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Abstract

Streptococcus pneumoniae is an encapsulated bacterium that causes significant global morbidity and mortality. The
nasopharynxes of children are believed to be the natural reservoir of pneumococcus and by adulthood nasopharyngeal
carriage is infrequent; such infrequency may be due to demonstrable pneumococcal specific T and B-cell responses. HLA
Class 2 tetrameric complexes have been used to characterise antigen specific T-cell responses in a variety of models of
infection. We therefore sought to determine the frequency and phenotype of pneumococcal specific T-cells, using a
novel HLA-DRB1*1501 tetramer complex incorporating a recently defined T-cell epitope derived from the conserved
pneumococcal serine/threonine kinase (StkP). We were able to detect direct ex-vivo StkP446–60-tetramer binding in HLA-
DRB1*1501 adults. These StkP446–60-tetramer binding T-cells had increased CD38 expression and were enriched in CCR7-
CD45RA+ expression indicating recent and on-going activation and differentiation. Furthermore, these StkP446–60-tetramer
binding T-cells demonstrated rapid effector function by secreting interferon-gamma on stimulation with recombinant StkP.
This is the first study to directly enumerate and characterise pneumococcal specific T-cells using HLA class 2 tetrameric
complexes. We found that ex-vivo pneumococcal-specific T cells were detectable in healthy adults and that they were enriched
with cell surface markers associated with recent antigen exposure and later stages of antigen-driven differentiation. It is likely
that these activated pneumococcal specific T-cells reflect recent immunostimulatory pneumococcal exposure in the
nasopharynx and it is possible that they may be preventing subsequent colonisation and disease.
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Introduction

Streptococcus _neumonia (pneumococcus) is an extracellular bacte-

rium that causes significant mortality and morbidity globally [1].

Young children are often nasally colonised and also have the

highest incidence of pneumococcal infections. However with time,

the rate of colonisation and infection falls and by late childhood

the prevalence of nasal colonisation reaches a low-point – a state

that persists into adulthood, although the incidence of pneumo-

coccal infection increases in the elderly despite their maintaining

relatively low rates of colonisation [2,3,4]. Pneumococcal exposure

can lead to the generation of both B-cell and T-cell immune

responses to polysaccharide and protein antigens [5,6,7], and

although anti-capsular antibody responses generated by vaccina-

tion in children can prevent subsequent colonisation, the natural

acquisition of immunity to pneumococcus precedes detectable rises

in anticapsular antibody responses [8]. Furthermore, in adults the

possession of high titre anti-capsular antibody responses does not

necessarily protect against pneumococcal disease in selected

patients [9]. T-cells can play an important role in the development

and maintenance of class switched antibody responses, although

T-cell independent B cell class switching can also occur. Indeed,

anti-pneumococcal protein antibody responses are T-cell depen-

dant [10] and T-cell responses, as expected, are detectable in

adults and children to both whole pneumococcus and pneumococcal

proteins and peptides; these have been demonstrated by measuring T-

cell proliferation and cytokine secretion [6,7,8]. In addition to influencing

antibody production by B-cells, T-cells can activate cell mediated

immunity via the secretion of IL-17, IL-22 and IFN-gamma. It is likely

that these responses are important in clearing mucosal colonisation in

children and maintaining protective immunity in adults [11,12]. Unlike

children, young adults are rarely colonised with pneumococcus and have

a relatively low incidence of pneumococcal infection. It is possible that

pneumococcal specific T-cell immunity is contributing to this and we

therefore sought to evaluate direct ex-vivo pneumococcal T-cells in

healthy adults. Having previously defined an HLA-DRB1*1501

restricted MHC Class 2 epitope within StkP, we used StkP-HLA-

DRB1*1501 tetrameric complexes to enumerate pneumococcal specific

T-cells directly ex-vivo from healthy adults and to characterise these cells

further in terms of maturity and activation status [12]. We found that

pneumococcal specific T-cells were detectable in most healthy adults.

Furthermore, these T-cells have increased expression of CD38,

suggesting that they have been recently activated.

Results

Identifying pneumococcal specific T-cells
PBMC and derived T-cell clones and lines were derived from

10 healthy volunteers (HV1-10), all of whom expressed HLA-

DRB1501. The HLA-DRB1*1501-StkP tetramer was able to bind
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to a pneumococcal specific IFN-gamma secreting T cell clone

from HV1 (figure 1A); this clone had been generated by its ability

to secrete IFN-gamma in response to the StkP HLA-DRB1*1501

restricted epitope QSFQISNYVGRKSSD (StkP446–60). Back-

ground non-specific tetramer staining was determined using the

HLA-DRB1*1501-CLIP tetramer which contains the CLIP

peptide (PVSKMRMATPLLMQA), that associates with HLA-

Class 2 molecules during antigen processing. We next determined

whether we could detect pneumococcal specific T-cells in healthy

HLA-DRB1*1501 expressing adults and, as shown in figure 1b,

the ex-vivo frequency was undetectable using PBMC from HV2. As

ex-vivo epitope specific T-cell responses are often found at low

frequencies, we enriched StkP446–60 tetramer binding cells in HV2

using anti-PE magnetic beads as has been done previously [13]. By

determining the absolute CD4 T-cell count, we were able to

calculate the percentage StkP446–60-tetramer binding and were

able to show detectable ex-vivo StkP CD4+ T-cell responses

following enrichment (figure 1C).

Proliferative and effector capacity of tetramer binding
cells

After expanding StkP-specific T-cells further, by incubating

PBMC from HV2 with StkP446–60 peptide for 10-days, the

proportions of StkP446–60-tetramer binding T-cells were increased

(figure 1D), which suggests that tetramer binding cells are able to

proliferate in vitro. Approximately one thousand of these tetramer

binding cells were sorted by flow cytometry and, after further

rounds of expansion, there was a marked increase in the frequency

and absolute numbers (.107 CD4 T-cells) of these StkP446–60-

tetramer-binding CD4+ T-cells (figure 1E). This confirms that the

tetramer binding CD4+ T-cells are capable of substantial

proliferation in response to stimulation. In addition to their

proliferative capacity, StkP446–60-tetramer-binding CD4+ T-cell

lines and clones were also able to secrete interferon-gamma. A

StkP446–60-tetramer-binding CD4+ T-cell line and clone were

stimulated with both StkP446–60 peptide and recombinant StkP

and interferon gamma secretion was demonstrated using the

ELISPot assay (figure 2).

Frequency and phenotype of pneumococcal specific
T-cells

Using the StkP446–60-tetramer to enumerate the direct ex-vivo

frequency of StkP-specific CD4+ T-cells, we found that 8 out of 10

healthy DRB1*1501 expressing adults had detectable responses

(figure 3), with staining similar to that seen in HV2 after

enrichment (figure 1C). Concomitant staining of cell surface

proteins was used to determine the differentiation and activation

status of these pneumococcal specific cells in these 8 healthy adults.

The expression of CCR7 and CD45RA allows for the categorisa-

tion of T-cells into central memory (CM), effector memory (EM),

naive and a mature CCR7 negative, CD45RA positive subset

(figure 4) [14,15]. The proportions of StkP446–60-tetramer binding

CD4+ T-cells were enriched within CD45RA+ CCR72 CD4+
T-cells and consequently reduced in CD45RA-CCR7+ CM

CD4+ T-cells (figure 4, p = 0.04 and p = 0.01, respectively). There

was no significant difference when comparing the StkP446–60-

tetramer binding frequency of the other T-cell subsets to the

tetramer negative population of T-cells, nor was there any

difference when using the T-cell markers of differentiation,

CD27 and CD28 (figure 4). Interestingly, using the expression of

CD38 as a marker of T-cell activation, there was a higher

frequency of CD38 expression in the StkP446–60-tetramer binding

cells than in the tetramer negative population (figure 4).

Discussion

This is the first report to use HLA-class 2 tetramers for the

direct ex-vivo enumeration and characterisation of pneumococcal

specific T-cells in healthy individuals. We have shown that 8 out of

10 HLA DRB1*1501 healthy adults have detectable StkP446–60-

tetramer binding CD4+ T-cells with a range in frequency (0.01–

0.07%) similar to frequencies observed in other models of

exposure to viral and intra-cellular bacterial infections as well as

following desensitisation therapy in allergic disease [16,17,18,19].

HLA-class 2 tetramers identify CD4+ T-cells irrespective of the T-

cells ability to proliferate or secrete cytokine. The increased

frequency of StkP446–60-tetramer binding in StkP stimulated lines

after 10 days expansion, as well as in StkP446–60-tetramer sorted

and subsequently expanded T-cell lines, indicates that these

StkP446–60-tetramer binding CD4 T-cells were able to proliferate

in vitro. Furthermore both StkP446–60-tetramer binding CD4 T-cell

lines and clones secreted IFN-gamma in response to the StkP446–60

peptide and recombinant StkP. Indeed, pneumococcal specific

interferon-gamma responses have been detected in adenoidal

tissue from children [20]. Thus, StkP446–60-tetramer binding cells

CD4+ T-cells have rapid effector function in terms of interferon

gamma secretion and proliferation.

The identification of antigen specific T-cells by HLA-class 2-

tetramers allows the direct characterisation of ex-vivo T-cells

without altering their phenotype as occurs when using antigen-

based activation assays. We determined the expression of cell

surface markers, CD45RA, CCR7, CD27 and CD28 that have

been used to categorise CD4+ T-cells into distinct subsets. There is

evidence that emergence of these distinct subsets of antigen

experienced cells follows a progressive differentiation model.

Accordingly, antigen experienced cells that express CCR7,

CD27 and CD28 traffic to lymphoid tissue and are enriched with

IL-2 secreting cells and represent early-differentiated cells. In

contrast, as antigen experienced cells progress through sequential

rounds of cell division, a substantial proportion will progressively

lose CCR7, CD28 and CD27, with the eventual re-expression of

CD45RA marking terminally differentiated cells [14,15]. The loss

of CCR7 allows for these late-differentiated cells to home to

inflamed peripheral tissue where they can directly participate in

the effector immune response to infectious agents. Our demon-

stration that HLA-class 2 tetramer binding cells are enriched in

CCR7- CD45RA+ expression implies that they are terminally

differentiated CD4+ T-cells. We also found that CD38 expression

was increased on StkP446–60-tetramer binding T-cells. CD38

expression is an activation marker, suggesting that the StkP446–

60-tetramer binding cells have recently encountered antigen. These

CD38 positive cells readily produce cytokine and are more likely

to apoptose, a feature that is typical of effector T-cells [21].

We know that the prevalence of pneumococcal nasopharyngeal

colonisation is low in adults, ranging between 4–5.9%, although we

did not directly determine if any our healthy volunteers were

colonised [2,22,23]. It is therefore likely that the activation of the

StkP446–60-tetramer binding T-cells reflects recent immunostimula-

tory exposure to pneumococci. It is possible that these activated T-

cells may be more than markers of pneumococcal exposure, being

directly involved in preventing such exposure from progression to

sustained nasopharyngeal invasion. The loss of CCR7 expression -

which favours trafficking of T-cells to peripheral tissue – is also

consistent with a direct role for these StkP446–60-tetramer binding T-

cells in pneumococcal immunity in the nasopharynx. Indeed, others

have demonstrated that pneumococcal specific T-cell cytokine and

proliferative responses are associated with nasopharyngeal pneu-

mococcal sterility in children [24]. These subclinical, non (or very
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Figure 1. Identifying pneumococcal specific T-cells with a Class 2 tetrameric complex. Dot plots showing tetramer binding of CD4+T-cells
from various cellular sources. Column I shows binding of CD4+ T-cells to the StkP446–60-HLA-DRB1*1501 tetrameric complexes and column II indicates
staining with a control CLIP DRB1*1501 tetramer. StkP446–60-tetramer and control tetramer binding of a known StkP446–60-specific IFN –gamma
secreting T cell clone from HV1 is shown in A. As StkP446–60-tetramer staining of ex-vivo samples (B) was not detectable in HV2, anti-PE magnetic
beads were used to enrich with consequent detection of StkP446–60-tetramer binding (C). StkP446–60-tetramer binding CD4+ T-cells were also
identified after 10 days expansion of HV2 PBMC with StkP446–60 peptide (D). This StkP446–60-tetramer binding population was sorted by flow
cytometry and further expanded in vitro for 2 weeks with a subsequent further enrichment of StkP446–60-tetramer binding cells (E).
doi:10.1371/journal.pone.0025367.g001
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brief) colonising exposures may not only activate T-cells but may

also drive their differentiation into the CD45RA re-expressing

compartment.

We have used HLA-class 2 tetramers to show that healthy adults

have detectable direct StkP446–60 responses to pneumococci. Our

observation that these cells have been recently activated indicates

that in healthy adults there is a dynamic T-cell response to

presumed frequent exposures to pneumococci that do not progress

to detectable nasopharyngeal colonisation or invasion. It would be

of great interest to use Class 2 tetramers to enumerate and

characterise the pneumococcal specific T-cell response during

invasive pneumococcal infection. Given the increased risk of

pneumococcal infection in the elderly, it would also be interesting

to determine if there are any age-related changes in the frequency

and phenotype of StkP446–60-tetramer binding cells, as occurs in

other situations of persistent/ongoing exposure [16,17].

Materials and Methods

Ethics Statement
The study was approved by Oxfordshire Research Ethics

Committee (REC); all subjects gave informed consent.

Subjects
Ten healthy adult volunteers (HV1-10) who expressed HLA-

DRB1*1501 were recruited. Peripheral blood mononuclear cells

(PBMCs) were separated from heparinized peripheral blood by

density gradient using Lymphoprep (Nycomed, Roskilde, Den-

mark). PBMCs were then washed in RPMI supplemented with

penicillin, streptomycin and l-glutamine (R0) and resuspended in

RPMI with penicillin, streptomycin, l-glutamine and 10% fetal calf

serum (FCS; R10).

HLA Typing
All laboratory volunteers were HLA typed. Genomic DNA

Puregene DNA isolation kit (Gentra Systems, USA) was used to

isolate DNA from whole blood. HLA-A, -B, -C, DRB1, DRB3,

DRB4, DRB5 and DQB1 specificities were determined using

sequence specific primers by our in-house HLA typing service [25].

Antigens
The StkP446–60 peptide QSFQISNYVGRKSSD was synthe-

sized in-house in an automated synthesizer using 9-fluorenyl-

methoxycarbonyl chemistry and the purity of the peptides was

determined to be greater than 90% by high-performance liquid

chromatography (Gilson, Middleton, WI, USA) analysis [26,27].

The purity of the peptide were confirmed by matrix-assisted laser

desorption mass spectrometer on a Bruker Daltonics Ultraflex

TOF/TOF mass spectrometer (Bruker, Billerica, MA, USA)

[28].

T-cell lines and clones
An interferon-gamma secreting StkP446–60 specific T-cell clone

that had been previously generated was used to confirm specificity

Figure 2. StkP446–60-HLA-DRB1*1501-tetramer binding T-cells
secrete IFN-gamma. A tetramer binding T-cell line (unfilled colums)
and a separate T-cell clone from HV2 were stimulated with StkP446–60

peptide (10 micromolar final concentration-vertical lines), recombinant
StkP protein (10 ug/ml final concentration-chequered) or media
(control-no pattern) for 16 hours. Interferon gamma secreting cells
were enumerated by the ELISPot assay.
doi:10.1371/journal.pone.0025367.g002

Figure 3. Frequency of Pneumococcal specific T-cells. The
percentage of StkP446–60-tetramer and the control CLIP-tetramer
binding was calculated in 10 healthy HLA-DRB1*1501 adults. The limit
of detection (mean of the CLIP-tetramer binding +2SD) of specific
StkP446–60-tetramer binding after magnetic-bead enrichment is 0.002%
HV1-8 had detectable tetramer binding-i.e.frequencies greater than the
limit of detection.
doi:10.1371/journal.pone.0025367.g003
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of the StkP446–60 tetramer [12]. StkP446–60 specific T-cells were

expanded in vitro by incubating 46106 PBMC in 2mls R10* in 24-

well plates (Corning) for 10 days with StkP446–60 peptide (final

concentration 2 mM). Interleukin-2 was added on days 3 and 7 at a

concentration of 100 units/ml. All cell lines were maintained at

37uC, in 5% CO2.

A StkP446–60 tetramer enriched T-cell line was generated by first

sorting StkP446–60-tetramer positive CD4+ T-cells from a 10-days

expanded T-cell line. Approximately 1000 of these cells were

sorted into a single well of a round-bottomed 96-well plate using a

MoFlo cell sorter. 100 ml of irradiated feeder cells – (1:1:1 of

PBMC from 3 different individuals) at 16106 cells/ml in R10*

containing IL-2 (100 IU/ml) and PHA (10 mg/ml) were added to

the well.

IFN-gamma ELISpot
ELISpot plates (Millipore Corp., Bedford, MA, USA) were

coated with anti-human interferon (IFN)-c overnight (Mabtech

AB, Nacka, Sweden). The plates were washed six times with

RPMI-1640 and blocked for 1 h with RPMI-1640 supplemented

with 2 mM L-glutamine, 100 IU/ml penicillin and 100 mg/ml

plus 10% human serum (R10*). 40,000 T-cell blasts from in vitro

Figure 4. Phenotype of Pneumococcal specific T-cells. The phenotype of tetramer binding T-cells HV1-8, who had detectable tetramer binding
was evaluated using concomitant staining of T-cell surface markers. T-cell memory subsets were identified on the basis of CCR7, CD45RA, CD27 and
CD28 surface expression, (an example of which is shown in A). The frequencies of central memory (CM), effector memory, naive and mature CD45RA+
CCR7- subsets were determined in the StkP446–60-tetramer binding and StkP446–60-tetramer-negative populations in 8 healthy adults (B). CD38
expression was also determined in the StkP446–60-tetramer binding and the StkP446–60-tetramer -negative CD4+ T-cells (shown in HV3 in C, grey
outline is tetramer positive cells and black outline is tetramer negative CD4+ T-cells). D shows CD38 expression in StkP446–60-tetramer positive (grey
filled column) and negative (unfilled) cells from 8 healthy adults with a significant difference in the mean expression (Wilcoxon signed rank test,
p = 0.02).
doi:10.1371/journal.pone.0025367.g004
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expanded T-cell lines or 1000 T-cell clones were added to each

well to which StkP446–60 peptide (10 micromolar final concentra-

tion), recombinant StkP protein (10 ug/ml final concentration) or

media (control) was added. Wells were set-up in duplicate. After

overnight incubation at 37uC and 5% CO2, plates were washed

66 in PBS-Tween 0.05% and incubated with 1 mg/ml of biotin-

linked anti-IFN-c (Mabtech AB) for 2 hours. After washing 66

in PBS-Tween 0.05%, the plates were incubated for a further

1 hour with streptavidin-alkaline phosphatase (Mabtech AB).

Spots were visualized using an alkaline phosphatase conjugate

substrate kit (Biorad, Hercules, CA, USA) and enumerated using

an automated ELISpot reader. Results were expressed as spot-

forming cells per total number of cells after subtracting the

background (cells alone).

Tetramer staining
DRB1*1501 MHCII tetramer and hCLIP peptide HLA

DRB1*1501 negative control tetramer were provided by the NIH

Tetramer Core Facility at Emory University in Atlanta, GA, USA.

DRB1*1501-PE tetramer was complexed to the StkP446–60 peptide

QSFQISNYVGRKSSD, a previously defined HLA-DRB1*1501

restricted T-cell epitope [12] . Cell lines, T-cell clones and PBMC

were incubated with 0.2 mg/ml HLA class II tetramer for 120 min

at 37uC in R10* before staining with cell surface marker antibodies

at room temperature for 20 minutes, including: anti-CD3 pacific

orange, anti-CD4-quantum dot 605, anti-CD45 quantum dot 655,

anti-CD27-FITC, LIVE/DEADH Fixable Violet Dead Cell Stain

(Invitrogen, Carlsbad, CA, USA), anti-CD14 pacific blue, anti-

CD19 pacific blue (Biolegend, San Diego, CA, USA), anti-CCR7

Alexa647, anti-CD38 PercP Cy 5.5 and anti-CD28 PE Cy5 (Becton,

Dickinson and Company, Franklin Lakes, NJ,USA). Stained cells

were washed with phosphate-buffered saline (PBS) and fixed in

0N5% PBS/formaldehyde. Cells were acquired on a BDTM LSR II

(BD) and analysed using FlowJo software (Tree Star, Inc. OR,

USA). Gating strategy, singlet cells were first gated using FSC vs.

FSC (area). Dead, CD14 and CD19 positive cells were then

excluded using violet1 versus FSC.

Tetramer enrichment:

CD4+ T-cells were first enriched by negative selection using

RosetteSepH (STEMCELL Technologies, France) from whole

blood. The absolute CD4+ T-cell count was then determined

using TrucountTM (BD) beads before staining with tetramer. The

CD4+ T-cells were then incubated with anti-PE beads and

positively selected using a magnet-based separation (Miltenyi

Biotec, Germany). The tetramer enriched cells were then stained

with antibodies directed to cell surface markers as mentioned

above, before the entire sample was run through a BDTM LSR II

(BD). The percentage of CD4 T-cells that were tetramer binding

was calculated by dividing the total number of tetramer positive

events by the total number of CD4+ T-cells that had been

enumerated prior to enrichment.

Statistics
Statistical tests were used to determine if the null hypothesis

could be rejected at a probability of ,0.05. Non-parametric

statistical tests were used; Wilcoxon signed rank test using the

statistical software package GraphPad Prism 4.
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