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Abstract

Large conductance voltage- and Ca2+-activated K+ (BKCa) channels are essential regulators

of membrane excitability in a wide variety of cells and tissues. An important mechanism of

modulation of BKCa channel activity is its association with auxiliary subunits. In smooth mus-

cle cells, the most predominant regulatory subunit of BKCa channels is the β1-subunit. We

have previously described that BKCa channels with distinctive N-terminal ends (starting with

the amino acid sequence MDAL, MSSN or MANG) are differentially modulated by the β1-

subunit, but not by the β2. Here we extended our studies to understand how the distinct N-

terminal regions differentially modulate channel activity by β-subunits. We recorded inside-

out single-channel currents from HEK293T cells co-expressing the BKCa containing three

N-terminal sequences with two β1-β2 chimeric constructs containing the extracellular loop

of β1 or β2, and the transmembrane and cytoplasmic domains of β2 or β1, respectively.

Both β chimeric constructs induced leftward shifts of voltage-activation curves of channels

starting with MANG and MDAL, in the presence of 10 or 100 μM intracellular Ca2+. However,

MSSN showed no shift of the voltage-activation, at the same Ca2+ concentrations. The pres-

ence of the extracellular loop of β1 in the chimera resembled results seen with the full β1

subunit, suggesting that the extracellular region of β1 might be responsible for the lack of

modulation observed in MSSN. We further studied a poly-serine stretch present in the N-ter-

minal region of MSSN and observed that the voltage-activation curves of BKCa channels

either containing or lacking this poly-serine stretch were leftward shifted by β1-subunit in a

similar way. Overall, our results provide further insights into the mechanism of modulation of

the different N-terminal regions of the BKCa channel by β-subunits and highlight the exten-

sion of this region of the channel as a form of modulation of channel activity.
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Introduction

Large conductance voltage- and Ca2+-activated K+ (BKCa) channels are important regulators

of membrane excitability. Their activation induces repolarization of the membrane potential

after depolarization in order to buffer excitatory stimulation. BKCa channels are expressed in

several cell types, such as neurons [1], vascular and myometrial smooth muscle [2, 3] and

secretory cells [3], where they show distinct biophysical, pharmacological and functional char-

acteristics. This difference in activity within specific cell types may be explained by various

modulatory mechanisms, such as alternative splicing [5–7], post-translational modifications

[8–10], membrane microdomain localization [11–14] and association with auxiliary subunits

[15–20].

BKCa channels are comprised of tetramers of α-subunits, each one containing seven trans-

membrane domains (S0-S6), an extracellular N-terminal region and an intracellular C-termi-

nal domain [21]. Three possible translation initiation codons have been described in the first

exon of the BKCa α-subunit [22, 24]. The extracellular extended N-terminal regions are unique

among all potassium channels [21], highly conserved in mammalian BKCa channels [22, 24],

and seem to be intended to isolate different initiation start sites from the main body of the

channel protein by the insertion of long flexible peptides. In one case, an initiation start is iso-

lated from the main body of the channel by a stretch of 19 glycine/serine residues; in another

case, a start site is isolated by a polyserine stretch of 22 residues [22, 24]. Initially, the third

start codon, which generates a protein starting with the amino acid sequence MDAL, was

described as the main translation initiation site to produce functional channels [22, 24]. How-

ever, recent studies have also described BKCa channels starting at either the first and second

initiation codons, proteins starting with MANG and MSSN amino acid sequence, respectively

[25–27]. The significance of this unusual configuration is unknown, but it is known that one

or more BKCa β-subunits interact with the N-terminal region [21, 28].

Several lines of evidence showed that the N-terminal end, the first transmembrane domain

(S0) and the C-terminal region of the α-subunit are required for the interaction between α-

and its auxiliary, β1-subunit [21, 28, 28]. Modulatory β-subunits have been described to pro-

vide tissue-specific modulation to the pore-forming α-subunit. The β1-subunit is widely

expressed in smooth muscle cells, where it increases BKCa channel voltage-dependency and

apparent Ca2+-sensitivity [29, 31], playing a crucial role in maintaining vascular tone [31, 33],

regulating blood pressure [31, 33] and myometrial contractility [35]. The β1-subunit is an inte-

gral membrane protein containing two transmembrane domains, with a large extracellular

loop and both N- and C-terminal ends cytoplasmic. The intracellular N- and C-terminal

domains of the β1-subunit seem to be essential for its modulation of channel activity [36, 36],

although some reports have also suggested the transmembrane domains and extracellular loop

of β1 participate in this modulation [37, 38].

In a previous study, we have shown that the three different N-terminal constructs of BKCa,

produced by the three proposed initiation sites, are differentially modulated by the β1-subunit,

an effect not seen when co-expressed with a non-inactivating β2-subunit (β2ND). Voltage-

activation of the BKCa channels starting at either the first or third initiation codons, MANG

and MDAL, respectively, was shifted leftward (or to hyperpolarizing potentials) when co-

expressed with β1, compared to α alone, an effect not measured when β1 was co-expressed

with channels starting with MSSN [39]. These results suggest that distinct N-termini might

provide an additional mechanism of modulation of BKCa channel activity.

Here, we extend our previous studies in order to investigate the molecular determinants

underlying the selective modulation of the different BKCa channel N-terminal constructs by

the β1-subunit. Using three starting sequences (MANG, MSSN and MDAL) and two truncated
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forms of the α-subunit, we assessed the effects of the β1- and β2ND-subunits, and two distinct

β1-β2 chimeric constructs, formed by either extracellular loop of β1 or β2 subunit, and trans-

membrane and intracellular domains from either β2ND or β1 (β2NDβ1β2 or β1β2β1, respec-

tively), on single-channel BKCa currents. We observed that BKCa channels with distinct N-

termini were modulated by the two chimeric constructs in a distinctive manner: the voltage-

activation curve was not shifted in channels starting with MSSN when co-expressed with

β2NDβ1β2. This mimicked what was seen in the presence of β1 subunit, suggesting that the

extracellular loop of β1-subunit may block modulation of MSSN constructs. In addition, we

observed that the presence of the poly-serine stretch located between the second and third ini-

tiation site of α-subunit was not enough to induce blocking of β1 modulation, as observed pre-

viously with MSSN [39]. These results provide evidence that BKCa channels with distinctive N-

termini can be differentially modulated by β-subunits, suggesting a novel mechanism to regu-

late the biophysical and functional properties of the channels in different cell types.

Materials and methods

cDNA constructs

Human BKCa α-subunit starting at different codons (Fig 1A), MANG (GenBank Accession

Number BC137137.1) and MSSN, were cloned from human uterus, MDAL was subcloned by

PCR from the MANG construct, as described in a previous study [39]. Two truncated BKCa α
constructs (Δ2–38 and Δ2–60) were generated by PCR using the MSSN construct as the template

(Fig 1A); site-directed mutagenesis of Met 66 to Leu, in these two truncated constructs, was

performed by Mutagenex, Inc. (Suwanee, GA). The cDNA encoding for the different α-sub-

unit constructs were inserted into the pCMV site of a pBudCE4.1 plasmid vector (Invitrogen,

Carlsbad, CA) containing an optimal Kozak sequence (GACCACC) upstream of the start

codon and including the mCherry reporter in the EF1-α site. The cDNA encoding the human

β1-subunit (GenBank Accession Number U25138.1) and a β2-subunit (GenBank Accession

Number NM_181361.2) lacking the inactivating N-terminal region (Δ2–20, β2ND, a kind gift

from Dr. Jianmin Cui, Washington University in St. Louis) were cloned into the EF1-α site of

pBudCE4.1; eGFP was cloned by PCR into the pCMV site as a reporter. The β1-β2-subunit

chimeric constructs were kindly provided by Dr. Christopher J. Lingle (Washington Univer-

sity in St. Louis) and were inserted into the EF1-α site of pBudCE4.1; eGFP was used as a

reporter. Two chimeric constructs were used: one that contains both transmembrane and

intracellular domains from β1-subunit and extracellular loop from β2-subunit (β1β2β1, Fig

1B), and another containing a truncated N-terminal region (Δ2–20, β2ND), both transmem-

brane domains and intracellular C-terminus of β2-subunit, and the extracellular loop from

β1-subunit (β2NDβ1β2, Fig 1B). Plasmid DNAs for transfection were isolated with a Plasmid

Maxi kit (Qiagen, Hilden, Germany).

Cell culture and transfection

Human embryonic kidney (HEK) 293T cells (ATCC, Manassas, VA) were grown to 60%-80%

confluency in DMEM/F12 supplemented with 10% FBS and 50 μg/ml gentamicin (all from

Gibco, Carlsbad, CA). Cells were transiently transfected with constructs expressing the human

BKCa channel with different N-terminal ends. Another set of cells were co-transfected with the

BKCa α-subunit constructs and either the β1-subunit, β2ND, β1β2β1 or β2NDβ1β2 constructs

(in a 1:4 α:β molar ratio). All transfections were performed using Lipofectamine 2000 reagent

(Invitrogen) according to the manufacturer’s directions. Cells were used in subsequent experi-

ments 24–48 h post-transfection.
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Electrophysiology

Single-channel recordings in the inside-out configuration were performed at room temperature

in a bath solution containing (in mM): 140 KCl, 20 KOH, 10 HEPES, and either 5 (H)EDTA

and 0.1–10 μM free-Ca2+, or 5 EGTA and 100 μM free-Ca2+ (pH 7.2 with HCl). Free-Ca2+ con-

centration (0.1–10 μM) was measured using a Ca2+-sensitive electrode (Thermo Fisher Scien-

tific, Waltham, MA). Pipette solution contained (in mM): 140 KCl, 20 KOH, 2 MgCl2, and 10

HEPES (pH 7.4). Single-channel currents were recorded at a sampling rate of 100 kHz and fil-

tered at 5 kHz by using an Axopatch 200B amplifier (Molecular Devices, Sunnyvale, CA). Cur-

rents were evoked with 10 mV voltage-steps (1000-ms duration) from -160 to +200 mV, from a

holding potential of 0 mV by using pCLAMP 10 software (Molecular Devices). This protocol

was repeated at least three times on each patch. For analysis purposes, recordings on the same

patch were concatenated, attaining at least a 3-s length recording from each voltage-pulse.

Mean open probability (Po) values were calculated by using pCLAMP 10 software. Patches con-

taining three or fewer channels were used for Po analysis. Po was plotted against membrane

potential (V) and fit to a Boltzmann function, Po = Po (max) / (1 + e−zF (V–V0.5) / RT), in order to

determine half-maximal activation voltage (V0.5) values for each experiment. This analysis was

performed with Graph Pad software (San Diego, CA). For analysis of open and closed dwell-

times of the channel (MANG, MSSN, or MDAL), in the presence or absence of β2ND, β1β2β1

or β2NDβ1β2, inside-out patches containing only one channel were held at membrane poten-

tials ranging between -100 mV and -20 mV, depending on the level of activation, for 3 min

with 10 μM Ca2+ in the bath. Open and closed dwell-times histograms were plotted in log-bin

Fig 1. BKCa α-subunit N-terminal, β1, β2ND and β1-β2 chimeric constructs. A, Schematic representation of the BKCa α-subunit N-terminal

sequence and truncated constructs. Names used for the N-terminal constructs are underlined in the sequence of the BKCa α-subunit. N-terminal

sequences of the four truncated constructs used in this study are shown; Δ2–38, Δ2-38M66L, Δ2–60 and Δ2-60M66L. B, Schematic representation of

BKCa β1, β2ND and β1-β2 chimeric constructs used in this study.

https://doi.org/10.1371/journal.pone.0182068.g001
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timescales and fit with double (or single as indicated) Gaussian functions to obtain time con-

stants (τ) and relative distribution (P) of the data under the curve by using pCLAMP 10 soft-

ware. To ensure a clear estimation of τ, only recordings with a Po value less than 0.8 were

included in the analysis. All the recordings were performed and analyzed with the construct

composition blinded to the investigator.

Statistical analysis

Data obtained were subjected to either non-parametric Mann-Whitney U-test or two-way

ANOVA followed by Sidak’s multiple comparison test (Graph Pad software). A P value < 0.05

was considered significant. All data are presented as mean ± S.E.M.

Results

BKCa β1-β2 chimeric constructs modulate α-subunit with distinct N-

termini

We have previously shown that BKCa α-subunit with distinct N-termini are differentially mod-

ulated by the β1-subunit; BKCa channels starting with MSSN showed a complete lack of β1

modulation, whereas the voltage activation curves of channels starting with MANG and

MDAL were shifted to the left in the presence of β1-subunit [39]. Interestingly, the voltage acti-

vation curves in all three N-terminal constructs were shifted by the β2-subunit lacking its inac-

tivation sequence (β2ND) [39]. To evaluate the region of the β1-subunit responsible for

blocking its modulation of MSSN, we used two chimeric constructs (Fig 1B). One is composed

of the transmembrane and intracellular domains of β1 and the extracellular loop of β2

(β1β2β1) and the other is composed of the transmembrane and intracellular domains of β2

and the extracellular loop of β1 (β2NDβ1β2). We expressed all constructs with the BKCa chan-

nel and recorded single-channel currents in the inside-out configuration, at different intracel-

lular Ca2+ concentrations ([Ca2+]i). These different [Ca2+]i were used to dissect the allosteric

increase of the open probability of the channel mediated by Ca2+ from the effect of voltage.

At low [Ca2+]i, 0.1 μM, the voltage activation curve of MANG was shifted to the right by the

β1-subunit, but not significantly by β2ND or the chimeric constructs, whereas the MDAL volt-

age activation curve was shifted to the right by β2ND and β2NDβ1β2, but not by β1 or β1β2β1

(S1 Table). Channels starting with MSSN construct were not affected by β-subunits or the chi-

meric constructs at 0.1 or 1 μM Ca2+ (S1 Table). Neither MANG nor MDAL curves were sig-

nificantly changed by any β-subunit at 1 μM Ca2+ (S1 Table). Interestingly, at 10 μM [Ca2+]i,

both chimeric constructs (β1β2β1 and β2NDβ1β2) induced significant leftward shifts in the

voltage-activation curves in cells expressing MANG. This shift was similar to those observed

with β2ND, but larger than with the β1, whereas only β2ND and β1β2β1 induced significant

leftward shifts in the MANG construct at 100 μM Ca2+ (Figs 2A–2C and 3A, S1 Table). The

voltage activation of the MSSN construct, however, was leftward shifted in the presence of

either β2ND or β1β2β1, but not by β1 or β2NDβ1β2, at both 10 and 100 μM Ca2+ (Figs 2D–2F

and 3B, S1 Table). Finally, the MDAL construct activation curve was shifted to the left in the

presence of all β-subunits tested at 100 μM Ca2+, and by β1, β2ND and β1β2β1 at 10 μM Ca2+

(Figs 2G–2I and 3C, S1 Table).

Modulation of BKCa kinetics by β2ND and β1-β2 chimeric constructs

Because β1 and β2 subunits modulate the BKCa channel by different mechanisms [40], we

investigated the effect of β2ND and the β1/β2 chimeric constructs on the kinetics of the BKCa

α-subunit N-terminal constructs. Initially, we investigated the open-state kinetics. We found

BKCa channel N-terminal region and β-subunit modulation
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that β2ND significantly increased the τ1 and τ2 of open state of MANG (3.2- and 0.4-fold,

respectively, Fig 4A and Table 1), whereas it increased only τ2 in MSSN (0.3-fold, Fig 4A and

Table 1). Conversely, although only τ1 was decreased by β2ND in MDAL, the proportion of

these populations was shifted from τ1 towards τ2 (Fig 4A and Table 1). In MANG, both

β1β2β1 and β2NDβ1β2 significantly increased τ2 (1.6- and 2-fold, respectively, Fig 4A and

Table 1), whereas only β2NDβ1β2 increased τ2 in MDAL (1.2-fold, Fig 4A and Table 1). Sur-

prisingly, in MSSN, τ2 was redistributed by β1β2β1 towards shorter values (τ1, Table 1),

revealing an overall reduction in open dwell-time histograms (Fig 4A). In turn, β2NDβ1β2

showed an increase in τ2 of MSSN comparable to that observed with β2ND (Fig 4A and

Table 1).

The most remarkable effect of β2ND was on the relative distribution of closed dwell-times,

τ1 and τ2, of MANG and MSSN, increasing the proportion of shorter, τ1, closed dwell-times

(P1) and reducing the proportion of longer, τ2, closed dwell-times (Fig 4B and Table 2), in the

case of MANG, both closed τ1 and τ2 overlapped in the presence of β2ND and their values

were close to those observed for τ1 in MANG alone (Fig 4B and Table 2), indicating that both

MANG and MSSN spent less time in the closed state in the presence of β2ND. Similarly,

β1β2β1 redistributed the closed dwell-times of MSSN towards shorter values, however, that

redistribution was less evident with β2NDβ1β2 (Fig 4B and Table 2). Finally, the β2NDβ1β2

construct reduced the relative distribution of closed dwell-times towards shorter values in

MANG and, to a lesser extent, in MDAL constructs (Fig 4B). Overall, these results both

Fig 2. BKCa α-subunit with distinct N-termini are differentially modulated by β1-β2 chimeric constructs. Representative inside-out single-

channel recordings from HEK293T cells transfected with MANG (A), MSSN (D) or MDAL (G) in the presence or absence of β1β2β1 or β2NDβ1β2, at

different membrane potentials (-40 mV to +40 mV) with 10 μM Ca2+ in the bath. Dashed lines indicate closed (C) states of the channels. Voltage-

activation of MANG (B and C), MSSN (E and F) or MDAL (H and I), in the absence (α, black symbols) or presence of β1 (blue symbols), β2ND (red

symbols), β1β2β1 (orange symbols) or β2NDβ1β2 (purple symbols), expressed as open probability (Po) of the channel, in the presence of 10 μM (B, E

and H) or 100 μM (C, F, and I) Ca2+ in the bath; n = 3–19, symbols are mean ± SEM.

https://doi.org/10.1371/journal.pone.0182068.g002
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Fig 3. Modulation of voltage-dependent activation in BKCa α-subunit with distinct N-termini by β-

subunit constructs. Analysis of the voltage of half maximal activation (V0.5) of the N-terminal BKCa

constructs MANG (A), MSSN (B) or MDAL (C), in the absence (α, black symbols) or presence of β1 (blue

symbols), β2ND (red symbols), β1β2β1 (orange symbols) or β2NDβ1β2 (purple symbols), at different [Ca2+]

in the bath. Symbols are mean ± SEM.

https://doi.org/10.1371/journal.pone.0182068.g003
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Fig 4. Effects of β2ND and β1-β2 chimeric constructs on BKCa α-subunit N-terminal constructs single-

channel kinetics. Open (A) and (B) closed dwell-times distribution histograms of single-channels in

HEK293T cells expressing MANG, MSSN or MDAL constructs. Patches containing channels composed by α-

subunit alone (black lines), α+β2ND (red lines) α+β1β2β1 (orange lines) or α+β2β1β2 (purple lines) were

analyzed (n = 6–11). Single-channel currents were elicited by holding the membrane potential at a certain
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confirm the idea that the β2-subunit stabilize the BKCa channel in the open state, and suggest

that the extracellular loop of β1-subunit might be responsible to maintain MSSN channels in

the closed state.

Lack of modulation by β1 in MSSN is independent of the presence of

poly-serine stretch

Because, in our previous study, the BKCa channel starting at MSSN was not altered by the

β1-subunit [39], we focused on the structural determinants of this N-terminal region responsi-

ble for the reduced modulation. We evaluated the role of the poly-serine stretch located

between residues 39 and 60 within the N-terminal region of BKCa α-subunit (Fig 1A) by using

two truncated constructs of MSSN: one containing only the poly-serine stretch (Δ2–38, Fig 1A)

or one lacking the poly-serine stretch (Δ2–60, Fig 1A). We observed that β1-subunit induced

significant leftward shifts in the voltage-activation curves in Δ2–38 (from 2.9 ± 4.3 mV to

-34.7 ± 6.8 mV, P< 0.01, Fig 5A and 5C) and Δ2–60 (from 10.5 ± 4 mV to -15 ± 6.9 mV,

P< 0.01, Fig 5D and 5F), suggesting that the poly-serine stretch does not participate in the

lack of modulation by β1 in MSSN. To confirm that the effects observed in these two α-subunit

truncated forms were not due to expression of the downstream MDAL (third initiation site)

we mutated Met-66 to Leu. The voltage activation curves of both constructs, Δ2-38M66L and

Δ2-60M66L, were significantly shifted to the left by the β1-subunit (from 7.8 ± 5.9 mV to -29.5

mV and from -8.8 ± 3.4 mV to -52.9 ± 6.8 mV, respectively, P< 0.01, Fig 5B, 5C, 5E and 5F).

Altogether, these results suggest that the poly-serine stretch located within the N-terminal

region of α-subunit is not responsible for the reduced modulation by β1 observed in MSSN.

voltage (-20 mV to -100 mV) for at least 1 min in the presence of 10 μM Ca2+ in the bath. Histograms were

plotted in log-bin timescales and fitted with double exponential functions.

https://doi.org/10.1371/journal.pone.0182068.g004

Table 1. Effect of β2ND,β1β2β1 and β2NDβ1β2 constructs on the open dwell-times of BKCa channels with distinctive N-terminal regions.

Open, mean ± SEM

Construct α +β2ND +β1β2β1 +β2NDβ1β2

MANG

τ1 0.59 ± 0.05 2.50 ± 0.06* 1.59 ± 0.81 2.58 ± 1.63

P1 0.35 ± 0.04 0.88 ± 0.02 0.26 ± 0.11 0.58 ± 0.26

τ2 4.31 ± 0.19 6.11 ± 0.20* 11.06 ± 1.19* 13.06 ± 1.05*

P2 0.65 ± 0.03 0.12 ± 0.02 0.74 ± 0.11 0.42 ± 0.23

MSSN

τ1 0.64 ± 0.08 0.79 ± 0.14 3.09 ± 0.26* 0.65 ± 0.05

P1 0.37 ± 0.05 0.19 ± 0.04 0.52 ± 0.06 0.22 ± 0.02

τ2 4.82 ± 0.31 6.32 ± 0.27* 3.30 ± 0.30* 6.35 ± 0.19*

P2 0.63 ± 0.05 0.81 ± 0.04 0.48 ± 0.06 0.78 ± 0.02

MDAL

τ1 0.80 ± 0.15 0.45 ± 0.05* 2.34 ± 1.76 0.50 ± 0.04*

P1 0.41 ± 0.07 0.11 ± 0.02 0.39 ± 0.20 0.16 ± 0.02

τ2 5.63 ± 0.51 6.38 ± 0.18 12.24 ± 0.64* 6.05 ± 0.17

P2 0.59 ± 0.06 0.89 ± 0.02 0.61 ± 0.18 0.84 ± 0.02

Time constants (τ1 and τ2) are expressed in milliseconds. P1 and P2 are relative distributions of data under curves used to fit the results shown in Fig 4.

* P < 0.05 compared to α-subunit, non-parametric Mann-Whitney U-test.

https://doi.org/10.1371/journal.pone.0182068.t001
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Discussion

The BKCa channel plays a major role in buffering excitation in a wide variety of cells and tis-

sues. The interaction of the pore-forming α-subunit with different modulatory subunits is an

important mechanism to regulate the activity of this channel [17, 18, 20], providing tissue-

specificity of BKCa activation. Here we focused on the differential effect of the modulatory

β1-subunit in the activation of distinct N-termini of the α-subunit as previously described

[39]. We extended these studies by using truncated constructs of the α-subunit or chimeric

constructs of the β-subunits to determine the structural determinants within the distinctive N-

terminal region of the α-subunit or extracellular loop of β-subunits responsible for this differ-

ential modulation. In the present study, we found two main observations; first, that the extra-

cellular loop of the β1-subunit underlies the lack of modulation of MSSN, and second, that the

poly-serine stretch region within the N-terminal domain of the α-subunit is not enough to

dampen the modulation of MSSN by the β1-subunit.

The unique extracellular N-terminal region of the BKCa channel is highly conserved among

mammals [22, 24], but it differs in other organisms such as chicken [41], Drosophila melanoga-
ster [21, 42] or Caenorhabditis elegans [44], and it is exclusively found only in BKCa channels of

the voltage-gated K+ channel family [21]. The extracellular N-terminal region, the S0 domain,

and the intracellular C-terminal domain of the BKCa α-subunit have been described to partici-

pate in the interaction with the β1-subunit [21, 28, 28]. We have shown that this distinctive N-

terminal region, as is found in BKCa channels starting with MSSN, reduced the modulation of

voltage activation by β1 [39]. The N-terminal region contains an intriguing sequence including

a poly-serine stretch between Ala-38 and Val-61 (Fig 1A), which has been proposed to be

responsible for blocking Ca2+-sensitivity of MSSN modulation by the β1-subunit [25]. We

evaluated whether the poly-serine stretch was enough to block the β1-subunit modulation of

the BKCa channel; two truncated constructs of the BKCa α-subunit were tested, one lacking the

poly-serine stretch and starting from residue Val-61 and another containing the poly-serine

Table 2. Effect of β2ND,β1β2β1 and β2NDβ1β2 constructs on the closed dwell-times of BKCa channels with distinctive N-terminal regions.

Closed, mean ± SEM

Construct α +β2ND +β1β2β1 +β2NDβ1β2

MANG

τ1 0.38 ± 0.01 0.33 ± 0.01* 0.50 ± 0.01* 0.40 ± 0.01*

P1 0.40 ± 0.01 0.49 ± 0.08 0.50 ± 0.06 0.65 ± 0.02

τ2 13.86 ± 0.43 0.66 ± 0.08* 6.04 ± 2.10* 15.02 ± 1.31

P2 0.60 ± 0.01 0.51 ± 0.08 0.50 ± 0.12 0.34 ± 0.03

MSSN

τ1 0.36 ± 0.01 0.40 ± 0.01* 0.36 ± 0.005 0.32 ± 0.01*

P1 0.39 ± 0.01 0.72 ± 0.08 0.66 ± 0.03 0.57 ± 0.02

τ2 12.48 ± 0.39 9.10 ± 0.98* 0.79 ± 0.13* 8.33 ± 0.62*

P2 0.61 ± 0.02 0.28 ± 0.21 0.34 ± 0.04 0.43 ± 0.03

MDAL

τ1 0.35 ± 0.01 0.36 ± 0.01 0.46 ± 0.01* 0.38 ± 0.01*

P1 0.41 ± 0.01 0.55 ± 0.01 0.61 ± 0.04 0.57 ± 0.01

τ2 11.35 ± 0.29 9.8 ± 0.39* 5.74 ± 1.62* 18.32 ± 0.77*

P2 0.59 ± 0.02 0.45 ± 0.02 0.39 ± 0.06 0.43 ± 0.02

Time constants (τ1 and τ2) are expressed in milliseconds. P1 and P2 are relative distributions of data under curves used to fit the results shown in Fig 4.

* P < 0.05 compared to α-subunit, non-parametric Mann-Whitney U-test.

https://doi.org/10.1371/journal.pone.0182068.t002
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stretch, starting from Ser-39, and lacking the residues between Met-25 and Ala-38 (Fig 1A).

The voltage activation curves of both truncated constructs were shifted to the left by β1, sug-

gesting that the poly-serine stretch is not responsible in reducing the modulation of MSSN by

β1. Poly-serine stretches are predicted to be low complexity, highly disordered structures [45,

45]. The function of poly-serine regions in eukaryotic proteins is not well understood, how-

ever, in prokaryotic proteins, they are predicted to act as flexible linkers between functional

domains [45], thus, it is possible that the poly-serine stretch is functioning as a linker between

the channel and its N-terminal domain. Interestingly, the sequence comprised between Met-

25 and Ala-38, right before the poly-serine stretch, is also highly conserved among mammals.

Further studies, either by adding a soluble peptide containing this region, as shown for the

BKCa β3 subunit [46], or by mutation of key residues within this region might directly eluci-

date the role of this region or the residues responsible in dampening β1 modulation. Although

Fig 5. BKCa α-subunit N-terminal truncated constructs are similarly modulated by the β1-subunit. Voltage dependence of BKCa activation of two

truncated forms of the BKCa α-subunit; lacking amino acids 2–38 (A and B, Δ2–38 and Δ2-38M66L) or amino acids 2–60 (D and E, Δ2–60 and Δ2-60M66L),

in the presence (open symbols) or absence (closed symbols) of the β1-subunit, expressed as open probability of the channel (Po), in the presence of

10 μM Ca2+ in the bath; n = 5–10, symbols are mean ± SEM. C and F, Analysis of the voltage of half maximal activation (V0.5) between the N-terminal

truncated constructs alone (closed symbols) and in the presence of β1 (open symbols). Symbols are mean ± SEM, * P < 0.05 compared to α.

https://doi.org/10.1371/journal.pone.0182068.g005
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all the truncated constructs tested were modulated by β1, the Δ2-60M66L construct seems to be

shifted to the left even in the absence of β1 when compared to MDAL or Δ2–60. A further left-

ward shift was observed in the presence of β1, which could be due to the expression of MDAL

in Δ2–60, which we cannot exclude as a possibility in this construct, or to a structural change

induced by the M66L point mutation in proximity to the initiation codon.

Our previous results showing that MSSN construct is not modulated by β1 [39] together

with the present observations showing that the chimeric construct containing β1 extracellular

loop (β2NDβ1β2) did not modulate MSSN demonstrate that this region of the β1-subunit

plays an important role in the lack of modulation of this construct. However, we cannot

exclude that the transmembrane domains and/or cytoplasmic regions could also participate.

Interestingly, in the MSSN construct, β1β2β1 seems to enhance the leftward shift induced by

β2ND alone, suggesting that the β1 transmembrane domains and/or cytoplasmic regions

could be acting in a synergistic way with the β2 extracellular loop to induce further activation

of MSSN. Further studies using β1-β2 chimeric constructs switching either the transmembrane

and/or cytoplasmic domains of these subunits would help to elucidate the role of these regions

in the modulation of MSSN, as shown by others for the MDAL construct [36, 36, 38]. In addi-

tion, MSSN was not modulated by any β-subunit in the presence of low [Ca2+]i (0.1 and

1 μM), whereas higher [Ca2+]i (10 and 100 μM) showed a differential modulation by β1 and

β2ND, suggesting that this differential modulation depends on the presence of Ca2+.

The β1- and β2-subunits have been proposed to modulate the BKCa channel kinetics

through independent mechanisms [40], accordingly, in our studies using the MDAL construct,

we have found distinct effects of β1 and β2ND on the kinetics of the BKCa channels; β1 induces

a shortening of the closed dwell-times [39], whereas the effect on the closed dwell-times is less

marked in the presence of β2ND. Several reports have shown that the N- and C-termini and

the transmembrane domains of β1-subunit are responsible for its interaction with the BKCa α
subunit [36, 36, 38]. Our results showing a comparable change in the distribution of the closed

dwell-times of MDAL by either β1 or β1β2β1 constructs agree with those studies [39]. In addi-

tion, the effect of β2NDβ1β2 on the closed dwell-times of MDAL was similar to that observed

with β2ND (Fig 3C). Furthermore, both the MSSN and MANG constructs showed redistribu-

tion towards shorter closed dwell-times with both the β2ND and β1β2β1. This change in pro-

portion of closed dwell-times was less evident in the presence of β2NDβ1β2, and similar to

what was observed with β1 [39]. Altogether, these analyses revealed a role for the extracellular

loop of β1 in the alteration of the kinetics of MSSN.

In summary, we found that the extracellular region of β1-subunit is important in inhibiting

β1-induced modulation of BKCa α-subunit starting with MSSN. Additionally, within the N-

terminal sequence of BKCa α-subunit, the region between the second initiation site (Met-25)

and the poly-serine stretch might contribute to the reduced modulation by β1. These mecha-

nisms could provide additional regulation of BKCa channel activity, besides the expression of

different auxiliary subunits.
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