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A novel lncRNA–protein interaction 
prediction method based on deep 
forest with cascade forest structure
Xiongfei Tian, Ling Shen, Zhenwu Wang, Liqian Zhou* & Lihong Peng *

Long noncoding RNAs (lncRNAs) regulate many biological processes by interacting with 
corresponding RNA-binding proteins. The identification of lncRNA–protein Interactions (LPIs) is 
significantly important to well characterize the biological functions and mechanisms of lncRNAs. 
Existing computational methods have been effectively applied to LPI prediction. However, the 
majority of them were evaluated only on one LPI dataset, thereby resulting in prediction bias. More 
importantly, part of models did not discover possible LPIs for new lncRNAs (or proteins). In addition, 
the prediction performance remains limited. To solve with the above problems, in this study, we 
develop a Deep Forest-based LPI prediction method (LPIDF). First, five LPI datasets are obtained and 
the corresponding sequence information of lncRNAs and proteins are collected. Second, features of 
lncRNAs and proteins are constructed based on four-nucleotide composition and BioSeq2vec with 
encoder-decoder structure, respectively. Finally, a deep forest model with cascade forest structure 
is developed to find new LPIs. We compare LPIDF with four classical association prediction models 
based on three fivefold cross validations on lncRNAs, proteins, and LPIs. LPIDF obtains better average 
AUCs of 0.9012, 0.6937 and 0.9457, and the best average AUPRs of 0.9022, 0.6860, and 0.9382, 
respectively, for the three CVs, significantly outperforming other methods. The results show that the 
lncRNA FTX may interact with the protein P35637 and needs further validation.

Noncoding RNAs regulate the majority of biological processes associated with development, differentiation, and 
metabolism in  organisms1. In contrast to small noncoding RNAs (i.e., miRNAs), which are highly conserved 
and regulate transcriptional and posttranscriptional gene  silencing2,3, long noncoding RNAs (lncRNAs), as 
one type of transcribed RNA molecules, are poorly conserved and control gene expression based on various 
 mechanisms4–6. lncRNAs have close linkages with posttranscriptional gene regulation by regulating biological 
processes including protein synthesis, RNA maturation and transportation, and transcriptional gene  silencing7,8. 
Although a few lncRNAs have been well studied, the biological functions of the majority of lncRNAs remain 
 enigmatic9. Recent studies demonstrate that most of lncRNAs regulate various biological activities through 
specific associations with chromatin, for example, interacting with corresponding RNA-binding  proteins10–12. 
Therefore, identification of potential lncRNA–protein Interactions (LPIs) is vital to understand lncRNAs’ bio-
logical functions and mechanisms.

To find new LPIs, many experimental methods were  designed13,14. However, wet experiments for finding 
possible LPIs are costly and time-consuming. Computational methods are thus developed as a silver-bullet 
solution to LPI prediction. This type of methods is classified into two main categories: network-based methods 
and machine learning-based  methods15,16.

Network-based LPI prediction methods, for example, random walk with restart-based  model17, linear neigh-
borhood propagation  algorithm18, bipartite network projection-based recommendation  method19–21, HeteSim 
 algorithm22, firstly computed lncRNA similarity and protein similarity based on related biological data, and then 
integrated similarity matrix to heterogeneous lncRNA–protein network, finally designed network propagation 
algorithms to score for unknown lncRNA–protein pairs. Network-based LPI prediction methods successfully 
found part of LPIs, however, the type of methods cannot be applied to predict linkage information for an orphan 
lncRNA or protein.

Machine learning-based LPI identification methods first extracted features of lncRNAs and proteins and then 
designed a novel machine learning model to compute interaction probabilities for lncRNA–protein pairs. Clas-
sical machine learning-based LPI prediction models include matrix factorization-based methods and ensemble 
learning-based methods. Matrix factorization-based methods represented LPI prediction as a recommender 
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task and used diverse matrix factorization models to discover unobserved LPIs, for example, gradient boosted 
regression  trees23, graph regularized nonnegative matrix  factorization24, and neighborhood regularized logistic 
matrix  factorization25,26. Ensemble learning-based methods utilized ensemble techniques and constructed ensem-
ble models for new LPIs  identification27,28, for example, random forest-based ensemble  framework29, sequence 
feature projection-based ensemble  algorithm30, broad learning system-based stacked ensemble  classifier31, and 
graph attention-based deep learning  model32.

Although computational methods effectively identified potential linkages between lncRNAs and proteins, 
most of the above models remain the following limitations. First, the performance of these models was evaluated 
only on one dataset, thereby producing prediction bias. Second, the vast majority of models are not applied to 
find possible association proteins (or lncRNAs) for lncRNAs (or proteins) without any interaction information. 
Third, the performance needs to be further improved. To solve the above three problems, in this study, known 
LPI data are firstly integrated and five different LPI datasets are collected. Second, the features of lncRNAs and 
proteins are extracted based on four-nucleotide composition and the BioSeq2vec methods, respectively. Finally, 
a Deep Forest model (LPIDF) with cascade forest structure is designed to find LPI candidates. We compare the 
proposed LPIDF method with four classical LPI prediction models based on three different cross validations. The 
results show that LPIDF obtains better average AUCs and the best average AUPRs on the five datasets under the 
three cross validations. More importantly, case studies demonstrate that most of our predicted lncRNA–protein 
pairs with higher interaction probabilities are true LPIs and the remaining needs further experimental validation.

Results
We perform a series of experiments to investigate the prediction performance of our proposed LPIDF method.

Evaluation metrics. In this study, precision, recall, accuracy, F1-score, AUC and AUPR are used to evaluate 
the performance of LPIDF. Precision, recall, accuracy, and F1-score are defined as follows.

where TP, FP, TN, and FN denote the predicted number of true LPIs, false LPIs, true non-LPIs, and false non-
LPIs. AUC and AUPR denote the average areas under the ROC curve and the precision-recall curve, respectively. 
The experiments are repeated for 20 times and the average performance from the 20 rounds is computed as the 
final performance.

Experimental settings. In the study, we conduct three different experimental settings.
Five-fold Cross Validation 1 (CV1): Cross validation on lncRNAs, that is, random rows (i.e., lncRNAs) in an 

LPI matrix Y  are masked for testing.
Five-fold Cross Validation 2 (CV2): Cross validation on proteins, that is, random columns (i.e., proteins) in 

an LPI matrix Y  are masked for testing.
Five-fold Cross validation 3 (CV3): Cross validation on lncRNA–protein pairs, that is, random lncRNA–pro-

tein pairs in an LPI matrix Y  are masked for testing.
Under CV1, in each round, 80% of lncRNAs in an LPI network Y  are screened as training set and the remain-

ing is represented as testing set. Under CV2, in each round, 80% of proteins in Y  are screened as training set and 
the remaining is represented as testing set. Under CV3, in each round, 80% of lncRNA–protein pairs in Y  are 
represented as training set and the remaining is represented as testing set. The three cross validations refer to 
LPI identification for (1) new (unknown) lncRNAs (lncRNAs whose interaction information is unknown), (2) 
new proteins, and (3) lncRNA–protein pairs, respectively.

Comparison with four state-of-the-art methods. We compare our proposed LPIDF method with four 
state-of-the-art association identification methods to evaluate the prediction ability and robustness of LPIDF, 
that is,  XGBoost33,34, Categorical Boosting (CatBoost)35, random  forest36,37, and  DRPLPI38. The above methods 
are classical machine learning models and obtained wide applications in various areas.  XGBoost33,34 is a scal-
able and end-to-end tree boosting-based model.  CatBoost35 is a novel gradient boosting-based technique and 
can effectively integrate ordered boosting and processing categorical features. Random  forest36,37 is composed 
of multiple decision trees and each tree is independently trained on a random subset.  DRPLPI38 exploited a 
multi-head self-attention model to extract high quality LPI features based on long short-term memory encoder-
decoder mechanism. In the experiments, we randomly select the same number of negative LPIs as positive LPIs 
from unknown lncRNA–protein pairs to decrease the overfitting problem produced by data imbalance.

In random forest, the number of trees is set as 70, and the minimum number used to split samples is set as 
5. In CatBoost, the maximum number of trees is set as 150, the maximum depth as 15, and the learning rate as 

(1)Precision =
TP

TP + FP

(2)Recall = TP
TP+FN

(3)Accuracy =
TP + TN

TP + FP + TN + FN

(4)F1− score = 2×Precision×Recall
Precision+Recall
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0.5. Other parameters are set as the corresponding values provided by the corresponding manuscript. XGBoost 
is conducted based on the scikit-learn  package39.

Table 1 shows the precision, recall, accuracy, F1-score, AUC and AUPR values computed by LPIDF and other 
four methods under CV1. As shown in Table1, LPIDF achieves the highest average precision, accuracy, F1-score, 
and AUPR over all datasets, remarkably outperformed other four competing LPI prediction methods. Although 
the average recall and AUC computed by LPIDF are slightly lower than random forest and DRPLPI, LPIDF 
obtains the best average AUPR. The computed average AUPR obtained by LPIDF is 0.9022, which is 0.96%, 
2.10%, 0.02% and 0.63% higher than XGBoost, CatBoost, random forest, and DRPLPI, respectively. Compared 
to AUC, AUPR is one more important measurement metric. Therefore, LPIDF can effectively find potential 
proteins interacting with a new lncRNA.

Table 2 gives the comparison results under CV2. In particular, LPIDF computes the best average precision, 
recall, accuracy, F1-score, AUC and AUPR over all datasets. Over all datasets, LPIDF investigates the best average 
AUC value of 0.6937, which is 4.80%, 10.81%, 1.17% and 0.91% better than XGBoost, CatBoost, random forest, 
and DRPLPI, respectively. More importantly, LPIDF calculates the highest average AUPR value of 0.6860, which 
is 2.17% and 2.65% higher than the second-best and third-best methods, respectively. In summary, under CV2, 
LPIDF remarkably improves LPI prediction performance compared to the other four prediction methods and 
is statistically significant in identifying possible lncRNAs for a new protein.

The prediction results computed under CV3 are shown in Table 3. In particular, LPIDF outperforms other 
LPI prediction methods over all datasets in terms of all six measurements. For example, LPIDF achieves the best 

Table 1.  The performance of five LPI prediction methods on CV1. The best performance is represented in 
boldface in each row in each table.

XGBoost CatBoost Random forest DRPLPI LPIDF

Precision

Dataset 1 0.8585 ± 0.0199 0.8424 ± 0.0120 0.8357 ± 0.0067 0.8361 ± 0.0086 0.8621 ± 0.0208

Dataset 2 0.8608 ± 0.0120 0.8677 ± 0.0171 0.8529 ± 0.0157 0.8518 ± 0.0167 0.8716 ± 0.0086

Dataset 3 0.7126 ± 0.0210 0.7158 ± 0.0225 0.7236 ± 0.0170 0.7174 ± 0.0195 0.7285 ± 0.0102

Dataset 4 0.8879 ± 0.0495 0.9066 ± 0.0385 0.9248 ± 0.0518 0.9286 ± 0.0335 0.9374 ± 0.0353

Dataset 5 0.8826 ± 0.0124 0.8662 ± 0.0125 0.8882 ± 0.0027 0.8732 ± 0.0133 0.9000 ± 0.0073

Ave 0.8405 0.8397 0.8450 0.8414 0.8599

Recall

Dataset 1 0.9179 ± 0.0167 0.9245 ± 0.0041 0.9593 ± 0.0130 0.9505 ± 0.0098 0.9170 ± 0.0124

Dataset 2 0.9289 ± 0.0281 0.9298 ± 0.0159 0.9740 ± 0.0123 0.9533 ± 0.0248 0.9183 ± 0.0174

Dataset 3 0.6979 ± 0.0191 0.7398 ± 0.0205 0.7278 ± 0.0083 0.7166 ± 0.0267 0.7199 ± 0.0249

Dataset 4 0.6891 ± 0.0571 0.6879 ± 0.0577 0.6748 ± 0.0408 0.6888 ± 0.0623 0.6722 ± 0.0487

Dataset 5 0.8531 ± 0.0169 0.8502 ± 0.0110 0.8484 ± 0.0091 0.8531 ± 0.0124 0.8476 ± 0.0170

Ave 0.8174 0.8264 0.8369 0.8325 0.8150

Accuracy

Dataset 1 0.8890 ± 0.0127 0.8756 ± 0.0067 0.8852 ± 0.0102 0.8821 ± 0.0086 0.8850 ± 0.0090

Dataset 2 0.8481 ± 0.0109 0.8938 ± 0.0083 0.9029 ± 0.0085 0.8934 ± 0.0140 0.8916 ± 0.0083

Dataset 3 0.7079 ± 0.0095 0.7225 ± 0.0028 0.7226 ± 0.0092 0.7169 ± 0.0104 0.7254 ± 0.0146

Dataset 4 0.8033 ± 0.0383 0.8089 ± 0.0537 0.8049 ± 0.0253 0.8183 ± 0.0530 0.8132 ± 0.0284

Dataset 5 0.8697 ± 0.0098 0.8594 ± 0.0057 0.8708 ± 0.0041 0.8646 ± 0.0068 0.8767 ± 0.0072

Ave 0.8236 0.8320 0.8373 0.8351 0.8384

F1-score

Dataset 1 0.8870 ± 0.0111 0.8814 ± 0.0051 0.8932 ± 0.0080 0.8876 ± 0.0080 0.8885 ± 0.0091

Dataset 2 0.8932 ± 0.0118 0.8974 ± 0.0082 0.9093 ± 0.0084 0.8993 ± 0.0125 0.8943 ± 0.0088

Dataset 3 0.7047 ± 0.0094 0.7270 ± 0.0021 0.7256 ± 0.0110 0.7165 ± 0.0138 0.7238 ± 0.0085

Dataset 4 0.7730 ± 0.0290 0.7798 ± 0.0343 0.7702 ± 0.0193 0.7884 ± 0.0376 0.7807 ± 0.0186

Dataset 5 0.8674 ± 0.0071 0.8580 ± 0.0036 0.8608 ± 0.0052 0.8629 ± 0.0036 0.8729 ± 0.0064

Ave 0.8251 0.8287 0.8318 0.8309 0.8320

AUC 

Dataset 1 0.9387 ± 0.0095 0.9294 ± 0.0057 0.9377 ± 0.0065 0.9333 ± 0.0056 0.9426 ± 0.0088

Dataset 2 0.9403 ± 0.0075 0.9458 ± 0.0070 0.9476 ± 0.0072 0.9408 ± 0.0064 0.9506 ± 0.0063

Dataset 3 0.7975 ± 0.0088 0.8169 ± 0.0075 0.8045 ± 0.0153 0.8096 ± 0.0088 0.8108 ± 0.0131

Dataset 4 0.8677 ± 0.0271 0.8110 ± 0.0291 0.8776 ± 0.0193 0.8857 ± 0.0251 0.8480 ± 0.0340

Dataset 5 0.9518 ± 0.0060 0.8597 ± 0.0054 0.9397 ± 0.0090 0.9472 ± 0.0041 0.9542 ± 0.0045

Ave 0.8992 0.8726 0.9014 0.9033 0.9012

AUPR

Dataset 1 0.9196 ± 0.0079 0.9061 ± 0.0052 0.9212 ± 0.0066 0.9106 ± 0.0100 0.9250 ± 0.0144

Dataset 2 0.9214 ± 0.0053 0.9280 ± 0.0087 0.9336 ± 0.0081 0.9222 ± 0.0052 0.9375 ± 0.0134

Dataset 3 0.7663 ± 0.0133 0.8005 ± 0.0099 0.7949 ± 0.0162 0.7839 ± 0.0154 0.7964 ± 0.0029

Dataset 4 0.8995 ± 0.0222 0.8759 ± 0.0260 0.9063 ± 0.0327 0.9116 ± 0.0179 0.8937 ± 0.0131

Dataset 5 0.9564 ± 0.0033 0.8957 ± 0.0056 0.9539 ± 0.0030 0.9510 ± 0.0031 0.9584 ± 0.0040

Ave 0.8926 0.8812 0.9020 0.8959 0.9022
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average AUC value of 0.9457, which is 1.72%, 6.39%, 0.87%, and 0.97% better than XGBoost, CatBoost, random 
forest, and DRPLPI, respectively. In addition, for the AUPR metric, LPIDF obtains the best average AUPR of 
0.9382, which is 0.88% and 1.20% superior to the second-best and third-best methods, respectively. It can be 
seen that the LPIDF can effectively predict potential LPIs.

Case study. After confirming the performance of our proposed LPIDF method, we further identify possible 
LPIs, especially predict interaction information for new lncRNAs and proteins.

Finding possible proteins interacting with new lncRNAs. In this section, we intend to find potential proteins 
interacting with new lncRNAs. Small Nucleolar RNA Host Gene 3 (SNHG3) and Growth Arrest-Special tran-
script 5 (GAS5) are masked all association information and taken as new lncRNAs. LPIDF is then applied to 
identify possible proteins interacting with the two lncRNAs.

SNHG3 is an RNA Gene affiliated with the lncRNA class. It may have dense correlation with various cancers, 
for example, hepatocellular  carcinoma40, non-small-cell lung  cancer41, clear cell renal cell  carcinoma42, gastric 
 cancer43, hypoxic-ischemic brain  damage44, papillary thyroid  carcinoma45, ovarian  cancer46,47, bladder  cancer48, 
and acute myeloid  leukemia49. Table 4 shows the predicted top 5 proteins related to SNHG3 with the highest 
interaction probabilities on three human datasets.

Table 2.  The performance of five LPI prediction methods on CV2. The best performance is represented in 
boldface in each row in each table.

XGBoost CatBoost Random forest DRPLPI LPIDF

Precision

Dataset 1 0.5630 ± 0.2187 0.2339 ± 0.1389 0.3181 ± 0.2432 0.3426 ± 0.2355 0.5673 ± 0.2705

Dataset 2 0.5214 ± 0.1701 0.4117 ± 0.2269 0.6310 ± 0.1672 0.6634 ± 0.2152 0.6374 ± 0.1278

Dataset 3 0.6444 ± 0.0759 0.5885 ± 0.1198 0.6873 ± 0.2617 0.7173 ± 0.0554 0.6248 ± 0.1310

Dataset 4 0.4502 ± 0.1057 0.5185 ± 0.1633 0.5597 ± 0.2284 0.4951 ± 0.1616 0.5100 ± 0.0385

Dataset 5 0.6798 ± 0.1338 0.7454 ± 0.1015 0.7516 ± 0.0375 0.7562 ± 0.1097 0.6976 ± 0.0768

Ave 0.5718 0.4996 0.5895 0.5949 0.6074

Recall

Dataset 1 0.1205 ± 0.0735 0.0898 ± 0.0569 0.0056 ± 0.0086 0.0056 ± 0.0041 0.0996 ± 0.1279

Dataset 2 0.0458 ± 0.0278 0.1162 ± 0.1111 0.0136 ± 0.0087 0.0159 ± 0.0094 0.1418 ± 0.1116

Dataset 3 0.3651 ± 0.1738 0.5795 ± 0.1973 0.2578 ± 0.1301 0.3695 ± 0.1541 0.6318 ± 0.2191

Dataset 4 0.9087 ± 0.0993 0.7777 ± 0.1343 0.9899 ± 0.0123 0.8619 ± 0.1062 0.9284 ± 0.0398

Dataset 5 0.9654 ± 0.0244 0.9096 ± 0.0543 0.9545 ± 0.0287 0.9219 ± 0.0516 0.9762 ± 0.0189

Ave 0.4811 0.4946 0.4443 0.4350 0.5556

Accuracy

Dataset 1 0.5499 ± 0.1385 0.4727 ± 0.1757 0.5398 ± 0.1417 0.5383 ± 0.1533 0.5631 ± 0.1793

Dataset 2 0.5386 ± 0.1497 0.5237 ± 0.1041 0.5125 ± 0.0845 0.5422 ± 0.1518 0.5596 ± 0.1162

Dataset 3 0.5822 ± 0.0747 0.5972 ± 0.1037 0.5901 ± 0.1071 0.6159 ± 0.0809 0.6187 ± 0.0812

Dataset 4 0.4516 ± 0.1335 0.5286 ± 0.1404 0.5571 ± 0.2191 0.4972 ± 0.1564 0.5147 ± 0.0313

Dataset 5 0.7353 ± 0.1020 0.7909 ± 0.0546 0.8197 ± 0.0311 0.8029 ± 0.0608 0.7736 ± 0.0546

Ave 0.5715 0.5826 0.6038 0.5993 0.6059

F1-score

Dataset 1 0.1803 ± 0.1002 0.1181 ± 0.0905 0.0109 ± 0.0166 0.0107 ± 0.0076 0.1461 ± 0.1693

Dataset 2 0.0819 ± 0.0468 0.1680 ± 0.1460 0.0261 ± 0.0160 0.0308 ± 0.0179 0.2146 ± 0.1560

Dataset 3 0.4425 ± 0.1306 0.5465 ± 0.1386 0.3349 ± 0.1578 0.4708 ± 0.1367 0.5954 ± 0.1125

Dataset 4 0.5954 ± 0.0962 0.5970 ± 0.0707 0.6901 ± 0.1579 0.6085 ± 0.0890 0.6565 ± 0.0276

Dataset 5 0.7889 ± 0.0941 0.8146 ± 0.0656 0.8407 ± 0.0321 0.8253 ± 0.0691 0.8110 ± 0.0518

Ave 0.4178 0.4488 0.3805 0.3892 0.4847

AUC 

Dataset 1 0.6116 ± 0.1384 0.4431 ± 0.0607 0.6034 ± 0.1648 0.5407 ± 0.1431 0.6549 ± 0.1973

Dataset 2 0.5819 ± 0.0788 0.5090 ± 0.0427 0.6079 ± 0.0490 0.5938 ± 0.1076 0.5956 ± 0.1482

Dataset 3 0.6239 ± 0.0781 0.6236 ± 0.0846 0.6402 ± 0.0683 0.6698 ± 0.0811 0.7224 ± 0.1072

Dataset 4 0.5515 ± 0.1363 0.5634 ± 0.1026 0.6414 ± 0.1523 0.7190 ± 0.0665 0.5794 ± 0.1465

Dataset 5 0.8554 ± 0.0936 0.7889 ± 0.0411 0.9169 ± 0.0401 0.8998 ± 0.0563 0.9161 ± 0.0397

Ave 0.6457 0.5856 0.6820 0.6846 0.6937

AUPR

Dataset 1 0.5460 ± 0.1510 0.3720 ± 0.1218 0.5629 ± 0.1278 0.4744 ± 0.1726 0.5937 ± 0.1696

Dataset 2 0.5099 ± 0.1366 0.4746 ± 0.1614 0.5409 ± 0.0952 0.5240 ± 0.1519 0.5611 ± 0.1563

Dataset 3 0.6241 ± 0.0709 0.6925 ± 0.0945 0.6061 ± 0.2265 0.6801 ± 0.0722 0.7041 ± 0.1431

Dataset 4 0.5640 ± 0.1383 0.6999 ± 0.0586 0.6900 ± 0.2169 0.7518 ± 0.0611 0.6750 ± 0.0770

Dataset 5 0.8267 ± 0.1761 0.8522 ± 0.0559 0.8978 ± 0.0564 0.8912 ± 0.0672 0.8962 ± 0.0614

Ave 0.6141 0.6182 0.6595 0.6643 0.6860
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The results from Table 4 show that SNHG3-protein interaction pairs predicted by LPIDF are rank advanced in 
all other four methods. We predict that O00425 may interact with SNHG3 (ranked as 4) in dataset 3, which has 
been validated in dataset 1. In addition, we observe that Q9NUL5 and Q13148 may interact with SNHG3. Among 
all possible 27 proteins, the interaction between Q9NUL5 and SNHG3 is ranked as 1 by all five LPI prediction 
methods. The association between Q13148 and SNHG3 is ranked as 5, 7, 8, 5, and 4 by LPIDF, XGBoost, random 
forest, CatBoost, and DRPLIP, respectively. The facts demonstrate the powerful prediction performance of LPIDF.

GAS5 can prevent glucocorticoid receptors from being activated and thus control transcriptional activities 
from its target genes. It is inferred as a potential tumor suppressor and has close correlations with coronary 
artery  disease50, cirrhotic  livers51, coronary artery  disease52,53, rheumatoid  arthritis54, Parkinson’s  disease55, and 
primary  glioblastoma56.

Table 5 lists the predicted top 5 proteins interacting with GAS3 with the highest association scores on three 
human datasets. In dataset 3, although the interactions between GAS5 and Q9NZI8 and Q9Y6M1 are unknown, 
we find that the two LPIs are ranked as 5 and 4 by LPIDF, respectively. More importantly, in datasets 1 and 2, it 
can be seen that Q9NZI8 and Q9Y6M1 show higher interaction probabilities with GAS5 and the two LPIs have 
been reported. In addition, O00425 is inferred to interact with GAS5 with the ranking of 2 in dataset 3 and has 
been validated in dataset 1. These facts again suggest that LPIDF can effectively find possible proteins associated 
with a new lncRNA.

Table 3.  The performance of five LPI prediction methods on CV3. The best performance is represented in 
boldface in each row in each table.

XGBoost CatBoost Random forest DRPLPI LPIDF

Precision

Dataset 1 0.8508 ± 0.0115 0.8457 ± 0.0142 0.8466 ± 0.0056 0.8401 ± 0.0131 0.8589 ± 0.0115

Dataset 2 0.8682 ± 0.0102 0.8604 ± 0.0121 0.8549 ± 0.0065 0.8574 ± 0.0112 0.8645 ± 0.0119

Dataset 3 0.7455 ± 0.0213 0.7401 ± 0.0156 0.7438 ± 0.0171 0.7503 ± 0.0198 0.7549 ± 0.0120

Dataset 4 0.9117 ± 0.0051 0.9340 ± 0.0134 0.9261 ± 0.0171 0.9381 ± 0.0142 0.9390 ± 0.0227

Dataset 5 0.8899 ± 0.0057 0.9250 ± 0.0047 0.9223 ± 0.0017 0.9224 ± 0.0040 0.9297 ± 0.0039

Ave 0.8532 0.8610 0.8587 0.8617 0.8694

Recall

Dataset 1 0.9293 ± 0.0079 0.9676 ± 0.0065 0.9707 ± 0.0016 0.9630 ± 0.0092 0.9634 ± 0.0104

Dataset 2 0.9486 ± 0.0083 0.9666 ± 0.0088 0.9745 ± 0.0041 0.9722 ± 0.0048 0.9752 ± 0.0079

Dataset 3 0.7863 ± 0.0157 0.8031 ± 0.0240 0.8061 ± 0.0134 0.7976 ± 0.0128 0.8257 ± 0.0149

Dataset 4 0.8394 ± 0.0305 0.8734 ± 0.0479 0.8803 ± 0.0235 0.8711 ± 0.0479 0.8908 ± 0.0225

Dataset 5 0.9048 ± 0.0051 0.9304 ± 0.0064 0.9282 ± 0.0034 0.9345 ± 0.0047 0.9307 ± 0.0047

Ave 0.8817 0.9082 0.9120 0.9077 0.9172

Accuracy

Dataset 1 0.8832 ± 0.0063 0.8957 ± 0.0083 0.8974 ± 0.0051 0.8899 ± 0.0080 0.9025 ± 0.0065

Dataset 2 0.9022 ± 0.0072 0.9049 ± 0.0090 0.9046 ± 0.0039 0.9051 ± 0.0064 0.9111 ± 0.0075

Dataset 3 0.7591 ± 0.0151 0.7608 ± 0.0129 0.7640 ± 0.0114 0.7660 ± 0.0136 0.7786 ± 0.0112

Dataset 4 0.8792 ± 0.0143 0.9056 ± 0.0234 0.9056 ± 0.0176 0.9066 ± 0.0214 0.9161 ± 0.0066

Dataset 5 0.8964 ± 0.0027 0.9279 ± 0.0049 0.9250 ± 0.0023 0.9283 ± 0.0037 0.9302 ± 0.0027

Ave 0.8640 0.8790 0.8793 0.8792 0.8877

F1-score

Dataset 1 0.8883 ± 0.0070 0.9025 ± 0.0091 0.9044 ± 0.0038 0.8973 ± 0.0085 0.9080 ± 0.0062

Dataset 2 0.9066 ± 0.0062 0.9103 ± 0.0094 0.9108 ± 0.0042 0.9111 ± 0.0054 0.9164 ± 0.0074

Dataset 3 0.7653 ± 0.0173 0.7702 ± 0.0170 0.7735 ± 0.0104 0.7731 ± 0.0212 0.7886 ± 0.0096

Dataset 4 0.8738 ± 0.0173 0.9019 ± 0.0260 0.9025 ± 0.0197 0.9025 ± 0.0248 0.9138 ± 0.0071

Dataset 5 0.8973 ± 0.0047 0.9276 ± 0.0049 0.9252 ± 0.0018 0.9284 ± 0.0033 0.9302 ± 0.0030

Ave 0.8663 0.8825 0.8833 0.8825 0.8914

AUC 

Dataset 1 0.9376 ± 0.0054 0.8955 ± 0.0046 0.9484 ± 0.0031 0.9413 ± 0.0038 0.9521 ± 0.0053

Dataset 2 0.9507 ± 0.0040 0.9049 ± 0.0083 0.9537 ± 0.0051 0.9510 ± 0.0064 0.9545 ± 0.0064

Dataset 3 0.8452 ± 0.0133 0.7755 ± 0.0099 0.8531 ± 0.0096 0.8517 ± 0.0106 0.8739 ± 0.0111

Dataset 4 0.9407 ± 0.0098 0.9054 ± 0.0228 0.9483 ± 0.0164 0.9526 ± 0.0169 0.9634 ± 0.0091

Dataset 5 0.9681 ± 0.0008 0.9279 ± 0.0050 0.9815 ± 0.0006 0.9834 ± 0.0005 0.9848 ± 0.0008

Ave 0.9285 0.8818 0.9370 0.9360 0.9457

AUPR

Dataset 1 0.9155 ± 0.0074 0.9259 ± 0.0070 0.9279 ± 0.0101 0.9212 ± 0.0085 0.9381 ± 0.0095

Dataset 2 0.9314 ± 0.0086 0.9218 ± 0.0075 0.9403 ± 0.0088 0.9341 ± 0.0113 0.9384 ± 0.0101

Dataset 3 0.8213 ± 0.0204 0.8235 ± 0.0153 0.8350 ± 0.0110 0.8271 ± 0.0186 0.8562 ± 0.0135

Dataset 4 0.9532 ± 0.0083 0.9354 ± 0.0127 0.9615 ± 0.0129 0.9648 ± 0.0122 0.9726 ± 0.0043

Dataset 5 0.9709 ± 0.0012 0.9450 ± 0.0037 0.9824 ± 0.0005 0.9839 ± 0.0005 0.9857 ± 0.0008

Ave 0.9185 0.9103 0.9294 0.9262 0.9382
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Finding potential lncRNAs interacting with new proteins. We continue to uncover lncRNAs interacting with a 
new protein on three human datasets. Q13148 and Q9HCK5 are masked all associated lncRNAs and taken as 
new proteins. LPIDF is then used to find possible associated lncRNAs for the two proteins.

Q13148 is an RNA-binding protein involved in RNA biogenesis and processing and various neurodegenerative 
 diseases57–60. In addition, it also participates in the formation and regeneration of normal skeletal muscles and 
plays an important role in keeping the circadian clock  periodicity59,60. Its second RNA recognition motif has been 
reported as a major promoter towards aggregation and resultant  toxicity61. Frontotemporal lobar degeneration 
associated with Q13148 aggregation is depicted as progressive neuronal atrophy in cerebral  cortex62. Table 6 
illustrates the predicted top 5 lncRNAs associated with Q13148 on three human datasets. From Table 6, we can 
investigate that all predicted top 5 lncRNAs interacting with Q13148 are known in the three datasets.

Table 7 lists the identified top 5 lncRNAs associated with Q9HCK5 on three human datasets. Q9HCK5 
is required for RNA-mediated genes’ silencing, RNA-directed transcription and human hepatitis delta virus 
 replication63. Table 7 demonstrates that all predicted top 5 LPIs for Q9NCK5 are given in the three datasets. In 
summary, LPIDF may be appropriate for LPI identification for a new protein.

Finding new LPIs based on known LPIs. The number of lncRNA–protein pairs with unknown interaction infor-
mation is 51,686, 71,075, 22,572, 2,867 and 49,435 on the five datasets, respectively. We rank these unknown 
lncRNA–protein pairs based on their interaction probabilities computed by LPIDF and list the predicted top 
100 lncRNA–protein pairs. The results are shown in Fig. 1. In Fig. 1, black dotted lines and sky blue solid lines 
represent unknown and known LPIs predicted by LPIDF, respectively. Tan hexagons and light sky blue circu-

Table 4.  The predicted top 5 proteins interacting with SNHG3.

Dataset Proteins Confirmed LPIDF XGBoost Random forest CatBoost DRPLPI

Dataset1

Q15717 Yes 1 1 2 1 2

P35637 Yes 2 5 4 7 3

O00425 Yes 3 2 6 5 1

Q9UKV8 Yes 4 6 1 8 6

Q9NZI8 Yes 5 3 8 3 5

Dataset2

Q15717 Yes 1 1 2 1 1

Q9NZI8 Yes 2 3 7 4 8

Q9Y6M1 Yes 3 2 5 3 2

P35637 Yes 4 4 1 5 4

Q96PU8 Yes 5 18 16 15 17

Dataset3

Q9NUL5 No 1 1 1 1 1

Q9Y6M1 Yes 2 3 2 20 4

Q9NZI8 Yes 3 4 5 7 2

O00425 No 4 2 3 3 3

Q13148 No 5 7 8 5 4

Table 5.  The predicted top 5 proteins interacting with GAS5.

Dataset Proteins Confirmed LPIDF XGBoost Random forest CatBoost DRPLPI

Dataset1

O00425 Yes 1 2 1 6 1

Q15717 No 2 1 2 1 2

P35637 No 3 4 3 5 3

Q9NZI8 Yes 4 3 4 2 5

Q9Y6M1 Yes 5 5 5 3 4

Dataset2

Q15717 No 1 1 3 8 1

Q9NZI8 Yes 2 3 6 2 5

Q9Y6M1 Yes 3 2 4 5 3

P35637 No 4 4 2 1 2

P31483 Yes 5 5 1 3 4

Dataset3

Q9NUL5 Yes 1 1 1 1 1

O00425 No 2 2 2 3 10

Q07955 Yes 3 9 6 12 2

Q9Y6M1 No 4 3 3 5 6

Q9NZI8 No 5 4 4 2 5
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lars denote lncRNAs whose interactions with proteins are unknown and known, respectively. Yellow diamonds 
denote proteins.

We observe that some identified lncRNA–protein pairs have higher interaction probabilities. For example, 
the interactions between NONHSAT137627 and P35637, n344749 and Q15717, NONHSAT119864 and Q15717, 
AthIncRNA18 and Q9LES2, and ZmaLncRNA38 and C4J594 are ranked as 33, 97, 85, 161, and 215, respectively. 
The lncRNA–protein pairs with advanced ranks need further experimental validation.

The lncRNA FTX (NONHSAT137627) can positively regulate the expression and function of ALG3 in AML 
cells, especially cell growth and apoptosis related to ADR-resistance. FTX could thus probably be applied to 
reduce therapeutic resistance in  AML64. P35637 plays a key role in RNA transport, mRNA stability and synaptic 
homeostasis in neuronal  cells63. The protein has been validated to be target of the treatment of cancers, amyo-
trophic lateral sclerosis, and Alzheimer’s  disease65.

In dataset 2, it is observed that FTX interacts with Q15717, Q9NZI8, and P26599. Q15717 helps in increas-
ing the leptin mRNA’s stability. Q9NZI8 can regulate neurite outgrowth and neuronal cell migration, promote 
tumor-derived cells’ adhesion and movement, and prevent infectious HIV-1 particles’  formation64. P26599 can 
bind to the viral internal ribosome entry site and stimulate the translation mediated by the picornaviruses’ infec-
tion site. Q35637 has similar functions with Q15717, Q9NZI8, and P26599. Based on the “guilt-by-association” 
theory, we infer that FTX may associate with P35637.

Fractions of true LPIs among the predicted top N LPIs. In addition, we consider the fractions of true LPIs among 
the inferred top N LPIs. The results are shown in Table 8. N is selected as 10, 30, and 50, respectively. From 
Table 8, we can find that all the predicted top 10 LPIs by LPIDF have been labeled as 1 on five datasets. Similar 

Table 6.  The predicted top 5 lncRNAs interacting with Q13148.

Dataset lncRNAs Confirmed LPIDF XGBoost CatBoost Random forest DRPLPI

Dataset1

SNHG1 Yes 1 53 60 17 13

NEAT1 Yes 2 113 52 30 199

7SL Yes 3 784 234 472 264

RP11-439E19.10 Yes 4 376 14 415 55

SFPQ Yes 5 28 25 18 7

Dataset2

SNHG1 Yes 1 14 22 7 5

NEAT1 Yes 2 5 128 1 39

7SL Yes 3 61 14 4 150

RP11-439E19.10 Yes 4 274 103 106 559

SFPQ Yes 5 48 13 8 66

Dataset3

RPI001_124073 Yes 1 4 1 6 59

LINC00638 Yes 2 1 707 2 2

LINC00338 Yes 3 28 637 4 7

RP11-38P22.2 Yes 4 29 461 99 47

GAS5 Yes 5 110 8 13 110

Table 7.  The predicted top 5 lncRNAs interacting with Q9HCK5.

Dataset lncRNAs Confirmed LPIDF XGBoost CatBoost Random forest DRPLPI

Dataset1

RPI001_233996 Yes 1 468 73 31 71

RPI001_122583 Yes 2 16 41 139 35

RPI001_1006381 Yes 3 44 23 38 177

RPI001_1000866 Yes 4 580 51 15 189

RP5-1057J7.6 Yes 5 263 29 56 116

Dataset2

SFPQ Yes 1 45 1 2 23

RPI001_1015379 Yes 2 55 91 75 2

RPI001_247329 Yes 3 126 51 22 24

RPI001_1000866 Yes 4 18 5 36 4

NEAT1 Yes 5 15 49 4 9

Dataset3

RP11-357C3.3 Yes 1 7 6 41 36

RP1-140A9.1 Yes 2 6 390 15 11

RPI001_124073 Yes 3 5 25 9 32

RPI001_1001088 Yes 4 1 14 10 10

AC010890.1 Yes 5 17 42 62 8
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Figure 1.  The predicted top 100 LPIs on the five datasets (a) Dataset 1, (b) Dataset 2, (c) Dataset 3, (d) Dataset 
4, (e) Dataset 5.
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to top 10, we can obtain the same fraction results on the predicted top 30 LPIs. For the predicted top 50 LPIs by 
LPIDF, although only 94% of LPIs have been labeled as 1 in dataset 1, all the top 50 LPIs are known on other four 
datasets. In summary, LPIDF obtains the best prediction performance based on fractions of true LPIs among the 
top 10, 30, and 50 LPIs.

Discussion and conclusion
lncRNAs are widely distributed in various organisms and regulate gene expression on transcriptome and post-
transcriptome. However, lncRNAs are difficult to crystallize and only several lncRNAs have been investigated. 
Since lncRNAs play an important regulatory role in protein molecules, the discovery of proteins binding to 
specific lncRNAs becomes an issue to identify lncRNAs’ functions and mechanisms.

In this study, first, we integrate five LPI datasets where three datasets are from human and the remaining is 
from plants. Second, features of lncRNAs and proteins are selected by four-nucleotide composition and BioSe-
q2vec based on their sequences, respectively. Finally, a deep forest model with cascade forest structure, LPIDF, 
is developed to predict LPI candidates. To evaluate the performance of LPIDF, we compare our proposed LPIDF 
method with other four LPI prediction models on five datasets under three cross validations. The results suggest 
that LPIDF remarkably outperforms other four competing LPI identification methods. We further conduct a 
series of case studies to find possible associated proteins (or lncRNAs) for new lncRNAs (or proteins) and poten-
tial LPIs. The results from case analyses again demonstrate that LPIDF is a powerful LPI identification method.

LPIDF can compute the optimal precision, recall, accuracy, F1-score, AUC and AUPR. We think that it may be 
attribute to the following advantages. First, LPIDF selects high quality features of lncRNAs and proteins based on 
four-nucleotide composition and BioSeq2vec, respectively. Second, deep forest with cascade forest structure could 
automatically determine the depths of cascade forest, thereby reducing prediction bias produced by parameter 
tuning. Finally, each layer in the cascade forest receives LPI features from the last layer and sends its result to 
the next layer. Since all layers are automatically generated, LPIDF need not set too many hyperparameters. The 
predominant experimental consequences indicate that LPIDF has a powerful ability in excavating new LPIs.

In addition, the time required for the proposed LPIDF model and other methods is investigated. The details 
are shown in Table 9. It can be seen that the time required for LPIDF is much lower than ones of CatBoost and 
DRPLPI.

However, our work has a few limitations. We only consider LPI prediction on human and plant LPI-related 
datasets. Indeed, other species closer human evolutionarily than plants should be investigated. In addition, the 
predicted LPIs with the highest interaction probabilities should be experimentally validated.

Table 8.  The fractions of true LPIs among the top N interactions under CV3.

XGBoost (%) CatBoost (%) Random forest (%) DRPLPI (%) LPIDF (%)

Dataset 1

Top 10 60 100 90 100 100

Top 30 70 90 90 100 100

Top 50 74 88 88 94 94

Dataset 2

Top 10 70 70 90 90 100

Top 30 77 87 87 93 100

Top 50 80 86 86 92 100

Dataset 3

Top 10 80 90 90 100 100

Top 30 93 93 96 50 100

Top 50 88 96 98 96 100

Dataset 4

Top 10 100 100 100 100 100

Top 30 97 100 100 100 100

Top 50 96 100 94 100 100

Dataset 5

Top 10 100 100 90 100 100

Top 30 100 100 86 100 100

Top 50 100 100 88 100 100

Table 9.  The time required for all LPI prediction methods. Where s denotes second.

XGBoost CatBoost Random forest DRPLPI LPIDF

Dataset 1 168 s 74,120 s 20 s 74,292 s 28,174 s

Dataset 2 688 s 70,042 s 22 s 68,469 s 25,348 s

Dataset 3 527 s 63,627 s 37 s 63,711 s 26,342 s

Dataset 4 400 s 25,971 s 6 s 25,994 s 7216 s

Dataset 5 1852 s 61,998 s 197 s 62,258 s 82,022 s
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In the future, first, we will integrate more biological information, for example, disease symptom information, 
drug chemical structure, miRNA-lncRNA interactions. Second, we will consider the prediction performance of 
the proposed model on other species closer human evolutionarily than plants. Third, CD-Hit66 is one broadly 
used software for reducing sequence redundancy. To improve the performance of sequence analyses algorithms, 
we will further remove proteins with high sequence similarity in larger datasets based on CD-Hit. Finally, we 
will further conduct experimental validation for the predicted RNA-binding proteins.

Materials and methods
Data preparation. In this study, we integrate five different LPI datasets. Dataset 1 was provided by Li et al.17. 
Noncoding RNA–protein interaction data were firstly downloaded from the NPInter 2.0  database67. lncRNA and 
protein sequences were extracted from the NONCODE database 4.068 and the  UniProt65 database, respectively. 
3,487 LPIs from 938 lncRNAs and 59 proteins were obtained. We then remove lncRNAs and proteins whose 
sequences are unknown in the  UniProt65,  NPInter67 and  NONCODE68 databases. Finally, we obtain 3,479 LPIs 
from 935 lncRNAs and 59 proteins.

Dataset 2 was provided by Zheng et al.22. Noncoding RNA–protein interaction, lncRNA and protein sequences 
were downloaded from NPInter 2.067, NONCODE 4.068, and  UniProt65, respectively. They obtained 4,467 LPIs 
between 1,050 lncRNAs and 84 proteins. Similar to dataset 1, we further remove the lncRNAs and proteins 
whose sequences are unknown in the  NONCODE68,  UniProt65, and  NPInter67 databases and obtain 3,265 LPIs 
from 885 lncRNAs and 84 proteins.

Dataset 3 was provided by Zhang et al.18. Experimentally validated LPIs between 1,114 lncRNAs and 96 
proteins were extracted based on data resources compiled by Ge et al.69. The sequence and expression data of 
lncRNAs in 24 human tissues or cell types were downloaded from the NONCODE 4.0  database68. The sequence 
data of proteins were obtained from the SUPERFAMILY  database70. lncRNAs without sequence or expression 
information and proteins without sequence information were removed. lncRNA (or protein) with only one 
associated protein (or lncRNA) were still removed. Finally, 4,158 LPIs from 990 lncRNAs and 27 proteins were 
selected.

Dataset 4 contains sequence information of lncRNAs and proteins about Arabidopsis thaliana from the plant 
lncRNA database  (PlncRNADB71). LPI data can be obtained from http:// bis. zju. edu. cn/ plncR NADB. The dataset 
contains 948 LPIs from 109 lncRNAs and 35 proteins.

Dataset 5 contains sequence data of lncRNAs and proteins about Zea mays from the PlncRNADB  database71. 
LPI data can be downloaded from http:// bis. zju. edu. cn/ plncR NADB. The dataset contains 22,133 LPIs from 1,704 
lncRNAs and 42 proteins. Table 10 describes the details about the five datasets.

We describe an LPI network as a matrix Y :

Feature selection. Feature selection of lncRNAs. Tri-nucleotide composition is effectively applied to char-
acterize lncRNA  sequences72. In this section, we use four-nucleotide composition to select lncRNA features. 
Given an lncRNA sequence L with the length of x where li ∈ {A,C, G, T} and i = 1, 2, ..., x , we use a four-tuple 
letter arrangement, for example, (A, A, A, A), (A, A, A, C), (A, A, A, G), …, (T, T, T, T), to compute the numeric 
matrix from L.

Feature selection of proteins. The encoder-decoder structure can better describe sequence-to-sequence 
 features73,74. Inspired by the sequence representation techniques provided by Sutskever et al.74 and Yi et al.75, we 
use Biological Sequence-to-vector (BioSeq2vec) representation learning  method75 with encoder-decoder struc-
ture to characterize amino acids of a protein.

For a protein with sequence length of L , first, a sliding window of size K is used to divide the sequence into 
L− K + 1 segments. Second, the segments are converted into hash values. Finally, the hash values are used as 
input of an autoencoder. As shown in Fig. 2, an input vector composed of the hash values is first mapped into a 
low-dimensional feature vector by an encoder. Second, the low-dimensional feature vector is reproduced as an 

(5)Yij =

{

1 if lncRNAli interacts with protein pj
0 otherwise

Table 10.  The details of LPI data.

Dataset lncRNAs Proteins LPIs

Dataset 1 935 59 3479

Dataset 2 885 84 3265

Dataset 3 990 27 4158

Dataset 4 109 35 948

Dataset 5 1704 42 22,133

http://bis.zju.edu.cn/plncRNADB
http://bis.zju.edu.cn/plncRNADB
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input vector by a decoder. Finally, the reproduced low-dimensional feature vector in the final intermediate layer 
is used as features of a protein.

Deep forest with cascade forest structure. In this study, we utilize a Deep Forest with cascade forest 
structure (LPIDF) to find new LPIs. Deep forest with cascade forest structure, integrating deep forest and ensem-
ble learning, exploits an ensemble-ensemble architecture. In the model, deep  forest76 conducts layer-by-layer 
propagation and feature transformation. Ensemble learning-based model, composed of multiple single clas-
sifiers, more effectively improves LPI prediction compared with one single  classifier77. For ensemble learning, 
larger diversities between single classifiers mean better improvement. To ensure the diversity, in this study, four 
different types of classifiers, logistic regression, XGBoost Classifier, random forest, and extra trees, are utilized 
to learn the model.

In the model, class vectors used to denote the class distribution are obtained through the four basic classi-
fiers. For a given LPI feature, the class distribution first calculated the proportions that the feature classifies an 
lncRNA–protein pair as two classes (positive class and negative class), respectively. Suppose that there are three 
trees in a random forest. As shown in Fig. 3, for a LPI feature fi , the probabilities that fi classify an lncRNA–pro-
tein pair as two classes (positive class and negative class) in the three trees are (0.3750, 0.6250)T , (0.5556, 0.4444)T 
and (1.0000, 0.0000)T , respectively. The probabilities are then summed up and averaged and thus the final class 
distribution (0.6435, 0.3565)T can be computed based on the feature fi . That is, the probability that fi classify the 
lncRNA–protein pair as positive example is (0.3750+ 0.5556+ 1.0000)/3 = 0.6435 and the probability that fi 
classify the lncRNA–protein pair as negative sample is (0.6250+ 0.4444+ 0.0000)/3 = 0.3565.

Similarly, at each layer, for each LPI feature, logistic regression, XGBoost Classifier, random forest, and extra 
trees are trained. An 8-dimensional class vector is generated based on two classes and four types of classifiers.

Figure 4 shows a deep forest with cascade structure. As illustrates in Fig. 4, an 800-dimensional feature vector 
is used as the initial input to the cascade forest. After each layer, the generated eight-dimensional class vector 
with the most important information combining the old 800-dimensional features are used as the input at the 
next layer. The details are shown as follows. First, four different types of classifiers, logistic regression, XGBoost 
Classifier, random forest, and extra trees, are utilized to train the model. Second, an eight-dimensional class vec-
tor is picked and concatenated with the original 800-dimensional feature vector to generate an 808-dimensional 
vector. Third, an 808-dimensional class vector is used as the input at the second layer. Similarly, the second layer 
produces an eight-dimensional class vector, which will be concatenated with the 800-dimensional feature vector. 
And another 808-dimensional class vector is applied as the input at the third layer. Finally, when training on a 
new layer, a training set is used to tune the parameters and a validation set is utilized to evaluate the performance. 
The feature importance will be evaluated through the prediction difference between the original LPI features 
and the learned ones in the four different types of classifiers. The training process will be terminated when the 
performance is not significantly improved. After training, LPI features with zero importance values are removed 
and the features with valid importance values are kept. For a test example (an LPI feature), it will be represented 
by each level until the last level.

Figure 5 demonstrates the pipeline of LPIDF. First, five LPI datasets are obtained based on the existing 
resources. Second, for an lncRNA–protein pair, lncRNA and protein sequences are characterized and concat-
enated as a vector based on four-nucleotide composition and BioSeq2vec with encoder–decoder structure. Third, 
the concatenated vector is used as the input to the cascade forest. Finally, the most important features are selected 
based on layer-to-layer propagation and label of each lncRNA–protein pair is computed.
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Data availability
Source codes and datasets are freely available for download at https:// github. com/ plhhnu/ LPIDF.

Received: 5 April 2021; Accepted: 18 August 2021

References
 1. Zhang, W. et al. LncRNA-miRNA interaction prediction through sequence-derived linear neighborhood propagation method 

with information combination. BMC Genomics 20(11), 1–12 (2019).
 2. Chen, X., Zhu, C. C. & Yin, J. Ensemble of decision tree reveals potential miRNA-disease associations. PLoS Comput. Biol. 15(7), 

e1007209 (2019).
 3. Chen, X. et al. MicroRNAs and complex diseases: From experimental results to computational models. Brief. Bioinform. 20(2), 

515–539 (2019).
 4. Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341), 

120–124 (2011).
 5. Chen, X. et al. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief. Bioinform. 

18(4), 558–576 (2017).
 6. Ponting, C. P., Oliver, P. L. & Reik, W. Evolution and functions of long noncoding RNAs. Cell 136(4), 629–641 (2009).
 7. Deng, L. et al. Accurate prediction of protein-lncRNA interactions by diffusion and HeteSim features across heterogeneous network. 

BMC Bioinform. 19(1), 1–11 (2018).
 8. Liu, H. et al. Predicting lncRNA–miRNA interactions based on logistic matrix factorization with neighborhood regularized. 

Knowl.-Based Syst. 191, 105261 (2020).
 9. Chen, X. et al. Computational models for lncRNA function prediction and functional similarity calculation. Brief. Funct. Genomics 

18(1), 58–82 (2019).
 10. Li, G. et al. Prediction of lncRNA-disease associations based on network consistency projection. IEEE Access 7, 58849–58856 

(2019).
 11. Wang B, Wang L, Zheng C H, et al. Imbalance data processing strategy for protein interaction sites prediction. in IEEE/ACM 

Transactions on Computational Biology and Bioinformatics (2019).
 12. Zhang, Z. et al. KATZLGO: Large-scale prediction of LncRNA functions by using the KATZ measure based on multiple networks. 

IEEE/ACM Trans. Comput. Biol. Bioinf. 16(2), 407–416 (2017).
 13. Wang, K. C. & Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43(6), 904–914 (2011).
 14. Kopp, F. & Mendell, J. T. Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3), 393–407 

(2018).
 15. Peng, L. et al. Probing lncRNA–protein interactions: Data repositories, models, and algorithms. Front. Genet. 10, 11 (2019).
 16. Ferre, F., Colantoni, A. & Helmer-Citterich, M. Revealing protein–lncRNA interaction. Brief. Bioinform. 17(1), 106–116 (2016).

lncRNA-protein datasets 

NONCODE NPInter

BioSeq2vec Four-nucleotide composition 

protein feature vector lncRNA feature vector 
SUPERFAMILY String 

XGBoost 

classifier 

Random 

Forest 

Extra 

Trees 

Logistic 

regression 

Ave. 

XGBoost 

classifier

Random 

Forest 

Extra 

Trees 

Logistic 

regression 

XGBoost 

classifier

Random 

Forest 

Extra 

Trees 

Logistic 

regression 

Max 

R
aw

 f
ea

tu
re

 v
ec

to
r 

Figure 5.  Flowchart of the LPI prediction framework based on deep forest with cascade forest structure.
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