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ABSTRACT

Correct pre-mRNA processing in higher eukaryotes
vastly depends on splice site recognition. Beyond
conserved 5′ss and 3′ss motifs, splicing regulatory
elements (SREs) play a pivotal role in this recog-
nition process. Here, we present in silico designed
sequences with arbitrary a priori prescribed splic-
ing regulatory HEXplorer properties that can be con-
catenated to arbitrary length without changing their
regulatory properties. We experimentally validated in
silico predictions in a massively parallel splicing re-
porter assay on more than 3000 sequences and ex-
emplarily identified some SRE binding proteins. Aim-
ing at a unified ‘functional splice site strength’ en-
compassing both U1 snRNA complementarity and
impact from neighboring SREs, we developed a
novel RNA-seq based 5′ss usage landscape, map-
ping the competition of pairs of high confidence 5′ss
and neighboring exonic GT sites along HBond and
HEXplorer score coordinate axes on human fibrob-
last and endothelium transcriptome datasets. These
RNA-seq data served as basis for a logistic 5′ss us-
age prediction model, which greatly improved dis-
crimination between strong but unused exonic GT
sites and annotated highly used 5′ss. Our 5′ss us-
age landscape offers a unified view on 5′ss and SRE
neighborhood impact on splice site recognition, and
may contribute to improved mutation assessment in
human genetics.

INTRODUCTION

For almost all human primary protein coding transcripts
recognition of splice sites, the borders between exons and
introns, is key in deciphering their open reading frames.
In order to accurately ligate exons after intron removal,
splice sites at exon-intron-borders need to be recognized
with single nucleotide precision during early assembly of
the spliceosome. Splice site recognition depends upon con-
served sequence motifs at both intron ends, and the first step
in the splicing process is splice donor recognition by the U1
snRNP at a highly conserved GT dinucleotide (1).

Formation of an RNA duplex between up to 11 nu-
cleotides (nt) of the splice donor (5′ss) with the 5′ end of
U1 snRNA is a main determinant in 5′ss selection (2–4).
The statistical likelihood of a 9 nt long potential 5′ss se-
quence being used as 5′ss is frequently quantified by its
maximum entropy based MaxEnt (ME) score (5), while
the HBond score (HBS) algorithm based on all 11nt quan-
tifies the U1 snRNA complementarity of a potential 5′ss
(https://www2.hhu.de/rna// (6,7)). However, exons and in-
trons contain numerous GT sites with high MaxEnt and
HBond scores indicating potential 5′ss, which under physi-
ological conditions are not used as exon-intron-borders.

Thus, the proper 5′ss sequence cannot be the sole deter-
minant of 5′ splice site use (8). The efficiency with which
splice sites are recognized additionally depends on proxi-
mal cis-acting splicing regulatory elements (SREs) and their
protein binding partners including SR (serine-arginine-
rich) (9,10) and hnRNP (heterogeneous nuclear ribonucle-
oparticle) proteins (11,12). Generally, proteins bound by
SREs act in a direction dependent way: SR proteins have
enhancing properties on downstream located 5′ss and re-
press upstream located 5′ss, while hnRNP proteins act re-
versely (13,14). Mechanistically, splicing regulatory pro-
teins (SRPs) may impact U1 snRNA duplex stability due to
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allosteric regulation of U1 snRNP structure (15). Through
these combined SRP binding effects, the sequence neighbor-
hood of a splice site can have a significant impact on splice
site recognition and hence splicing efficiency (16–19). Espe-
cially with regard to an estimated at least 25% of human
inherited diseases caused by mutations either directly alter-
ing splice sites or disrupting SREs in their vicinity (20,21),
computational evaluation of a possibly pathogenic impact
of individual SNVs is important for human genetics (22–
27).

Various algorithms and corresponding computational
tools have been developed and made publicly available
to analyze splicing regulatory elements: some algorithms
identify previously described hexamer or octamer motifs
(e.g. ESEfinder, FAS-ESS, RESCUE-ESE, PESX, cf. e.g.
(24,28)), others provide e.g. hexamer weights quantify-
ing their splice enhancing or silencing properties, and en-
abling the calculation of SRE profiles in moving windows
along genomic sequences (ESR-seq (29), HEXplorer (30)).
Most recently, neural network or deep-learning based algo-
rithms for splicing prediction have been developed that take
splice sites and their neighborhoods or very wide sequence
contexts into account (MMSplice (31), SpliceAI (32))
(4,33).

These algorithms have recently been complemented by
an experimentally obtained database of RNA elements as
part of the Encyclopedia of DNA Elements (ENCODE)
project phase III. This dataset contains binding motifs for
RNA-binding proteins, including splicing regulatory pro-
teins (34).

Minigene splicing reporters are widely used model sys-
tems to experimentally examine splicing. In particular, mas-
sively parallel splicing assays (MPSA) permit screening the
impact on splicing for a large number of randomly gener-
ated sequences in a single experiment. These random se-
quences can e.g. cover a 5′ss position, various specific exonic
k-mer positions, or be spread out across an entire exon. For
each individual ‘input’ sequence, an RNA-seq based enrich-
ment index quantifies the sequence impact on splicing, the
‘output’ (3,29,35).

Here, we followed the inverse route of an in-silico design
process for sequences with a priori prescribed splicing reg-
ulatory properties, represented by approximately constant
HEXplorer profiles. We experimentally validated this HEX-
plorer guided design in an MPSA on more than 3000 se-
quences inserted between two competing 5′ss in a splicing
reporter. Complementarily, we examined splice site compe-
tition in two large whole transcriptome RNA-seq datasets
and derived a two-dimensional 5′ splice site usage land-
scape dependent on intrinsic 5′ss strength and SRE neigh-
borhood. Introduction of a novel unified 5′ss score taking
both factors into account improved discrimination accu-
racy between annotated 5′ss and exonic GT sites.

MATERIALS AND METHODS

Expression plasmids

pXGH5 (hGH) (36) was cotransfected to monitor transfec-
tion efficiency.

Oligonucleotides

All oligonucleotides used were obtained from Metabion
GmbH (Planegg, Germany) (see Supplementary File S1).

Cloning

A reporter construct based on the HIV-1
glycoprotein/eGFP expression plasmid (6,13) as well
as a 3-exon minigene based on the fibrinogen Bß subunit
under the control of a cytomegalovirus immediate early
(CMVie) promoter (37) were used in this study. All se-
quences were cloned using either PCR-products of the
respective forward and reverse primer pairs or DNA frag-
ments. Detailed cloning strategies and primer sequences
can be found in Supplementary File S1.

Cell culture and RT-PCR analysis

HeLa cells (ATCC® CCL-2™, mycoplasma free) were culti-
vated in Dulbecco’s high-glucose modified Eagle’s medium
(Gibco #41966) supplemented with 10% fetal calf serum
(PAN Biotech #P30-3031) and 50 �g/ml penicillin and
streptomycin each (Gibco #15140-122). Transient trans-
fection experiments were performed with six-well plates at
2.5 × 105 cells per well by using TransIT®-LT1 transfec-
tion reagent (Mirus Bio LLC US #MIR2305) according to
the manufacturer’s instructions. Total RNA was isolated 24
h post-transfection by using acid guanidinium thiocyanate-
phenol-chloroform as described previously (38). For (q)RT-
PCR analyses, RNA was reversely transcribed by using
Superscript III Reverse Transcriptase (Invitrogen #18080–
085) and Oligo(dT) primer (Roche #10814270001). For
the analyses of the splicing constructs either primer pair
#3210/#3211(#640) or #2648/2649 was used and PCRs
were separated on non-denaturing 10% polyacrylamide
gels. Quantitative RT-PCR analysis was performed by us-
ing the qPCR MasterMix (PrimerDesign Ltd #PPLUS-CL-
SY-10ML) and Roche LightCycler 1.5. For normalization,
primers #1224/#1225 were used to monitor the level of the
transfection control hGH present in each sample.

Protein isolation by RNA affinity chromatography

Substrate RNAs were in vitro transcribed using theT7 Ri-
boMaxTM Express Large Scale RNA Production Sys-
tem (Promega #P1320) according to the manufacturer’s
recommendations. Three thousand picomoles of the sub-
strate RNA oligonucleotides for each octamer (+10.32
#5648, –0.15 #5647, –10.35 #5846) were covalently coupled
to adipic acid dihydrazideagarose beads (Sigma #40802-
10ML). 60% of HeLa nuclear extract (SKU: CC-01-20-50,
Cilbiotech/now Ipracell #CC-01-20-50) was added to the
immobilized RNAs. After stringent washing with buffer
D containing different concentrations of KCl (20 mM
HEPES–KOH [pH 7.9], 5% [vol/vol] glycerol, 0.1–0.5 M
KCl, 0.2 M ethylenediaminetetraacetic acid, 0.5 mM dithio-
threitol, 0.4M MgCl2), precipitated proteins were eluted
in protein sample buffer. Samples were heated up to 95◦C
for 10 min and either submitted to LC–MS/MS-analysis
or loaded onto sodium dodecyl sulphate-polyacrylamide
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gel electrophoresis (SDS PAGE) for western blot analy-
sis. Samples were transferred to a nitrocellulose membrane
probed with primary and secondary antibodies (SRSF3
(Abcam ab198291, 1:000), PTB (kind gift from Douglas
Black, 1:1000), hnRNPD (Merck Millipore AUF-1 07-260,
1:1000), MS2 (Tetracore TC-7004-002, 1:1000), Goat anti-
Rabbit IgG Superclonal™ Secondary Antibody (Invitrogen
A27036, 1:2500) and developed with ECL chemilumines-
cence reagent (GE Healthcare #RPN2106).

HEXplorer score algorithm and splice site HEXplorer weight
(SSHW)

Based on a RESCUE-type approach, the HEXplorer score
HZEI is calculated from different hexamer occurrences in
exonic and intronic sequences in the neighborhood of splice
donors, and it has been successfully used for the identi-
fication of exonic splicing regulatory elements (30,37,39).
Briefly, from 43 464 constitutively spliced human exons with
canonical 5′ss collected from ENSEMBL (24), Z-scores for
all 4096 hexamers were calculated from normalized hex-
amer frequency differences up- and downstream of weak
and strong splice donors, ranging from −73 for TTTTTT
to + 34 for GAAGAA.

The HEXplorer score HZEI of any index nucleotide in
a genomic sequence is then calculated as average hex-
amer Z-score of all six hexamers overlapping with this
index nucleotide. This algorithm permits plotting HEX-
plorer score profiles along genomic sequences, and these
profiles reflect splice enhancing or silencing properties in
the neighborhood of a splice donor: HEXplorer score pos-
itive regions support downstream splice donors and re-
press upstream ones, and HZEI negative regions vice versa.
HEXplorer score profiles of genomic sequences were cal-
culated using the web interface (https://www2.hhu.de/rna/
html/hexplorer score.php).

As measure of SRE impact on 5′ss recognition, we cal-
culated the 5′ splice site HEXplorer weight SSHW as the
total HZEI sum (

∑
up HZEI) in a 50 nt upstream minus the

symmetrical 50 nt downstream neighborhood (
∑

dn HZEI)
(37,40), excluding all 11 nt of the 5′ss from the HZEI calcula-
tion: the 50 nt wide neighborhoods ended at exonic position
−4 and started at intronic position +9, respectively. This
definition has been made analogous to the ‘exonic splicing
motif difference’ ESMD introduced by Ke et al. and to the
‘splice site enhancer weight’ by Brillen et al. (37,40), and it
captures both enhancing and silencing properties of 50 nt
wide up- and downstream regions that have been used be-
fore and are plausibly considered to contain relevant SREs.

When comparing SSHW of pairs of exonic GT-sites and
5′ss, we carefully adapted the selection of appropriate neigh-
borhoods depending on the GT-site-to-5′ss distance, ex-
cluding the 11 nt long proper 5′ss or exonic GT-site se-
quence: If GT-site and 5′ss were >60 nt apart, we used 50 nt
wide neighborhoods A, B1, B2 and C as depicted in Supple-
mentary Figure S4C. For pairs of GT-site and 5′ss that were
between 61 nt and 111 nt apart, the neighborhoods B1 and
B2 consequently overlapped. If GT-site and 5′ss were closer
than 61 nt, we chose B1 = B2 as the entire region between
but excluding the two sites. We then calculated the SSHW

difference between GT site and 5′ss as �SSHW = (
∑

A –∑
B1 –

∑
B2 +

∑
C) HZEI (Supplementary Figure S4C).

Mass spectrometric analysis

Protein samples were shortly separated over about 4 mm
running distance in a 4–12% polyacrylamide gel. After sil-
ver staining, protein containing bands were excised and pre-
pared for liquid chromatography–tandem mass spectrome-
try (LC–MS/MS) as described previously (37). P-values on
the vertical axis of the volcano plot (Supplementary Fig-
ure S2A) give the probability that a given log2-fold change
in protein binding detected by mass spectrometry may have
occurred by chance. Smaller P-values correspond to more
reliably detected protein binding differences. P-values do
not only depend on the log2-fold change, but also on the
absolute detection levels.

Preparation of octamer library

For the generation of the octamer library, a PCR fragment
was generated with a primer containing a random 8-mer
(#6576). PCR fragments were inserted into the respective
backbone (see Supplementary File S1), and the plasmid li-
brary was amplified after transformation of E. coli. The li-
brary containing plasmids were then used for transfection,
followed by RNA isolation and analysis via RT-PCR us-
ing primers #3210/#3211 and subsequent PAA-gel analy-
sis. For amplicon sequencing, the desired band was excised
and purified via the QIAquick Gel Extraction Kit (Qiagen
#28704) and re-amplified using the same primers. For the
sequencing of the plasmid library, plasmid DNA was ampli-
fied using primers #6654/#6655 and samples were purified
via Monarch PCR & DNA Cleanup Kit (NEB #T1030L).
NGS amplicon sequencing was carried out by Eurofins Ge-
nomics, Konstanz, Germany.

Sequencing of octamer libraries

The library was sequenced by the company Eurofins Ge-
nomics, using Illumina NovaSeq 6000 PE150, generating 9
917 080 and 8 418 350 reads for the plasmid sample (rev
primer: #6654 and fwd primer: #6655) and the band sam-
ple (rev primer: #3211 and fwd primer: #6655), respectively.

Quantification of octamer frequencies

First, quality metrics of the reads, stored in FASTQ
files, were assessed using the tools FASTQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) and Mul-
tiQC (https://academic.oup.com/bioinformatics/article/32/
19/3047/2196507). Read pairs were corrected and merged
using the bbmerge.sh script of the tool bbmerge (version
38.00) (41). Since human cells were transfected with the re-
porter construct, we aligned the reads against the reference
genome and the reporter plasmid sequence simultaneously
with STAR (version 2.5.4b) (42). From the reads of the gel-
electrophoresis band sample, we selected only those reads,
which showed usage of the downstream splice donor for fur-
ther analysis, since those reads still hold the sequence within
the octamer library.

https://www2.hhu.de/rna/html/hexplorer_score.php
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://academic.oup.com/bioinformatics/article/32/19/3047/2196507
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The sequence of every read within the octamer li-
brary was determined, using regular expressions con-
taining the flanking anchor sequences 5′: ATTGG up-
stream and 5′: CCTAT downstream of the octamer library
(NNNNNNNN). Read pairs were discarded, when the de-
termined octamer sequence was not identical in either the
forward or reverse read, or when the anchor sequences
could not be found, resulting in 1 002 322 reads from RNA
fragments with downstream SD usage and 8 576 066 reads
containing an octamer in plasmid sequencing data.

Single octamer detection frequencies in the octamer li-
brary were calculated from sequencing the transfected plas-
mids (‘input’) and the isolated band after gel-electrophoresis
(‘output’). The latter contained RNA fragments with us-
age of the downstream splice donor after transfection with
the reporter plasmid. Octamer sequences more frequently
found in the band indicate enhanced downstream splice
donor usage. We calculated a normalized enrichment index
(NEI) that quantifies octamer enrichment in the band rel-
ative to the plasmid input, corrected for different sample
sequencing depth: NEI = (nband/nplasmid)/(Nband/Nplasmid),
where nband and nplasmid denote the number of reads hold-
ing a given octamer in band or plasmid, whereas Nband and
Nplasmid denote the total number of reads for the respective
samples. To reduce the impact of technical fluctuations, we
excluded octamers with nband <9 reads and nplasmid <5 reads.

RNA sequencing data generation and processing

We re-analyzed two RNA sequencing data sets: one origi-
nating from 46 samples of primary fibroblasts (previously
described in (43)), and one from four samples of cardiovas-
cular endothelial cells (18). Briefly, the cDNA libraries were
created using TruSeq RNA SamplePrep kit (Illumina) after
poly(A) enrichment according to the manufacturer’s proto-
col. Afterwards, the samples were amplified on nine Illu-
mina flow cells and sequenced on a Illumina HiSeq 2000
sequencer. Subsequently the resulting 101-nt sequence seg-
ments were converted to FASTQ by CASAVA (1.8.2). The
samples were checked for base calling quality during se-
quencing, sub-sequences of a single read with low average
base calling quality as well as left over adapters from li-
brary preparation were removed using Trimmomatic ver-
sion 0.36 (44). Trimmed reads shorter than 75 bases were
discarded since this length is an established threshold in
the analysis concerning exon junctions (45). The tool sort-
MeRNA was used to validate complete rRNA removal dur-
ing poly(A) RNA enrichment (46). Throughout the differ-
ent steps of FASTQ file processing, the quality of the reads
was assessed using the tools FASTQC and MultiQC. Af-
ter processing the FASTQ files, the reads were mapped to
the ENSEMBL human reference genome (version 91) us-
ing the STAR software package (2.5.4b). The reads were
aligned to the reference following the two-pass mapping
protocol recommended for splice site usage analysis (42,47).
After alignment with STAR, the BAM files were summa-
rized to a single gap file using CRAN package rbamtools
(48) and Bioconductor package spliceSites (49). Additional
packages were used during the analysis. FASTQ file prepa-
ration and alignment, as well as the first part of BAM file
processing in R was accomplished using custom BASH shell

scripts in the environment of the High Performance Com-
puting Cluster of Heinrich-Heine University Düsseldorf.
Computational support and infrastructure was provided by
the ‘Centre for Information and Media Technology’ (ZIM)
at Heinrich-Heine University Düsseldorf (Germany).

Gene-and-sample normalization of RNA-seq reads

Comparing RNA-seq reads across many genes from differ-
ent samples requires careful normalization of reads and re-
moval of potentially noisy read counts, which we address
below.

In each human––46 fibroblast and 4
endothelium––sample, we separately collected (gapped)
exon junction reads that had gap quality score gqs ≥400
and gap length <26 914 (95% of human introns are
shorter) as described in (43,49). From here on, we denote
such gapped reads detected at any given genomic site as
‘5′ss reads’ on the corresponding 5′ splice sites, irrespective
of Ensembl annotation.

The majority of genes were very reliably expressed in
most samples. For the 46 fibroblast samples e.g. 12 850 genes
(47.3%) containing 99.7% of all reads were detected in all
46 samples. The number of samples a gene was detected
in followed a U-shaped distribution (Supplementary Fig-
ure S3A, black squares), and those genes detected in few
samples each had very few reads. Genes detected in more
samples also had more reads per sample, not just in total
(Supplementary Figure S3A, gray bars).

Normalization of 5′ss reads then proceeded in three steps.
In order to account for differential RNA-seq detection be-
tween samples, we normalized all 5′ss reads by the total
number (in millions) of exon junction reads in each indi-
vidual sample, obtaining sample normalized RPMG (reads
per million gapped reads) values for the 5′ss usage in each
sample.

In the second normalization step, we factored in differen-
tial gene expression in each sample. For each specific gene
in a given sample, we determined the MRIGS (maximum
RPMG in gene and sample) of the most used 5′ss in this
gene as gene-expression measure. If genes with very few
reads were detected in samples with an overall high level
of technical RNA-seq read coverage (large sequencing li-
brary size), they may have been false-positive detections
due to RNA-seq technique limitations, and could be iden-
tified by low MRIGS values. We subsequently kept high-
confidence genes (with 99.1% of all exon junction reads) in
our analysis only from those samples, where they were de-
tected with MRIGS ≥1 (Supplementary Figure S3B, black
arrow). Thus, a specific gene may be kept in one sample and
discarded as noise candidate in another. By definition, in a
gene with MRIGS <1, the most used 5′ss had less than one
read for every million exon junction reads in the entire sam-
ple. To permit an appropriate 5′ss selection, we eventually
extended the ‘high-confidence’ criterion from genes to splice
sites.

In order to allow 5′ss usage comparison across genes with
different expression levels in a single sample, we normalized
all 5′ss reads by the individual gene expression MRIGS in
the specific sample. We thus obtained gene-and-sample nor-
malized reads (GSNR) for each 5′ss in each sample, val-



8838 Nucleic Acids Research, 2022, Vol. 50, No. 15

ues between 0 and 100%, and in each sample each gene
contained one 5′ss with GSNR = 100%: the 5′ss with this
gene’s maximum (MRIGS) number of reads in this sample.
Finally, we averaged the different GSNRs of a 5′ss across
all samples with sufficient (MRIGS ≥ 1) gene expression,
obtaining gene normalized reads (GNR) as measure of the
overall 5′ss usage in our RNA-seq dataset. Since the ‘most-
used’ 5′ss of a given gene could differ from sample to sam-
ple, there was not necessarily a single 5′ss with GNR =
100% in every gene.

The above analysis steps were independently performed
for both fibroblast and endothelium RNA-seq datasets.
Here, we present summary data for the larger fibroblast
dataset; the respective data for endothelium are shown in
direct comparison to fibroblast data in Suppl. File S2. From
the fibroblast dataset, we obtained 92,493 internal exons
of high-confidence genes with canonical 5′ss that were En-
sembl annotated in at least one TSL1 transcript and con-
tained at least one exonic GT site. These exons had a median
exon length of 166 nt (average 417 nt), and the 5′ss GNR
distribution was composed of three parts (Supplementary
Figure S4A: fibroblast dataset, B: endothelium dataset): (i)
a narrow peak at low GNR indicating noisy reads, (ii) a
Gaussian part between 20% and 97% with mean 72% and
standard deviation 18% (r2 = 0.995), and (iii) a peak at 98–
100% reflecting the maximally used 5′ss in each gene. Sim-
ilar to our approach in (1), we considered 3240 5′ss (3.5%)
detected below 2% of gene expression level (GNR < 2%) as
potential noise candidates. For further analysis, we retained
89 253 high-confidence 5′ss (96.5%) with GNR ≥ 2% from
genes with MRIGS ≥ 1.

Expected relative enhancement of GT-site usage next to
mutation-weakened 5′ss

Our original log-GNR ratio (LGNRr) landscape was built
from human fibroblast RNA-seq data of 320 601 pairs of
mostly inactive exonic GT-sites and their corresponding
high-confidence TSL1 annotated 5′ss. However, this dataset
contained many GT-sites with very low HBond scores un-
likely to support any actual usage as splice site. There-
fore, for 5′ss mutation assessment with respect to activa-
tion of cryptic GT-sites, we first determined an adapted
LGNRr landscape using only 45 561 GT-sites with HBond
score ≥10, applying the same procedure as detailed be-
fore. We then used this adapted landscape to determine
LGNRr values for pairs of GT-site and wild type or mu-
tated 5′ss from their respective coordinates �HBS(GT–5′ss)
and �SSHW(GT–5′ss).

For each GT-site in the exonic or 150 nt intronic
neighborhood of a documented 5′ss mutation, we de-
termined their corresponding LGNRr values as mea-
sures of landscape-predicted GT-site usage relative
to both wild type and mutant 5′ss. Numerically, we
determined these LGNRr values from the lookup ta-
bles for the GT-site/5′ss pair coordinates �HBS and
�SSHW: LGNRr(GT/wt) = LGNRr(�HBS(GT–
wt), �SSHW(GT–wt)) and LGNRr(GT/mt) =
LGNRr(�HBS(GT–mt), �SSHW(GT–mt)). From these
two LGNRr values, we determined the expected relative

enhancement (ERE) of GT-site usage next to the mutated
5′ss relative to its usage next to the wild type 5′ss as ERE =
10LGNRr(GT/mt)–LGNRr(GT/wt).

For GT-site/5’ss pairs the �HBS-�SSHW lookup range
covered by the LGNRr landscape, we exchanged GT-
site and 5′ss, determining LGNRr(�HBS, �SSHW) = –
LGNRr(–�HBS, –�SSHW) instead. This was particularly
relevant for mutations that considerably weakened a 5′ss,
so that �HBS(GT–mt) >2 was outside the original lookup
range.

Receiver operating characteristic curves

For the classification task of separating TSL1 annotated
5′ss from exonic GT sites based on their HBond score
or SSHW, we developed three different logistic regression
models, either depending (i) only on SSHW, (ii) only on
HBS or (iii) depending on both scores including an inter-
action term. For the most general logistic regression (3), we
determined four parameters �, �, � , � from fitting a logistic
function with values between zero, corresponding to a GT
site, and one, referring to an annotated 5′ss:

f (HBS, SSHW)

= 1/ (1 + exp (−α · HBS − β · SSHW − γ · HBS · SSHW − δ))

to the training dataset of 45 165 GT sites and 45 411 anno-
tated 5′ss. The value of the (for � � 1 approximately linear)
fit function in the exponent can be considered as a general-
ized splice site score combining HBS and SSHW, and dis-
criminating between annotated 5′ss and exonic GT sites.

Both the logistic regression models and the receiver oper-
ating characteristic curves (ROC) obtained for the three re-
gression models were generated using the R-package ROCit
(version 1.1.1).

RESULTS

Inserting SRSF3 binding motif CANC in ‘splicing neutral’
reference sequence

In the first part of this work, we aim at in-silico
designing––and experimentally validating––sequence seg-
ments with controlled splicing regulatory properties, com-
putationally represented by their HEXplorer profiles. In
principle, such ‘designer exons’ can be created by insert-
ing single or multiple known SRE motifs into reference se-
quences that are ideally splicing neutral with respect to a
specific genomic or reporter context (19,50).

Following this approach, we first characterized a refer-
ence exon composed of repeats of the octamer CCTATTGG
that presents a nearly constant average HZEI amplitude of –
0.15 suggesting it is splicing neutral. In a three-exon splicing
reporter (Figure 1A; previously described in (37)), we used
five repeats of this ‘octamer –0.15’ as central exon with a
strong splice acceptor (MaxEnt 11.07) and splice donors of
varying strength (HBS 17.5 down to 10.7; Figure 1D) (http:
//www2.hhu.de/rna/html/hbond score.php (7)). We found
inclusion of the reference exon only for the strongest 5′ss
(HBS 17.5) (Figure 1B, lane 1), while slightly weaker 5′ss
with HBS of 16.3 or less led to full exon skipping (Figure 1B,

http://www2.hhu.de/rna/html/hbond_score.php
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Figure 1. SRSF3 binding motifs CANC mediate exon inclusion in splicing reporter. (A) Sketch of the 3-exon minigene reporter plasmid. The middle
exon contains an insertion site for different SREs which are flanked by an intrinsically strong splice acceptor (SA MaxEnt 11.07) and splice donor with
varying intrinsic strength. (B) 2.5 × 105 HeLa cells were transfected with 1 �g of the reporter plasmids and 1 �g of pXGH5 (hGH) that was used for
monitoring transfection efficiency. RNA was harvested and reverse transcribed into cDNA 24 h post transfection with primer pair #2648/#2649. PCR
products were run on a 10% non-denaturing polyacrylamide gel to analyze exon inclusion in the presence of the neutral octamer –0.15 upstream of six
different splice donors with HBond scores ranging from 17.5 down to 10.7. Without SRE support, lowering the HBond score from 17.5 to 16.3 resulted
in full exon skipping. (C) A single repeat of an SRSF3 binding motif (CANC, N = all nucleotides) was inserted in the central octamer either flanked by
AC–AA to maximize the total HEXplorer score or CA–TA in order to minimize the total HEXplorer score. In this construct, the intrinsic splice donor
strength was set to 15.0. To analyze the splicing pattern, 2.5 × 105 HeLa cells were transiently transfected with 1 �g of each construct together with 1 �g of
pXGH5 (hGH) to monitor transfection efficiency. Twenty-four hours after transfection, RNA was isolated and subjected to RT-PCR analysis using primer
pairs #2648/#2649 and #1224/#1225 (hGH). PCR products were separated by 10% non-denaturing polyacrylamide gel electrophoresis and stained with
ethidium bromide. The reduction of intrinsic splice donor strength resulted in full exon skipping upon insertion of the splicing neutral octamer –0.15.
Depending on their neighboring dinucleotides, the SRSF3 binding motifs either induced a low level of exon inclusion with predominant exon skipping
(CA–TA), or a high level of exon inclusion (AC–AA). (D) 5′ss sequences for (B). (E) HEXplorer plots show the comparison of CANC embedded in weak
(blue) and strong (black) dinucleotide neighborhoods.
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Figure 2. Splicing regulatory effects of concatenated SRSF3 binding sites. (A) Schematic drawing of the reporter construct that contains two equally
strong splice donors SD with an HBond score of 17.5 (MaxEnt 10.10) and is used to detect up- or downstream enhancing or silencing properties of the
concatenated SRSF3 binding motifs (CANC, N = all nucleotides). HEXplorer plots of the sequences show positive areas for the CAAC, CATC and CAGC
repeats that indicate the likelihood of SR protein binding, while the CACC repeat displays a negative area that indicates putative hnRNP protein binding.
(B) 2.5 × 105 HeLa cells were transiently transfected with 1�g of each construct together with 1 �g of pXGH5 (hGH) to monitor transfection efficiency.
Twenty-four hours after transfection, RNA was isolated and subjected to RT-PCR analysis using primer pairs #3210/#3211 and #1224/#1225 (hGH).
PCR products were separated by 10% non-denaturing polyacrylamide gel electrophoresis and stained with ethidium bromide. While the insertion of CAAC,
CATC and CAGC repeats led to the use of the downstream located donor as expected upon the insertion of an SR protein binding site, concatenating the
SRSF3 binding motif CACC led to the use of the upstream located splice donor.

lanes 2–6), marking the transition threshold between exon
inclusion and skipping.

In order to test the insertion of a splicing enhancer motif
in an instructive example, we therefore used a moderately
strong 5′ss with HBS 15.0, and inserted the well-examined
SRSF3 binding motif CANC (N = A, C, G, T) (51) into the
center of the reference exon by replacing the middle octamer
–0.15. In order to keep the length of the reference exon con-
stant, we extended the CANC motif by two flanking nu-
cleotides on either side. We chose two variants of flank-
ing nucleotides that either maximized or minimized total
HEXplorer score in this exon (Figure 1E). HZEI was max-
imized on average for ACCANCAA (‘strong flanking nu-
cleotides’) and minimized for CACANCTA (‘weak flanking
nucleotides’) as central octamers.

While the reference central octamer –0.15 led to com-
plete exon skipping (as expected from the calibration ex-
periment), in the weak neighborhood CA–TA each CANC
SRSF3 binding site in the central octamer primarily re-
sulted in exon skipping and only a low level of exon in-
clusion (Figure 1C, lanes 1, 2–5). Strengthening the neigh-
borhood by substituting AC–AA as flanking dinucleotides
around the same CANC sites increased total HZEI by be-
tween ∼70 and ∼92 (Figure 1E), and resulted in a high level
of exon inclusion (Figure 1C, lanes 6–9). These experiments
confirmed that all four CANC sites act as exonic splicing
enhancers, in line with the solution structures of SRSF3
RNA-recognition motifs (RRM) in complex with the RNA
sequence (51). Furthermore, the neighboring dinucleotides
enclosing the central CANC motif additionally impacted
exon inclusion level, in accordance with HEXplorer predic-

tion for the in silico designed weak and strong neighbor-
hoods.

Different splicing regulatory properties upon CANC concate-
nation for different ‘N’

From the insertion of single SRSF3 binding sites (CANC),
we now proceeded to using longer exonic splicing regulatory
sequences by concatenating multiple copies of the CANC
motifs. For a differential assessment of up- and downstream
enhancing directions as well, we switched to a 5′ss competi-
tion reporter assay and inserted ten repeats of each CANC
between two identical copies of a strong 5′ss with HBS 17.5.
These competing 5′ss defined the 3′ end of the first exon
of the HIV-based two-exon splicing reporter whose RNA
level depends on U1 snRNP binding to either the upstream
or downstream 5′ss (Figure 2A, (6)). The impact of the in-
serted 40 nt sequences on splice site selection was analyzed
by RT-PCR following transient transfection assays.

We first determined HEXplorer score profiles for all four
CANC repeats (ten repeats of every CANC). As expected
for SRSF3 binding sites, HEXplorer score profiles were ex-
clusively positive for CAAC (HZEI amplitude ∼10), CAGC
(HZEI ∼7) and CATC (HZEI ∼5) repeats. Surprisingly how-
ever, ten repeats of CACC showed an entirely negative
HEXplorer score profile with HZEI amplitude ∼–4, sug-
gesting upstream splice enhancing and downstream splice
suppressing properties (Figure 2A, right panels).

Consistent with the unexpected HEXplorer score predic-
tion, insertion of CAAC, CATC and CAGC repeats led to
the exclusive use of the downstream located donor (Fig-
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ure 2B, lanes 1, 2 and 4), while insertion of CACC repeats
led to a complete switch to the upstream 5′ss (Figure 2B,
lane 3). For the CACC motif, in fact, concatenation creates
a cytosine-rich CACCC motif which may be bound by the
exonic splicing silencer hnRNP K (52), consistent with the
negative HEXplorer profile.

This example strikingly demonstrates that concatenation
of an enhancer sequence may even invert the original se-
quence’s splicing regulatory properties. We therefore sys-
tematically searched for sequences with unaltered splicing
regulatory properties when multiply concatenated.

HEXplorer profiles of periodic k-mer sequences

The previous experiments demonstrated that HEXplorer
score profiles may accurately reflect unexpected experi-
mental outcome of concatenating single splicing regula-
tory sequences. By systematically analyzing HEXplorer
score profiles, we therefore computationally searched for
k-mer sequences with specific a priori prescribed HZEI
amplitude that retained splicing regulatory properties of
the single k-mer upon concatenation. Since single RNA-
recognition motifs (RRMs) of splicing regulatory proteins
are thought to bind up to eight nucleotides (53), and
in line with motif lengths applied by various computa-
tional tools, we searched for periodic octamer sequences
with approximately constant HEXplorer score amplitude
(HZEI ≈ const.). By definition, HEXplorer score profiles of
periodic sequences (with period ≥6 nt) have the same pe-
riodicity as these sequences. Thus, for octamer repeats, up
to eight different HZEI values can occur in the HEXplorer
profile, and they repeat every eight nucleotides.

We therefore systematically searched for octamer se-
quences that upon concatenation show little HEXplorer
score amplitude variation around their average. To this end,
we calculated average and standard deviation of HZEI am-
plitudes for all 65 536 possible octamers from 5-fold con-
catenations. In order to avoid accidentally creating 5′ss or
3′ss in the designed sequences, we excluded octamers con-
taining a GT or AG dinucleotide, or creating one by con-
catenation, with 23 120 octamers remaining. Limiting HZEI
variation to standard deviation <2 still left 18 925 octamers
in the average HZEI amplitude range from –20 to + 14. The
octamer count histogram in Supplementary Figure S1A dis-
plays the number of different octamers for all HZEI inter-
vals in this range (gray bars). Note that each bin contains
sequences with low standard deviation <0.5 (open squares
show the minimum HZEI standard deviation in each bin).

From this set of in silico designed, extremely low HZEI
variability octamers, we selected a total of fifteen test oc-
tamers in addition to our reference octamer (CCTATTGG,
average HZEI amplitude –0.15): eight downstream enhanc-
ing octamers with HZEI amplitude +10.32, and seven up-
stream enhancing octamers with HZEI amplitude –10.35.

Splicing reporter test of in silico designed octamers

In order to experimentally validate the HEXplorer predic-
tions for all fifteen +10.32 and –10.35 octamers, as well as
for the reference octamer –0.15, we tested five repeats of
each in the above splicing competition reporter between two

identical strong 5′ss (HBS 17.5). Figure 3 gives a represen-
tative example of one up- and one downstream enhancing
octamer, while the remaining results are shown in Supple-
mentary Figure 1B.

For each of the +10.32 octamers, insertion of repeats re-
sulted in exclusive recognition of the downstream 5′ss, while
the use of the upstream donor was completely repressed,
confirming their predicted directional splicing regulatory
activity (Figure 3C, lane 1; Supplementary Figure S1B,
lanes A–G). While the splicing neutral octamer –0.15 medi-
ated between the two splice donors on a basal level (Figure
3C, lane 2), for all but one –10.35 octamer, insertion of re-
peats resulted in exclusive selection of the upstream located
5′ss (Figure 3C, lane 3; Supplementary Figure S1B, lanes
H–M), in agreement with their predicted splicing regula-
tory activities. One of the –10.35 octamers, however, exhib-
ited neutral splicing of both competing 5′ss rather than only
upstream enhancing behavior: GCATTTAT led to equal
amounts of up- and downstream 5′ss use (Supplementary
Figure S1B, lane J). This may be due to the joint effects of
potential hnRNP D and SRSF6 binding sites (ENCODE
(34), ESEFinder (54)) or to different protein RNA bind-
ing affinities that were not represented in the exonic and
intronic datasets constituting the basis of the HEXplorer
score algorithm.

In general, insertion of octamers +10.32 and octamers –
10.35 drastically elevated overall (up- or downstream) splice
donor recognition following the direction dependent action
of splicing regulatory elements, whereas the splicing neutral
octamer –0.15 did not show any splice donor preference in
this reporter. The lower total amount of RNA found with
the splicing neutral octamer –0.15 (Figure 3C, lane 2, 3E,
lane 1) was in agreement with U1 snRNA dependent re-
duced transcription initiation, regardless of whether the U1
snRNA binding site was splicing active (55).

SR- and hnRNP proteins bind to HEXplorer-designed oc-
tamer sequences

To further analyze the mechanism of splicing regulation
conducted by the non-evolutionary in silico designed ar-
tificial octamer sequences, we performed an RNA affin-
ity purification assay to identify splicing regulatory pro-
teins binding to the sequences. To this end, we incubated 40
nt long RNA oligonucleotides (five octamer repeats of the
two ±10.3 octamers shown in Figure 3A, as well as the ref-
erence octamer –0.15) with HeLa nuclear extract (56). After
several washing steps, the remaining specifically bound pro-
teins were eluted and subjected to MS-analysis. Results were
analyzed using Perseus software (57). When filtering for
highest MS/MS counts and searching for splicing related
proteins, a binding preference of SRSF3 to the downstream
enhancing splicing regulatory octamer +10.32 was revealed
(Supplementary Figure S2A). The negative octamer –10.35
was preferably bound by the PTB isoforms PTBP1 and
PTBP2, as well as hnRNPDL and TIA-1, all known repres-
sors of downstream splice donors (13). The neutral octamer
–0.15 showed no preferred binding for any splicing related
proteins (Suppl. File S3). Validation of these results was
performed via western blot using antibodies specifically de-
tecting the splicing related binding proteins SRSF3 for oc-
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Figure 3. HEXplorer guided sequences shift splice donor use. (A) HEXplorer predicted positive, neutral and negative periodic octamer sequences. CV
HZEI denotes standard deviation of HZEI values divided by their average. (B) Schematic drawing of the reporter construct that contains two equally
strong splice donors with an HBond score of 17.5 (MaxEnt 10.10) and is used to detect up- or downstream enhancing or silencing properties of periodic,
concatenated HEXplorer predicted octamers. (C) Five repeats of either octamer –10.35 or +10.32 completely shifted 5′ss usage to the up- or downstream
SD. (D) Schematic drawing of the same reporter construct used to detect up- or downstream enhancing or silencing properties of single HEXplorer
predicted octamers. Point mutations in the central splicing neutral octamer –0.15 sequence increase the positive HEXplorer plot area indicated by the
positive �HZEI and morph the neutral reference octamer into octamer +10.32. (C, E) 2.5 × 105 HeLa cells were transiently transfected with 1 �g of each
construct together with 1 �g of pXGH5 (hGH) to monitor transfection efficiency. Twenty-four hours after transfection, RNA was isolated and subjected
to RT-PCR analysis using primer pairs #3210/#3211 and #1224/#1225 (hGH). PCR products were separated by a 10% non-denaturing polyacrylamide
gel electrophoresis and stained with ethidium bromide (left).
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tamer +10.32, PTB and hnRNP D for octamer –10.35 and
the control MS2 coat (Supplementary Figure S2B, C).

Deep sequencing of octamer library inserted in splicing com-
petition reporter

Having confirmed HEXplorer predicted impact on 5′ splice
site usage for fourteen in silico designed 40 nt long octamer
concatenates, we next sought to vary the single central oc-
tamer flanked by two reference octamers on either side. In
order to systematically examine the impact on downstream
5′ splice site usage for a large octamer set, we eventually
applied a massively parallel splicing assay (MPSA), using
our established splicing competition assay with two identi-
cal strong 5′ss (HBS 17.5).

In a first step, we tested sensitivity to point mutations
in the central octamer of our splicing reporter. Observing
that octamer + 10.32 differed from the reference by only
four nucleotide substitutions, we morphed the reference oc-
tamer into octamer +10.32 by successive point mutations
(Figure 3D). The first single nt substitution increased the
HEXplorer score by �HZEI = 29.28, a three-nt substitu-
tion by �HZEI = 68.68, and the final four-nt substitution
by �HZEI = 101.2, obtaining octamer +10.32.

Increasing the HEXplorer score HZEI of the reference oc-
tamer by ∼30 led to an increase of overall splicing efficiency
and shifted 5′ss usage to the downstream 5′ss (Figure 3E,
lane 2). Further increasing HZEI (total change �HZEI ∼70
from reference), reduced upstream and increased down-
stream 5′ss usage even more (Figure 3E, lane 3). Finally,
the fourth point mutation morphed the central reference oc-
tamer into the + 10.32 octamer (total change �HZEI ∼100
from reference) and led to the exclusive usage of the down-
stream splice donor site, while upstream donor usage could
not be detected (Figure 3E, lane 4). Thus, in this setting
even a single octamer +10.32 within the otherwise HEX-
plorer neutral reference sequence led to a complete switch
to the downstream 5′ss, similar to the previously tested five
octamer copies (cf. Figure 3C, lane 1).

Having confirmed the splicing competition assay sensi-
tivity to changes only in the central octamer, we prepared a
minigene library incorporating a central random octamer in
our reference exon between two identical copies of a strong
5′ss (HBS 17.5). Amplifying this library in E. coli yielded a
total of 20 767 different octamers out of 65 536 possible oc-
tamers, as determined by amplicon sequencing. HeLa cells
were subsequently transfected with this library, total RNA
was isolated and amplified with primer pair #3210/#3211
enclosing both competing 5′ss. Bands corresponding to up-
and downstream 5′ss usage were separated by PAGE. Oc-
tamer occurrence frequencies were again determined by am-
plicon sequencing. For each octamer, the number of reads
both in the plasmid library and in the downstream 5′ss
band were determined, and the normalized enrichment in-
dex (NEI) was calculated (cf. Materials and Methods). Ex-
cluding octamers with very low read counts in either li-
brary or band, we kept 3127 octamers with more than eight
reads in the plasmid library and more than four reads in the
band.

We then grouped these 3127 octamers in logarithmically
equidistant intervals of 0.1 log10(NEI) units (‘bins’). The

Figure 4. HEXplorer score increases with downstream 5′ss usage in ran-
dom octamer library assay. Analysis of massively parallel splicing assay
with random octamer library inserted in the center of the splicing neu-
tral reference sequence in our splicing competition reporter. Normalized
enrichment index (NEI) of octamers in gel band corresponding to down-
stream 5′ss usage. is log-normal distributed around NEI = 1 (lower panel).
Average HEXplorer score (difference w.r.to the reference sequence) of
all octamers in a bin with given log10(NEI) shows linear increase with
log10(NEI). Whiskers depict standard error of mean.

NEI distribution was approximately log-normal and sym-
metrical around NEI = 0.7 in these octamers (Figure 4,
lower panel). Searching for a relation between HEXplorer
score and enrichment index for each octamer, we calcu-
lated the HEXplorer score difference �HZEI between the
exons containing this central octamer and the reference
exon. These individual �HZEI values still exhibited con-
siderable scatter and were subsequently averaged for all oc-
tamers in a given log10(NEI) bin. For NEI > 1, average
�HZEI were positive and showed a linear increase with
log10(NEI) over two orders of magnitude for NEI (Figure
4, r2 = 0.89 for the entire NEI range). Thus, more enriched
octamers exhibited higher average �HZEI, and �HZEI was
proportional to log10(NEI). For depleted octamers with
NEI < 0.25 (log10(NEI) < −0.6), however, average �HZEI
leveled off at about −40. Such depleted octamers originate
from RNA with very little usage of the downstream 5′ss, and
can thus be expected to have lower, negative �HZEI scores.
However, in the MPSA approach used here, octamers sup-
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porting upstream 5′ss usage are systematically underrepre-
sented and average �HZEI values are thus less negative than
expected.

The MPSA approach used here significantly extends our
initial findings on �HZEI reflecting relative 5′ss usage in our
splicing competition reporter from fourteen selected in silico
designed octamers and five point mutations to more than
three thousand random octamers.

While the presented experimental approaches reflect sep-
arate variation of either 5′ splice site or SRE neighbor-
hood, we then sought to capture both factors simultane-
ously by analyzing 5′ss usage in two large human RNA-seq
datasets.

320 601 pairs of high-confidence 5′ss and exonic GTs from
exons of TSL1 transcripts

Complementary to our experimental analysis, we also ex-
amined 5′ss context impact on splice site competition us-
ing data from two large human RNA-seq transcriptome
datasets: human fibroblasts (1,43) and endothelial cells (18).
In order to mimic the 5′ss competition situation experimen-
tally examined above (cf. Figure 3), we analyzed pairs of
annotated 5′ss and nearby exonic GTs, using the ratio of
RNA-seq reads detected on each as relative usage measure.
Comparing RNA-seq reads across many genes from dif-
ferent samples, however, requires careful normalization of
reads and removal of potentially noisy read counts, as de-
tailed in the Methods section.

In particular, we applied a two-tier normalization pro-
cess, taking both differential sequencing efficiency across
samples (library size) and differential gene expression
within a sample into account. To keep only reliably de-
tected 5′ss RNA-seq reads above biological and sequencing
noise, we discarded genes in those samples, where they were
very weakly expressed, and additionally discarded 5′ss with
gene-normalized reads (GNR, cf. Materials and Methods)
below 2% of the gene expression level. In this way, we sys-
tematically improved the removal of noisy reads introduced
in (1).

For these high-confidence 5′ss, we then extracted all GT
dinucleotides between 12 nt downstream of the 3′ss and 17
nt upstream of the 5′ss. This GT search region was chosen to
ensure that there was at least a one-hexamer wide potential
SRP binding site not overlapping the 11 nt long 5′ss or GT-
site, as well as the 23 nt long 3′ss.

We further excluded potential U12 splice donors, de-
fined by the list of confirmed U12-dependent 5′ss reported
in (58), and those 5′ss with a GTT trinucleotide at posi-
tions +1/+2/+3 which may bind U1 snRNP by bulging
the T nucleotide in position +2. In order to better mimic
our splice site competition experiments in splicing reporters
with short exons, we only included GT sites less than 150 nt
from the 5′ss. Collecting all GT dinucleotides in this search
region (SA + 12 nt to SD-17 nt) while applying these strict
filter conditions, we obtained a total of 320,601 GT-and-5′ss
pairs in 89,008 exons of the fibroblast dataset. Note that ac-
tually 8833 exonic GT sites (2.8%) had RNA-seq reads. In
each pair, we then compared U1 snRNA complementarity
(HBS) and splice site HEXplorer weight (SSHW) between
GT sites and annotated 5′ss.

Table 1. GT-site usage and SSHW for weaker vs. stronger GT-sites

GT-site/5′ss
pairs

�HBS ≤ 0
weaker GT-site

�HBS > 0
stronger GT-site Total

Unused GT-sites
(no reads)

309 678 (97.5%) 2090 (66.9%) 311 768

GT SSHW – 59.32 – 165.6 – 60.04

Used GT-sites
(with reads)

7801 (2.46%) 1032 (33.1%) 8833

GT SSHW + 72.17 –9.43 + 62.64

Total 317 479 (100%) 3122 (100%) 320 601

Exonic GT sites have lower U1 snRNA complementarity than
annotated 5′ss used in fibroblasts

As expected, exonic GT-sites had much lower U1 snRNA
complementarity than 5′ss (GT HBS 6.2 ± 3.0, mean ± SD,
versus 5′ss HBS 15.1 ± 2.5; N = 320 601 pairs; cf. Fig-
ure 5i for individual GT- and 5′ss-HBS distributions). In
Figure 5ii, light gray bars show the HBond score difference
distribution �HBS = HBSGT – HBS5′ss in all individual
pairs, and indeed, in 98.9% of pairs, the exonic GT-site was
weaker than the 5′ss. For the subset of GT-sites with RNA-
seq reads, e.g. from lower transcript levels, the �HBS dis-
tribution was significantly shifted to higher values (Figure
5ii, dark versus light gray bars).

Exonic GT sites have weaker SRE neighborhood than anno-
tated 5′ss used in fibroblasts

In the 320 601 GT-and-5′ss pairs, exonic GT-sites also had
lower splice site HEXplorer weights than 5′ss (GT SSHW
–1.1 ± 4.8, mean ± SD, vs. 5′ss SSHW 5.8 ± 5.0; cf. Figure
5iii for individual SSHW distributions). However, the two
SSHW distributions overlapped to a much higher degree
than the respective HBS distributions, indicating higher im-
portance of HBS for splice site recognition than SSHW
(cf. Figure 5iii for individual GT- and 5′ss-SSHW distribu-
tions).

In Figure 5iv, light gray bars show the SSHW difference
distribution �SSHW = SSHWGT – SSHW5′ss, and in 82.0%
of pairs, the exonic GT site had lower SSHW than the 5′ss.
For the subset of GT sites with RNA-seq reads, the �SSHW
distribution was only slightly shifted to higher values (Fig-
ure 5iv, dark vs. light gray bars).

Exonic GT sites with higher U1 snRNA complementarity
than annotated 5′ss

While by far most GT-sites had lower U1 snRNA comple-
mentarity than the respective annotated 5′ss (‘weaker’ GT-
site, �HBS = HBSGT – HBS5′ss ≤ 0), we now focused on the
unexpected cases of ‘stronger’ GT-sites (�HBS > 0). To this
end, we split all 320 601 pairs of GT-sites and 5′ss into four
groups: weaker vs. stronger as well as unused (with RNA-seq
reads) vs. used GT-sites. This procedure created four groups
as shown in the fourfold table below (Table 1). In the termi-
nology of fourfold tables, �HBS is an ‘antecedent factor’,
and GT-site usage corresponds to an ‘outcome’. The four-
fold table has a highly significant odds ratio of 19.6.
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Figure 5. Exonic GT sites have lower U1 snRNA complementarity and weaker SRE support than nearby annotated 5′ss in fibroblast RNA-seq dataset. (i)
HBond score distributions for 320 601 pairs of high-confidence annotated 5′ss and exonic GT sites closer than 150 nt. (ii) HBond score difference HBSGT–
HBS5′ss distribution. For 99% of all pairs, the 5′ss HBS was higher than the exonic GT HBS, indicating a stronger 5′ss compared to competing exonic GTs.
Arrow indicates �HBS = 0. (iii, iv) SSHW distributions for the same datasets. (v) SSHW scatterplot for four groups of 5′ss and stronger exonic GT-sites
(�HBS > 0). SSHW was higher in 2090 5′ss paired with unused GT-sites than in 1032 5′ss paired with used GT-sites. Conversely, 1032 used GT-sites had
higher SSHW than 2090 unused GT-sites. (vi) SSHW of 311 768 5′ss paired with unused GT-sites, stratified by �HBS. 5′ss and GT-site SSHW strongly
diverged for increasing �HBS, i.e. stronger GT-sites.

While only 2.5% of all weaker GT-sites were used (7801
GT-sites), 33% of stronger GT-sites (1032) were used––a
13.4-fold higher proportion. But not only was the propor-
tion of used GT-sites higher among stronger versus weaker
GT-sites, but on average used stronger GT-sites had 3.6-fold
more reads than used weaker GT-sites.

We then examined the SRE support measure SSHW in
the 3122 pairs of 5′ss and stronger GT-sites. Extending our

previous results (37,40), we compared the SSHW distribu-
tions between four groups: 5′ss of unused stronger GT-sites
(2090), 5′ss of used stronger GT-sites (1032), used stronger
GT-sites (1032) and unused stronger GT-sites (2090).

While the SSHW distributions of the four groups over-
lapped, we found a clear trend: 5′ss SSHW was significantly
higher than used GT-site SSHW in 1032 pairs, and used
GT-site SSHW was in turn significantly higher than unused
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GT-site SSHW (SSHW: –9.43 versus –165.6; cf. Figure 5v,
Table 1). These findings confirm that unused GT-sites that
are stronger than their respective 5′ss appear more repressed
by their SRE neighborhood than used GT-sites, while 5′ss
in both groups are enhanced by SREs (SSHW +328.5
and +427.8, respectively). Weaker GT-sites that are used are
also enhanced (SSHW +72.17).

Finally, we systematically stratified all 311 768 un-
used GT-site-/5′ss-pairs by their HBond score differences
�HBS(GT–5′ss), determining average SSHW for 5′ss and
unused GT-sites in each �HBS bin. Overall, 5′ss SSHW
was positive, i.e. enhancing splice site usage, and increased
with increasing �HBS. In accordance with our expecta-
tion, unused GT-site SSHW was overall negative, indica-
tive of GT-site repression by their SRE neighborhood. Plot-
ted together, both SSHW graphs exhibited a trumpet shape
with the trumpet bell in the region of stronger GT-sites
(�HBS > 0). While for weaker GT-sites (�HBS ≤ 0), GT
SSHW was only slightly negative and had little variation,
for stronger GT-sites (�HBS > 0), GT SSHW was increas-
ingly negative, suggesting that SSHW could compensate for
�HBS > 0 and suppress GT-site usage in this region (Fig-
ure 5vi).

From these analyses, we conclude that in our RNA-seq
fibroblast dataset, exonic GT-sites have significantly lower
HBond scores than their associated 5′ss, and HBond scores
of used GT-sites with RNA-seq reads are higher than those
of GT sites without reads. Splicing regulatory properties of
50 nt wide neighborhoods, quantified by SSHW, exhibit the
same tendencies, albeit to a much lower degree. In our en-
dothelium RNA-seq dataset, we encounter the same find-
ings as presented in Supplementary Figure S5.

5′ Splice site usage dependence on 5′ss strength and SRE sup-
port

After separately identifying HBond score and SSHW dif-
ferences between GT-sites and 5′ss in 320 601 pairs, we set
out to determine relative GT usage dependency both on
U1 snRNA complementarity and SRE support simultane-
ously. This is a tentative approach to a comprehensive ‘func-
tional splice site strength’ concept encompassing splice site
U1 snRNA complementarity and SRE neighborhood.

In our RNA-seq dataset, gene-normalized reads (GNR)
reflect GT-site or 5′ss usage likelihood, and we therefore
quantified GT usage relative to 5′ss by their GNR log-odds
ratio LGNRr = log10(GNRGT/GNR5′ss). In order to tab-
ulate LGNRr as a function of both �HBS and �SSHW,
we first binned these variables to obtain GT-site-/5′ss-pair
groups of approximately equal sizes. Rather than choos-
ing equidistant �HBS- and �SSHW-bin intervals, we fo-
cused on adequate resolution in the important regime of
GT-sites with RNA-seq reads. From the two �HBS and
�SSHW distributions shown in Figure 5ii and Figure 5iv
(gray bars), we obtained ten 10%-wide bins each for �HBS
and �SSHW, splitting the sample of 8833 pairs with RNA-
seq reads on the GT site into 10 × 10 two-dimensional bins
containing about 8833/(10 × 10) GT-site-/5′ss-pairs each.
On average, each 2D bin contained 3206 pairs overall and 88
pairs with RNA-seq reads. For every �HBS- and �SSHW-
bin, we then calculated the average LGNRr of all pairs,

and color-coded cells with low (high) relative GT-site us-
age in red (green). In this table, GT-site usage relative to
5′ss covered three orders of magnitude from 10–3 to 10–6 in
statistically reliable values: the median coefficient of varia-
tion (CVLGNRr = standard deviation/mean LGNRr) of the
LGNRr values in each two-dimensional bin was 0.21 (aver-
age CVLGNRr = 0.25, standard deviation CVLGNRr = 0.18).
We further averaged the 2D LGNRr table with an expo-
nential smoothing algorithm using 0.7× average of all eight
neighboring bins. Eventually, to obtain a LGNRr represen-
tation on an equidistant square grid, we applied cubic spline
interpolation in �HBS steps of 0.2 and �SSHW steps of 25
(Figure 6A).

The two-dimensional surface plot (Figure 6A, and Sup-
plementary Figure S6A for endothelial data set) showed a
clear picture of relative GT-site-to-5′ss-usage dependence
on both U1 snRNA complementarity and on SRE sup-
port. There is a region of low GT-site usage for both large
negative �HBS and �SSHW (red), mirrored by a region
of higher GT-site usage in the opposite corner with higher,
positive �HBS and �SSHW (green), and a smooth, diago-
nal transition region (yellow). A sufficiently large negative
�HBS cannot be compensated by even the strongest SRE-
containing neighborhood (high SSHW), while for positive
or only slightly negative �HBS, GT-sites can be used de-
spite lack of SRE support (negative �SSHW). This result
underscores that 5′ss complementarity to U1 snRNA is the
dominant feature in splice site recognition, and SRE sup-
port plays a secondary, auxiliary part.

Activation of cryptic GT-sites versus exon skipping after 5′ss
mutation

Finally, we tentatively assessed human 5′ splice site muta-
tions using our LGNRr landscape. In particular, we ex-
amined 5′ss mutations leading to cryptic activation (‘CA’)
of a GT-site in contrast to those leading to exon skipping
(‘ES’).

We selected 5′ss mutations corresponding to
these two types (CA, ES) from our own manu-
ally curated literature-based web database (https:
//www2.hhu.de/rna/html/viewmutationdatabase.php)
containing 118 documented 5′ss mutations with RNA-level
evidence. The control group ES comprised 78 5′ss muta-
tions described to induce exon skipping, while there were
only 19 mutations in the CA group, for which activation of
a specific cryptic GT-site following 5′ss mutation was de-
scribed in the literature, and where appropriate transcripts
could be unambiguously identified. In the following, we
denote these mutation-activated GT-sites as ‘confirmed’.

For both groups of mutations, CA (19 mt) and ES (78
mt), we then determined all GT-sites within exons as well
as 150 nt wide intronic regions. Eventually, for every GT-
site we calculated its expected relative enhancement (ERE)
describing how much more the GT-site is predicted by the
landscape to be used, if it occurs next to the mutated (nor-
mally weakened) 5′ss instead of the wild type 5′ss (cf. Meth-
ods). In both CA and ES groups, GT-site expected relative
enhancement values were distributed in two disjoint ranges
of low (1––100) and high (5 × 108–1011) ERE (Supplemen-
tary Figure S7). We surmised that if present, ERE values in

https://www2.hhu.de/rna/html/viewmutationdatabase.php
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Figure 6. Combination of HBS and SSHW improves classification of GT sites and 5′ss in fibroblast RNA-seq dataset. (A) Average
LGNRr = log10(GNRGT/GNR5′ss) as measure of GT-site usage relative to 5′ss (vertical z-axis), plotted as function of HBond score difference
�HBS = HBSGT – HBS5′ss and splice site HEXplorer weight difference �SSHW = SSHWGT – SSHW5′ss. Color-coding shows a monotonous transi-
tion from exclusive 5′ss usage (front corner, red) to higher GT-site usage (back corner, green). (B) Receiver operating characteristic curves of three logistic
regression models for the classification of 14 401 annotated 5′ss and 14 405 exonic GT sites closer than 150 nt and with HBS ≥10, but <1% RNA-seq reads
of the associated nearby 5′ss. ROC curves for logistic model based only on SSHW (blue, AUC 0.88), based only on HBS (green, AUC 0.93) and based on
both HBS and SSHW (red, AUC 0.98) show stepwise improvement of classification accuracy.
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the ‘high’ range were indicative of possible cryptic GT-site
candidates.

Indeed, for 16 out of 19 mutations in the CA group, high
ERE values were found for nearby GT-sites, and in 15 of
these 16 mutations, the confirmed GT-site belonged to the
set of high enhancement GT-sites (Supplementary Figure
S7A; red symbols). In another two out of three CA muta-
tions with ERE values only in the low range, the confirmed
GT-site had the maximum ERE. Predicting a GT-site as
candidate for cryptic GT-site activation by high or maximal
enhancement would indeed retrieve 17 out of 19 confirmed
GT-sites.

In the control group ES, only one third (26/78) of muta-
tions had enhancement values in the high range, totaling 43
out of 880 GT-sites (Supplementary Figure S7B, showing
only the first 26 mutations). Although there is a clear dif-
ference in the proportion of high-range expected relative en-
hancement values between CA and ES (16/19 versus 26/78),
the LGNRr landscape does not permit specific discrimina-
tion of exon skipping from cryptic GT-site activation.

Combination of HBS and SSHW improves classification of
GT-sites and 5′ss

In order to further examine the discriminatory power of
HBond score and SSHW to distinguish annotated 5′ss
from exonic GT-sites in a classification task, we selected
57,611 pairs with low usage GT-sites (GNRr = GNRGT /
GNR5′ss < 1%) that had medium-to-high U1 snRNA com-
plementarity (HBS ≥ 10). In competition with their respec-
tive 5′ss, these GT sites were barely used, although they
had reasonable complementarity with an HBond score of
at least 10. In this dataset, we expected SRE neighborhoods
of both 5′ss and GT site to possibly play a stronger part in
splice site selection.

We then split the pairs and pooled both GT-sites and 5′ss
into a single set of 115 222 potential splice sites. Randomly
splitting this entire dataset into a training set (75%) and a
validation set (25%), we fit three different logistic models
for the binary prediction of true 5′ss in a balanced sample
of 43 206 GT sites and 43 201 5′ss. In the first model, we
used only SSHW as single predictor variable, in the second
model we used HBond score alone, and finally we entered
both SSHW and HBS simultaneously into the regression
model (cf. Materials and Methods). In all three regressions,
the coefficients of SSHW and HBS were highly statistically
significant (P < 10–6), indicating that these variables signifi-
cantly contributed to distinguishing true 5′ss from GT sites
in the training dataset.

We then tested the three regression models on the remain-
ing 25% of the entire dataset, containing 14,401 annotated
5′ss and 14 405 exonic GT-sites. Figure 6B – and Supple-
mentary Figure S6B for endothelial data set––shows the re-
ceiver operating characteristic curves (ROC) obtained for
the three regression models, plotting sensitivity (true pos-
itive rate, TPR) versus 1––specificity (false positive rate,
FPR) upon variation of the cutoff of the prediction scores
obtained from the regressions. All three models achieved
good classification results for discriminating true 5′ss from
GT-sites in the validation dataset, indicated by all ROC
curves extending far into the upper left corner of the dia-

gram. Using the area-under-the-curve (0 < AUC < 1; AUC
= 0.5 for random assignment) as overall measure to com-
pare the regression models, we found a clear hierarchy for
goodness of classification: the model using only the HBond
score increased AUC to 0.93 from AUC = 0.88 for SSHW
alone, and entering both variables into the model again im-
proved the classification to AUC = 0.98. Thus, in terms of
the ROC curves, there is a nearly even AUC spacing of 0.05
each from SSHW < HBS < SSHW + HBS. To complete the
model, we also added an interaction term HBS × SSHW to
the logistic regression, but this term did not acquire a signif-
icant coefficient and thus could not improve the classifica-
tion. In the optimally discriminating regression model, we
obtained a joint functional HBS-SSHW-score X = 0.44 ·
SSHW + 1.17 · HBS − 16.3 in the exponent.

This classification shows that for 5′ss and GT-sites, the
HBond score is more informative than the ‘SRE neighbor-
hood parameter’ SSHW alone, but SSHW adds as much
classification value to HBS as HBS adds to SSHW.

DISCUSSION

In this manuscript, we present in silico designed sequences
with arbitrary a priori prescribed splicing regulatory prop-
erties, quantitatively represented by a constant HEXplorer
score profile. We comprehensively validated in silico pre-
dictions on splice site recognition in a massively parallel
splicing assay on >3000 sequences. From an MS analysis
of proteins binding to exemplary in silico designed SRE se-
quences, we confirmed splicing regulatory proteins binding
specifically to enhancing, neutral or silencing sequences. We
complementarily selected 320 601 pairs of high confidence
5′ss and neighboring exonic GT sites from our large hu-
man fibroblast RNA-seq dataset, as well as 285 441 pairs
from our human endothelium RNA-seq dataset, and de-
rived two-dimensional splice site usage landscapes from
gene-and-sample normalized RNA-seq reads. These GNR
landscapes served as basis for a logistic 5′ss usage predic-
tion model, depending on both U1 snRNA complemen-
tarity and HEXplorer score. This model greatly improved
5′ss discrimination between strong but unused exonic GT
sites and annotated highly used 5′ss by adding the splice site
HEXplorer weight to the classification algorithm based ex-
clusively on HBond score.

In principle, sequences with prescribed splicing regula-
tory properties could be obtained by inserting single known
SRE motifs into assumed splicing neutral sequences, like
the octamer ‘CCAAACAA’ that has been proposed and
tested as a building block for splicing neutral sequences
(19,50). However, even in this seemingly simple case, con-
catenation of the octamer ‘CCAAACAA’ accidentally cre-
ates a ‘CANC’ motif as potential SRSF3 binding site (51),
altering the splicing regulatory properties of the single oc-
tamer (1). In this study, we used the HEXplorer algorithm
(30) to design splice enhancing, silencing and neutral oc-
tamers, ab initio avoiding accidental HEXplorer profile fluc-
tuations possibly introduced by concatenation. Reversing
the above sketched process, we generated putative SRP
binding sites by using the HEXplorer algorithm without
restricting the sequences to single SR- or hnRNP binding
sites, and we experimentally confirmed the splicing regula-
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tory properties of in silico designed octamer sequences in a
massively parallel splicing assay.

Assuming a proportional interplay between 5′ss strength
(HBS) and SRE impact (�HZEI), a rough guesstimate of an
equivalence between HBS and �HZEI can be gleaned from
the experiments (Figure 1B): We observed that in the pres-
ence of just the splicing neutral octamer, an HBS of 17.5 was
required for exon inclusion. For a weaker 5′ss with HBS =
15.0, SRE neighborhoods with �HZEI ≤ 70 did not suf-
fice to support exon inclusion while �HZEI = 100 did (data
not shown), so that 2.5 HBS units seem to correspond to
�HZEI ∼ 100. This conclusion is only valid in the context
of our splicing reporter.

In a recent study, Wong et al. (3) systematically tested
all possible 5′ss sequences in three genomic contexts, us-
ing an MPSA approach with a random 5′ss library. They
conclude that 5′ss strength is the main determinant of 5′ss
usage, while 5′ss context is less important. This is consis-
tent with our findings. While Wong et al. systematically
varied 5′ss sequences, we did so with exonic 5′ss neighbor-
hoods in our random octamer library approach. System-
atical co-variation of both 5′ss sequence and octamer con-
text, however, would demand a considerably larger plasmid
library with 65 536 × 32 768 possible different sequences,
which exceeded our resources. Our RNA-seq analysis in
samples from two different tissues, however, permitted sys-
tematic computation of splice site usage landscapes for a
wide variety of naturally occurring 5′ splice sites and con-
texts, and it fully confirmed the dominance of 5′ss strength
over neighborhood context. This is also reflected in the HBS
and SSHW coefficients of the combined score derived from
the 5′ss and exonic GT-site discrimination task.

Our novel RNA-seq based 5′ss usage landscape concept
quantifies the usage of exonic GT-sites relative to their
nearby 5′ss by their log-gene-normalized read ratio LGNRr,
as function of both HBS and SSHW differences ‘GT-site–
5′ss’. We would expect a similar structure of the 5′ss us-
age landscape plotted vs. �MaxEnt score instead of �HBS
(24). Necessarily, any choice of SRE neighborhood size is
arbitrary. However, several studies indicate only weak de-
pendence on neighborhood size: Putative exonic splicing
enhancer and silencer octamer (PESX) frequencies have
been shown to remain rather constant in 100 nt long com-
posite exons (50 nt center and 25 nt ends) and introns
(59). Similarly, the distributions of the top 400 ESEseqs
and ESSseqs showed little variation in 100 nt long compos-
ite exons and introns (29). Eventually, individual hexamer
weights used in the HEXplorer definition were highly cor-
related when derived from 100 nt or 30 nt wide 5′ss neigh-
borhoods. Therefore, we expect to capture relevant SRP
binding sites within the chosen 50 nt neighborhoods. Some
RNA-binding proteins, however, may bind cooperatively to
clusters of sites or interact with each other––effects that are
not intrinsically reflected in any RESCUE-type algorithm
based on n-mer frequencies. If such synergistic behavior had
pronounced effects, it would be expected to be revealed in
the extensive mapping and characterization of RNA ele-
ments recognized by the large collection of human RBPs,
which consist of typically eight or less nucleotides (34).

In a tentative first evaluation of LGNRr landscape pre-
diction of GT-site usage induced by 5′ss mutations, we

found a significantly higher proportion of high enhance-
ment values for mutations activating cryptic GT-sites than
for those leading to exon skipping, although LGNRr land-
scape predictions did not permit specific discrimination
between these groups. In the classification of 5′ss versus
unused GT-sites, however, both sensitivity and specificity
were significantly improved by using splice site HEXplorer
weight in addition to HBond score. Thus, local sequence in-
formation on a potential splice site and its SRE neighbor-
hood can be unified to a single ‘functional 5′ss’ description.

On the other hand, state-of-the-art machine learning al-
gorithms for splice site prediction and mutation assessment
have been developed and evaluated in recent years. Using
a modular architecture, MMSplice encompasses six neu-
ral network modules covering donor and acceptor sites, as
well as their respective exonic and intronic neighborhoods,
and it outperformed previous splicing prediction models in
the ‘Critical Assessment of Genome Interpretation’ (CAGI)
challenge (31,60–62). Designed as a 32-layer deep neural
network built from residual blocks, the deep learning tool
SpliceAI achieved an impressive 95% top-k accuracy in
identifying splice sites from DNA sequence alone, however
using features from a very wide reference––and not the pa-
tient’s own––genomic region of 10 000 nt around the index
site (32). As all machine learning algorithms, these models
appear as black boxes to the user, and their splice site usage
predictions are not transparent in terms of biological mech-
anisms: they may well successfully apply features with no
biological meaning. In contrast, our RNA-seq based GT-
site-to-5′ss usage ratio landscape model clearly shows both
effects of 5′ss strength and neighboring splicing regulatory
elements.
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