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Abstract: Lactobacillus brevis is the most common bacteria that causes beer spoilage. In this work,
a novel electrochemical immunosensor was fabricated for ultra-sensitive determination of L. brevis.
Gold nanoparticles (AuNPs) were firstly electro-deposited on the electrode surface for enhancing the
electro-conductivity and specific surface area. Ionic liquid was used for improving the immobilization
performance of the immunosensor. After optimization, a linear regression equation can be observed
between the ∆current and concentration of L. brevis from 104 CFU/mL to 109 CFU/mL. The limit of
detection can be estimated to be 103 CFU/mL.
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1. Introduction

Beer is one of the most popular drinks in the world. The specific physical and chemical
properties of beer, such as low temperature anaerobic environment, low pH (4.2–4.4) and
hop bitter substances, can resist the proliferation of general microorganisms. In spite of
this, there are still some acid resistant, hop resistant and anaerobic microorganisms in the
brewery environment [1–3]. They make use of the intermediate metabolites and autolysates
of yeast and bring harm to beer production. Among them, the most destructive to beer
are some gram-positive bacteria such as Lactobacillus and Pediococcus. Lactobacillus brevis
is the most common bacteria isolated from spoilage beer, which causes more than half of
beer spoilage problems. It is also one of the beer spoilage bacteria which has been studied
deeply [4–6].

Culture method and biochemical microtubule fermentation method are the most com-
monly used. Their advantages are convenience and low cost. Their disadvantages are that
they take a long time, generally about a week, the precision is not high and the microbial
pollution in the production process cannot be controlled in time [7–11]. Adenosine triphos-
phate (ATP) bioluminescence rapid detection has been applied in public health detection
of food industry and pharmaceutical industry. The fluorescence intensity of the reaction
is directly proportional to the amount of ATP, so the amount of ATP or microorganism
on the membrane can be quantitatively detected according to the standard curve [12–20].
Since this method is based on intracellular ATP, it is only suitable for microbial detection in
relatively clean sake and finished beer. Enzyme linked immunosorbent assay or enzyme-
linked immunosorbent assay (ELISA) can be used to detect low levels of antigen. However,
ELISA is actually an optical measurement, and it has some disadvantages in use. These
disadvantages require a large, power intensive light source, detector and monochromator.
Moreover, the color of the sample will produce potential false signals.

Electrochemical immunosensor is a molecular recognition element based on antigen-
antibody reaction [21–23]. The concentration signal of a certain chemical substance is
transformed into corresponding electrical signal through the sensor element. Electrochemi-
cal immunosensor has many advantages, such as good selectivity, variety, low cost and
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online application. It can be widely used in medical treatment, food analysis, industrial
production and environmental detection [24–26]. This communication demonstrates the
electrochemical assay developed for the detection of L. brevis. The immunosensor fab-
rication has involved using gold nanoparticles (AuNPs) to enhance the immobilization
ability. AuNPs have been widely used for immunosensor fabrication due to their excellent
conductivity for enhancing the signal [27]. In addition, ionic liquid and chitosan have
been used for further enhancing the stability of antibody due to the binding and blanket-
ing effect [28,29]. Especially, the bioactivity of biospecies could be maintained and their
electrochemical activity could be promoted in ionic liquid. The proposed electrochemical
immunosensor showed excellent sensing performance towards the L. brevis detection.

2. Materials and Methods
2.1. Reagents and Instrument

Escherichia coli (E. coli, CICC 10003), Staphylococcus aureus (S. aureus, CICC 21600), Bacil-
lus subtilis (B. subtilis, CICC 10028) and L. brevis (CICC 20014) were purchased from China
Center of Industrial Culture Collection, Beijing, China. Anti-L. brevis and horseradish perox-
idase (HRP)-labeled anti-L. brevis were purchased from ChinaPeptides Co. Ltd., Shanghai,
China. HAuCl4, 1-Butyl-3-methylimidazolium hexafluorophosphate (ILs), chitosan and
thionine were purchased from 9dingchem Co. Ltd., Shanghai, China. All other chemicals
were analytical grade and used without further purification.

All electrochemical experiments were conducted at a CHI760E electrochemical work-
ing station. A typical three-electrodes system was used, including a glassy carbon electrode
(GCE), a Pt wire and an Ag/AgCl (3 M KCl) electrode.

2.2. Preparation of Microbial Sample

All microbes were grown at 37 ◦C in nutrient broth. Cells were harvested in late
exponential growth phase by centrifugation (4025× g for 20 min) and washed using
phosphate buffer saline (PBS). After removal of the supernatant fluid, the pellets were
resuspended in 10 mL PBS. The density of the L. brevis suspension was determined to be
1010 CFU/mL. The L. brevis was inactivated 12 h at room temperature by 0.4% formaldehyde
and stored at 4 ◦C until used. The suspension was diluted in 0.9% NaCl solution to produce
the desired final concentration of L. brevis for experiments.

2.3. Preparation of Electrochemical Immunosensor

A GCE was firstly polished using Al2O3 slurry and washed by water and ethanol.
Then, AuNPs were electro-deposited on the GCE by reduction of HAuCl4. Typically,
GCE was inserted into 20 mL of 10 mg/L HAuCl4 solution (containing 1% HCl). Then,
a cyclic voltammetry scan between −1 to 1 V at a scan rate of 10 mV/s was conducted for
two cycles. After electro-deposition, the GCE was rinsed by water and ethanol and dried
at room temperature. The AuNPs deposited electrode was denoted as Au/GCE. Two mi-
crograms per litre of anti-L. brevis (1:200 diluted in 0.1 M PBS, pH 7.4) were coated on the
above electrode and stored at 4 ◦C for 12 h. Five micrograms per litre of 1% (v/v) ILs or 1%
chitosan (CS) was dip coated on the above electrode surface and dried at room temperature.
The electrode was washed gently with PBS to remove excess antibody. Then, the electrode
was immersed into a bovine serum albumin (BSA) solution (w/w, 0.25%) for blocking all
active sites. The modified immunosensors were denoted as ILs/anti-L. brevis/Au/GCE
or CS/anti-L. brevis/Au/GCE. The scheme of preparation of the immunosensor is shown
in Figure 1.
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and after immune response. It can be seen from the figure that L. brevis/ILs/anti-L. 
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anti-L. brevis is loaded on the electrode surface. The results show that ILs can provide an 
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Figure 1. Scheme of preparation of Lactobacillus brevis immunosensor.

2.4. Electrochemical Detection of L. brevis

Five micrograms per litre of L. brevis was dropped onto the ILs/anti-L. brevis/Au/GCE
and incubated at 35 ◦C for half an hour and rinsed by PBS. The electrode was denoted
as L. brevis/ILs/anti-L. brevis/Au/GCE. Then, 5 µL of HRP-anti-L. brevis was coated on
the above electrode and then inserted into a 0.1 M ABS (pH 6.5) with 1 mM thionine and
0.5 mM H2O2. CV has been used for sensing analysis. The reduction peak before and after
the immune reaction has been used as an indicator. All electrochemical measurements
were repeated at least five times to ensure the reproducibility.

3. Results and Discussion

Electrochemical deposition of AuNPs can improve the performance of the immunosen-
sor and enhance the immobilization ability of the electrode surface. Figure 2A shows the
surface of GCE deposited with AuNPs. It can be seen from the figure that there are about
30 nm AuNPs on the surface of the electrode. The size of the nanoparticles is uniform,
which ensures the repeatability of the immunosensor [30]. Figure 2B shows the surface
of the L. brevis/ILs/anti-L. brevis/Au/GCE. The immobilization of antibody showed the
coverage of the AuNPs, while the L. brevis was absorbed on the electrode surface.
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Figure 2. SEM image of (A) electro-deposited gold nanoparticles (AuNPs) and (B) L. brevis/ILs/anti-
L. brevis/Au/GCE.

ILs and CS are two substances that are often used to improve the stability of im-
munosensors. This study compared the effects of the two substances. Figure 3 shows
the CV of L. brevis/ILs/anti-L. brevis/Au/GCE and L. brevis/CS/anti-L. brevis/Au/GCE
before and after immune response. It can be seen from the figure that L. brevis/ILs/anti-L.
brevis/Au/GCE can reduce more H2O2 after immune reaction, indicating that more HRP-
anti-L. brevis is loaded on the electrode surface. The results show that ILs can provide an
excellent microenvironment for microorganisms [31–33], and that the loaded substances
can maintain high bioactivity. Therefore, ILs was selected as the stabilizer of immune
sensor in the follow-up work.
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Figure 4 shows the EIS behavior changes during the fabrication of immunosensors.
Five mM [Fe(CN6)]3−/4− was used as a probe. It can be seen from Figure 4, bare GCE
showed the highest Rct compared with other electrodes, suggesting the electro-deposition
could significantly enhance the electron transfer rate. Then, a clear increase of the Rct was
noted after the immobilization of anti-L. brevis. It indicates the successful modification.
A further increasing of the Rct has been observed with the immobilization of BSA, L.
brevis, HRP-anti-L. brevis and L. brevis, suggesting the successful modification of each step.
The increase of Rct during the sensor fabrication is due to the formation of barriers during
the antibody-antigen reaction [34,35]. On the other hand, the coating of ILs only affects the
Rct slightly, suggesting the ILs is an ideal candidate for enhancing the loading performance
of the electrode.
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The effect of CV scan rate on the immunosensor can be used to investigate the electron
transfer type on the electrode surface. Figure 5A shows the effect of the scan rate of the
from 10 to 100 mV/s. It can be seen that the anodic and cathodic peak currents increased
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linearly with the square root of scan rates. This behavior indicates the immunosensor had
a diffusion controlled redox process [16,17,36].
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The acidic or alkaline condition can influence the activity of the antibody [9,10,37–39].
Figure 5B shows the effect of pH on the immunosensor. It can be seen that the peak current
increased along with the pH from 5 to 6.5, and reached the maximum at 6.5. Further
increase of pH showed decrease of the current. Therefore, pH 6.5 has been used for sensing.

Figure 5C shows the effect of the H2O2 concentration on the immunosensor. The in-
crease of the H2O2 concentration can significantly enhance the sensing performance on the
beginning stage due to more H2O2 participating in the enzymatic reaction [40–42]. The cur-
rent change reached a plateau after 0.5 mM. A decreasing of the current was observed
when the concentration exceeded 0.7 mM.

Figure 5D shows the effect of incubation temperature on the immunosensor. It can
be seen that the maximum current was observed at 30 °C. Therefore, 30 °C incubation has
been used for study. Figure 5E shows the effect of the incubation time between anti-L. brevis
and L. brevis on the immunosensor. The increase of the incubation time can significantly
enhance the sensing performance on the beginning stage. The current change reached
a plateau after 40 min. Therefore, 40 min incubation has been used for study. Figure 5F
shows the effect of the incubation time between L. brevis and HRP-anti-L. brevis on the
immunosensor. Similarly, the increase of the incubation time can significantly enhance the
sensing performance on the beginning stage. The current change reached a plateau after
30 min. Therefore, 30 min incubation has been used for study.

The sensing performance of the immunosensor was investigated under the optimum
conditions. Figure 6A shows the CVs of the immunosensor towards different concentrates
of L. brevis. As shown in Figure 6B, the ∆current increased along with the the concentrate
of L. brevis from 101 to 1010 CFU/mL. The increase of the ∆current is due to more L. brevis
being absorbed on the electrode surface, which consequently increased the HRP-anti-L.
brevis absorption. Then, the HRP-anti-L. brevis could catalyze the H2O2 reduction and
contribute to the signal. A linear regression equation can be observed between the ∆current
and concentration of L. brevis from 104 CFU/mL to 109 CFU/mL. The limit of detection can
be estimated to be 103 CFU/mL. Table 1 shows the comparison of proposed immunosensor
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with previous published works. It can been seen that the immunosensor fabricated in this
work showed competitive performance. To further improve the detection sensitivity of
the immunosensor, additional probes such as enzyme-assisted catalytic reaction can be
included along with the L. brevis immobilization in the future work.
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Table 1. Comparison of sensing performance towards L. brevis.

Sensing Method Detection Linear Range Limit of Detection Reference

Electrochemical sandwich assay 400 to 800 CFU/mL 40 CFU/mL [43]
Propidium monoazide

pretreatment-PCR 104 CFU/mL to 108 CFU/mL 104 CFU/mL [4]

Electrochemical immunosensor 104 to 109 CFU/mL 103 CFU/mL This work

The specificity of the immunosensor has been tested using 109 CFU/mL of E. coli,
S. aureus and B. subtilis. As shown in Figure 7, the current of immunosensor towards L.
brevis is significantly larger than that of the sensor towards E. coli, S. aureus and B. subtilis,
suggesting the proposed immunosensor had excellent sensing performance. In order to
test the use of the proposed immunosensor in beer samples, commercial beer has been
tested by replacing the immobilization of L. brevis. No ∆current was observed during or
after the sensing indicating no detectable L. brevis is found in commercial products. Then,
standard addition method was applied during the immobilization process. Five individual
immunosensors were fabricated using beer mixed with 105 L. brevis during the immobiliza-
tion process. An RSD of 7.21% was detected among the five measurements, suggesting the
proposed immunosensor can be applied for sensing L. brevis in real beer samples.
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4. Conclusions

In this work, an ultra-sensitive electrochemical immunosensor was fabricated for
L. brevis detection. AuNPs were electro-deposited on the electrode surface to enhance
the electrochemical performance of the immunosensor. Then, ILs was coated on the
immunosensor for enhancing the immobilization performance. Due to the sandwich
construction, the proposed electrochemical immunosensor can linear detect L. brevis from
104 CFU/mL to 109 CFU/mL. The limit of detection can be estimated to be 103 CFU/mL.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.
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