effect of polybrene (data not shown). Interestingly, the

same trend is observed with other cationic molecules such as

polyethilenimine (PEI) used for transient transfection [36],

suggesting the presence of compounds in SFMII serum-free

medium that may counteract with cationic polymers (i.e.

negatively charged polymers such as heparin or dextran sulphate

typically added to commercial media to keep cells in suspension).

Last we have also analyzed the viral cell cycle of chimeric Ad5/

40S vectors and determined 56 hours after infection as the most

appropriate time to stop the production process and harvest the

virus.

In summary, a new chimeric Ad5/40S production procedure

has been developed in this work. The strategy is based on the use

of cultures in suspension to allow the scalability of the production

process, as well as, on increasing chimeric Ad5/40S infectivity

towards producer cells and consequently, allowing a higher

productivity per cell, from an initial amplification factor per step

Figure 2. Analysis of the infection efficiency of mosaic-chimeric Ad5/40S-CMV-GFP vector. Percentage of GFP expressing cells (A); and
quantification of relative GFP expression per cell (B). The infection was performed in cells 293F using 3 different concentrations of the Ad5/40S
vectors (30, 100, 300pp/cell). Values presented are shown as mean 6 Standard Deviation using n= 8 for each condition. Statistical comparisons
between groups were made by two-ways ANOVA with a post hoc Bonferroni test for multiple comparisons (*** p-value ,0.001).
doi:10.1371/journal.pone.0042073.g002
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Figure 3. Analysis of the infection efficiency of Ad5/40S with polybrene. Percentage of Ad5/40S-CMV-GFP infection in 293F (A) and 211BS
cells (B) using two different doses (MOI 0.05 and 0.5. Quantification of the GFP expression (RFU/cell) in 293F (C) and 211BS cells (D). E-P: GFP
expression of Ad5/40S in 211BS and 293F infected cells in presence (E–J) or absence (K–P) of polybrene. Results are the average two independent
experiments performed in triplicate. Statistical comparisons between groups were made by two-ways ANOVA with a post hoc Bonferroni test for
multiple comparisons (*** p-value ,0.0001; * p-value ,0.05).
doi:10.1371/journal.pone.0042073.g003
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of 63–4 up to 620–25 times as observed now. This allows

reducing the number of amplification steps, which carries several

advantages such as minimization of total processing time of virus

production, reduction of consumables, and most importantly, it

decreases the risk of generating replication competent virions by

recombination of vector sequences with E1 sequences present in

the cells used for production.

Materials and Methods

Virus Stock Generation
Ad5/40S-GFP-CMV was obtained from Dr. Hirofumi Hamada

(Sapporo Medical University). Adherent HEK-293 cells (Q-

BIOgene, Montreal, Canada) were grown in DMEM medium

(E15-810, PAA laboratories, Linz, Austria) supplemented with

10% fetal bovine serum (FBS) (PAA laboratories, Linz, Austria)

and Penicillin (100 U/ml)/Streptomycin (0,1 mg/ml) (PAA labo-

ratories, Linz, Austria). Viral stocks were generated by infection

and sequential amplification in HEK 293 cell cultures grown in

15-cm plates until 30 plates were reached. Virus was purified by

two consecutive rounds of CsCl isopycnic density ultracentrifuga-

tion and desalted using a Sephadex PD-10 column (Amersham

Biosciences, Uppsala, Sweden) as previously reported [37]. In

order to facilitate cloning of therapeutic genes into the Ad5/40S

genome, we have adapted the procedure in bacteria and

constructed a new plasmid (pER F40S) carrying the Ad5 genome

but with the F40S gene instead of the F5 gene.

211B Adaptation to Suspension Culture
Adherent 211B cells [27] were cultured in DMEM supplemen-

ted with 10% FBS and Penicillin (100 U/ml)/Streptomycin

(0,1 mg/ml). For adaptation to suspension culture and low protein

conditions, this culture medium was gradually substituted

throughout 8 culture passages with SFMII (11686-029, GIBCO),

supplemented with 4 mM Glutamine (PAA laboratories, Linz,

Austria), Penicillin (100 U/ml)/Streptomycin (0,1 mg/ml) and 1%

Pluronics (24040-032, GIBCO). 211B cells in suspension (termed

211BS) were then transferred to 125 mL polycarbonate shake

flasks at a density of 86105 cells/ml and kept in suspension by

agitation in an orbital shaker at a speed of 110 rpm, 37uC and 5%

CO2.

Growth kinetics of 211BS cells was evaluated in two in-

dependent experiments from passages 20 and 30. Cells were

seeded at a density of 3.56105 cells/ml in shake flasks containing

20 ml of cell suspension. The experiment was run in triplicate.

Viable and dead cells were counted daily for a period of 12 days.

The specific growth constant (m) corresponds to the slope of the

fitted line during the exponential growth phase. The cell culture

doubling time (td) was calculated as td = ln 2/m.

Effect of Polybrene on Ad5/40S Infectivity
211BS cells were seeded at a density of 16106 cells/ml in a final

volume of 1 ml per well in 24-well plates and infected with Ad5/

40S-CMV-GFP at two different MOI’s (0.5 or 0.05). Control cells

were not infected. Infections were performed in the presence or

absence of polybrene (9 mg/ml, as previously described [32,38]

(n = 4) in Freestyle serum-free medium (12338-018, Invitrogen)

supplemented with Penicillin (100 U/ml)/Streptomycin (0,1 mg/

ml) and 1% Pluronics (24040-032, Invitrogen). Cell cultures were

supplemented with 0.5% FBS 4 hpi and harvested 30 hpi. After

fixation with 2% paraformaldehyde, the percentage of GFP

expressing cells was determined by FACS analysis (FACSCanto,

Cytometry Service of Institute of Biochemistry and Biotechnology

of UAB).

Analysis of Ad5/40S cell cycle in 293 F cells
293F cells (11625-019, Invitrogen, Paisley, UK) were grown to

a density of 16106 cells/ml in 125 mL shake flasks and infected

Figure 4. Diagrams of the chimeric amplification process. (A) Comparative diagram of Ad4, Ad40, chimeric Ad5/40S and mosaic-chimeric Ad5/
40 vectors. N.T: Not Tested. (B) Amplification strategy of Ad5/40S vectors. The first amplification step is performed by infecting 211BS cells with the
chimeric Ad5/40S and polybrene. Intermediate steps are performed also in 211BS cells by using mosaic-chimeric Ad5/40S and polybrene. Last step is
performed in 293F cells to obtain chimeric Ad5/40S vectors. (C) Comparative diagram of duration and cell-scale.
doi:10.1371/journal.pone.0042073.g004

Figure 5. Virus cell cycle of mosaic-chimeric Ad5/40S vectors. 211BS cells were infected with Ad5/40S-GFP at MOI = 0.5. Samples were
collected every 4 hours between 44 h and 64 h post-infection. Productivity is measured in total infection units produced per 106 cells.
doi:10.1371/journal.pone.0042073.g005
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with mosaic-chimeric Ad5/40S at a MOI of 0.5. The culture

medium was replaced with fresh medium 8 hpi. Cells were

transferred to 6-well plates (2 ml per well) and maintained at

a speed of 110 rpm at 37uC and 5% CO2. At various points post-

infection, cells were harvested (n = 5) and frozen at -80uC. Cell
pellets were lysed by 3 freeze-thaw cycles and lysates titered. At 48

hours cells were fixed with 2% paraformaldehyde and the

percentage of GFP expressing cells was assessed by FACS analyses.

Vector Production Using the Optimized Protocol
211BS cells were grown to a density of 16106 cells/ml in

125 mL shake flasks (25 ml working volume) in Freestyle serum-

free media supplemented with Penicillin (100 U/ml)/Streptomy-

cin (0,1 mg/ml) and 1% Pluronics. Cells were infected with Ad5/

40S-CMV-GFP at a MOI of 1. The infection was performed in

presence of polybrene (9 mg/ml). Cell cultures were supplemented

with 0.5% FBS 4 hpi and the percentage of GFP positive cells was

estimated by fluorescence microscopy 30 hpi. Cell cultures were

harvested 56 hpi and frozen at –80uC. Cells were lysed by 3

freeze-thaw cycles, centrifuged at 16206g for 5 min to remove cell

debris.

The last amplification cycle was performed in 293F cells grown

to a density of 16106 cells/ml in 1L-shake flasks (200 ml working

volume) in Freestyle serum-free media supplemented with

Penicillin (100 U/ml)/Streptomycin (0,1 mg/ml) and 1% Pluro-

nics. Cell cultures were infected by adding the cell lysate from the

previous amplification step. The infection was performed in

presence of polybrene (9 mg/ml). Cell cultures were supplemented

with 0.5% FBS 4 hpi and harvested 56 hpi by centrifugation at

1806g during 5 min. The cell pellet was resuspended in 20 mL of

supernatant and the remaining supernatant (,190 ml) was stored

separately at –80uC. The latter was concentrated down to 20 ml

using a Midjet system (56-4110-25, Amersham Biosciences Corp.,

Westborough, MA, USA). The cell pellet was lysed by 3 freeze-

thaws cycles, cell debris was removed by centrifugation at 1150 xg

during 5 min and mixed with the previously concentrated

supernatant. The crude viral stock was purified by double CsCl

gradient, and chromatography using a molecular exclusion

column as described above.

Titration of Viral Physical and Infectious Viral Particles
Final purified viral stocks titers (physical particles/ml) were

determined by optical density at 260 nm (1 OD260 unit = 161012

particles/ml), and infectivity (infectious units/ml) was measured by

end-point dilution assay [39,40]. Briefly, end-point dilution assay

was performed by infecting HEK-293 cells with serially diluted

virus samples in triplicate in the presence of polybrene (9 mg/ml).

The number of transgene (GFP) expressing cells was determined

48–72 hpi by fluorescence microscopy.

Acknowledgments

The authors wish to thank Dr. Glen Nemerow (The Scripps Research

Institute, USA) for kindly providing 211B cells, and Dr. Mercè Monfar for
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