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RNA editing is a post-transcriptional process increasing transcript
diversity, thereby regulating different biological processes. We recently
observed that mutations resulting from RNA editing due to hydrolytic
deamination of adenosine increase during the development of mesothe-
lioma, a rare cancer linked to chronic exposure to asbestos. This review
gathers information from the published literature and public data mining
to explore several aspects of RNA editing and their possible implications
for cancer growth and therapy. We address possible links between RNA
editing and particular types of mesothelioma genetic and epigenetic altera-
tions and discuss the relevance of an edited substrate in the context of
current chemotherapy or immunotherapy.
1. Introduction
Malignant mesothelioma (reviewed in [1,2]) is a rapidly fatal and highly resilient
tumour arising in the thin layer of tissue known as the mesothelium, which has
mesodermal origins and covers many of the important internal organs like the
lungs (pleural mesothelioma), peritoneal cavities (peritoneal mesothelioma),
the sacs surrounding the heart (pericardial mesothelioma) and the testis (tunica
vaginalis mesothelioma). Although mesothelioma is a rare cancer, its incidence
is still rising; hence, research aimed at better understanding of the biology of
the disease is still necessary. Since the seminal experiments of Wagner [3],
exposure to asbestos has been clearly identified as the cause of mesothelioma.
We recently observed in an experimental animal model of asbestos-induced
mesothelioma development [4], that asbestos increased the levels of RNA
mutations and the most abundant changes were A to G mutations, probably
resulting from the hydrolytic deamination of adenosine downstreamof adenosine
deaminase editing activity [5] (I is detected as G in RNA sequencing).

While several recent reviews are available on RNA editing [6–12], in this
review we shall focus on possible implications of RNA editing in mesothelioma,
a subject that is beginning to be explored.
2. RNA editing by adenosine deaminases acting on RNA
in mesothelioma

The term ‘RNA editing’ refers to enzymatic post-transcriptional events that
increase transcript diversity by altering nucleotide sequences through insertion,
deletion or conversion of a nucleotide. The most frequent event is the hydrolytic
deamination of adenosine [13]. This activity was discovered by serendipity,
when investigators observed failure of using antisense RNA technology to
study embryonic development, because of instability of RNA duplexes. Loss of
RNA’s base-pairing properties, hence loss of double-strand RNA (dsRNA) struc-
ture was due to the conversion of adenosines (A) to inosines (I) [14,15]. This
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Figure 1. ADARs share common functional domains—the dsRBDs and the
catalytic deaminase domain. ADAR1 contains three copies of the dsRBD,
while ADAR2 and ADAR3 possess two copies each. ADAR1 has two isoforms,
p150 and p110, which are produced by alternative splicing and the usage of
different promoters. ADAR1 has Z-DNA-binding domains at the N-terminal.
Zβ is common to both ADAR1 p150 and ADAR1 p110, but Zα is unique
to ADAR1 p150. ADAR3 contains an arginine-rich single-stranded RNA-binding
domain (R) at the N-terminus.
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activity allowed the identification of the adenosine deaminases
acting on RNA (ADAR) family [16,17].

Vertebrates have two catalytically active (ADAR1 and
ADAR2, previously called ADAR and ADARB1, respectively)
and one catalytically inactive (ADAR3) ADAR proteins, while
Drosophila (for example) has only one (ADAR2 orthologue). All
ADAR proteins contain dsRNA-binding domains (dsRDBs),
which allow sequence specificity [18] and a C-terminal deami-
nase domain (figure 1). As will be discussed later, ADAR1 has
additional domains (z-DNA binding).

RNA editing by ADAR occurs mostly in non-coding
regions where inverted repeat sequences are likely to form
dsRNA structures, which function as the substrate. In mouse
normal monocytes or tissues, 32–73% of all editing events
occurs in short-interspersed elements (SINEs) and 9–27% in
long terminal repeat (LTR) retrotransposons [19,20], while in
human normal monocytes or tissues, 43–96% of all editing
events occurs in SINE and 7.4–2.4% in LTR retrotransposons
[19,21], depending on cells and tissues analysed. In mouse
and human monocytes, 44% and 37%, respectively, editing
occurs in non-repetitive elements.

SINEs are recurrent elements, which propagate through
the reverse transcription of an RNA intermediate. Human
SINE, Alu, is a 300 nt-long retroelement constituting 10% of
the human genome. LTR retrotransposons include endogen-
ous retroviruses (ERVs) and their integration is mediated by
an integrase [22]. Altogether SINE and LTR retrotransposon
regions cover 42% and 37% of the genome in human and
mice, respectively [23,24]. Taking into account that 70% of
the genome is transcribed and only 2% of the genome
encodes for proteins [23,25–28], this may explain the reason
why the vast majority of editing sites in human and primates
are in inverted repeat SINE (Alu elements in human) and
ERV which forms stable dsRNA structures and are largely
in non-coding regions of the genome [29,30]. Using The
Cancer Editome Atlas (TCEA; http://tcea.tmu.edu.tw), a
resource characterizing editing events across 33 cancer
types in The Cancer Genome Atlas (TCGA) [31], we deter-
mined that 394 editing events occur in Alu elements located
in 30-UTR regions in more than 80 mesothelioma samples,
indicating potential gene expression regulation by altering,
for example, miR-targeting or interaction with RNA-binding
proteins (discussed in a later section).

The formation of a homodimer is necessary for RNAediting
activity [32–34]. Heterodimer formation between ADAR1 and
ADAR2 remains controversial; however, when present it leads
to reduction in the specificity of the enzyme for some RNA
editing sites [32,35]. Dimer formation is mediated by the
double-stranded RNA-binding domain (dsRBD) [36].

ADAR3 expression has not been detected in either the
experimental animal model of mesothelioma development
or in human mesothelioma; therefore, it will not be further
discussed in this review.

Although ADAR1 and ADAR2 are mostly reported as
ubiquitous [37], a recent single-cell transcriptome analysis
of 20 mouse organs [38] (https://tabula-muris.ds.czbiohub.
org/) indicates that not all cells express these genes. In the
study, single cells from a given organ were identified and
sorted using cell surface markers. In the diaphragm (which
is often used in studies on mesothelium because this organ
is covered by mesothelial tissue on the peritoneal surface),
Adar2 is expressed mostly in some mesenchymal stem cells
(Sca-1+, CD31− and CD45−), while similar levels of Adar1
are expressed in some endothelial cells (CD31+ and CD45−).
Importantly, in the context of this review, we have described
expression of Sca-1 (also called Ly6A), a gene induced by
type 1 interferon (IFN) [39], in putative mesothelioma stem
cells, which are enriched upon therapy in an experimental
mouse model [40]. In addition, in the experimental animal
model of asbestos-induced mesothelioma development men-
tioned above [4], we observed a significant 3.9-fold increase
of Adar1 expression in inflamed tissue compared with sham
and more than twofold increase in tumours compared with
inflamed tissues. Intriguingly, Adar2 showed a significant,
more than twofold increase in tumours compared with
inflamed tissues, but its expression was not significantly
changed between sham and inflamed tissues.

Analysis of TCGAmesothelioma data revealed [4] that high
expression of ADAR2 is associated with worst overall survival,
supporting the idea that RNA editing is relevant in mesothe-
lioma as it is in other cancers (reviewed in [8,9,41,42]). In
addition, decreased expression of ADAR2 has been observed
upon Yes-associated protein (YAP) silencing in mesothelioma
cells, which resulted in decreased cell growth [43], providing
a possible mechanism behind the TCGA data associating high
ADAR2 expression with worst overall survival. YAP is a tran-
scriptional co-activator after interaction in the nucleus with
the TEAD family of transcription factors [44], resulting in the
induction of the genes promoting cell proliferation and inhi-
bition of apoptosis [44–47]. The Hippo cascade regulates YAP
via large tumour suppressor homologue 1/2 (LATS1/2)-dependent
phosphorylation and subsequent cytosolic sequestration
[46,48,49]. In mesothelioma, due to the neurofibromatosis 2 or
LATS2 loss, Hippo signalling becomes dysregulated [50–52].
Furthermore, in a recent study, silencing ADAR2 in one
mesothelioma cell line resulted in reduced cell proliferation,
invasiveness and motility, while overexpression of ADAR2
with a mutated dsRBD showed the opposite effect [53], consist-
ent with a dominant negative effect of mutant overexpression.
3. ADAR1: type 1 IFN-dependent and
-independent effects and implications
for mesothelioma therapy

There are two isoforms of ADAR1: a constitutively expressed
nuclear p110 and a longer, cytosolic and nuclear, IFN-induci-
ble p150 protein, containing two complete z-DNA-binding
domains, while only one is found in p110 [54].
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The essential role of Adar1 has been established using
several genetically modified mouse models. Adar1-deficient
mice, lacking either exons 12–13, exons 7–9 or exons 2–13,
die at embryonic day 11.5–12 [55,56] due to decreased hepato-
blast number, alteration of fetal liver structure and defects in
haematopoiesis. A later study has demonstrated an increase
of type 1 IFN and IFN-stimulated genes (ISGs) in haemato-
poietic stem cells and erythroid cells [57]. In in vivo mouse
models, the function of Adar1 p150-mediated editing is to pre-
vent endogenous dsRNA-dependent activation of innate
immune receptors such as mitochondrial antiviral signalling
adaptor protein (MAVS) [58] or IFIH1-encoded melanoma
differentiation-associated protein 5 (MDA5) [59,60] (figure 2).
Indeed, embryonic lethality is rescued in double ADAR1/
dsRNA sensor mutants, although mice survive only until
birth. However, mice lacking exons 7–9 rescued by Mavs−/−

and Ifih−/− have an intermediate phenotype and live longer
compared with Adar1-deficient mice lacking exons 2–13;
Mavs−/− [61]. Since the deletion in exons 7–9 covers the third
dsRDB and part of the deaminase domain, these observations
indicate an editing-independent function of Adar1.

dsRNAs, like other nucleic acids, are part of the signals
recognized by pattern recognition receptor family which are
able to activate innate immunity via the production of type
1 IFN [62]. This is consistent with the aberrant activation
of innate immune receptors observed in a spectrum of
immune disorders, such as systemic lupus erythematosus
or Aicardi–Goutières syndrome, a disease characterized by
severe changes in the brain and neurological function, and
it has been linked to mutations inducing loss of ADAR
function [63] or gain of function in MDA5 [64].

Mesothelioma is the sixth of 31 cancer types with most
prevalent ISG 38 gene signature [65]. Importantly, in the
context of mesothelioma, type 1 IFN signature is linked
to both clinical outcome and specific driver mutations.
A recent large-scale study has comprehensively characterized
most genetic alterations and four distinct molecular profiles in
malignant pleural mesothelioma (MPM), which have been
called epithelioid (which actually include mostly only pure
epithelioid histotype), biphasic-epithelioid, biphasic-sarcoma-
toid and sarcomatoid [66]. It extends the histopathological
classification separating epithelioid, sarcomatoid and biphasic
of mesothelioma (reviewed in [2]). Based on the mRNA
expression profile, tumours are clustered into four groups [67]
in a parallel study performed by TCGA consortium [68]. Path-
way enriched analysis of genes expressed in the clusters
revealed among others, enrichment of reactome antiviral mech-
anism by ISG in one of the clusters, and this is confirmed in the
epithelioid group of Bueno et al. [66]. Patients with this profile
have a better clinical outcome [69]. The integrative multiomics
analysis ofmesothelioma TCGA [68] data revealed that the acti-
vation of type 1 IFN has been linked to the status of BRCA-
associated protein 1 (BAP1), a genewhich is frequentlymutated
in mesothelioma [2]. In addition, a recent analysis of TCGA
public available data revealed a negative correlation between
BAP1 expression and a constitutively activated IFN type 1
response [70]. However, the underlying mechanisms are not
clear yet, and we shall propose in this review different scen-
arios. Importantly, a recent study has shown that primary
mesothelioma cells maintain the activation of the type I IFN sig-
nalling pathway [71].

More recently, targeted Adar1 deletion in neural crest
cells also resulted in the death of mice 10 days after birth
due to impairment of neural crest cell differentiation to mel-
anocytes [72]. This may explain why mutations in human
ADAR1 are associated with dyschromatosis symmetrica her-
editaria [73], an autosomal dominant hyperpigmentation
of the hands and feet occurring in Chinese and Japanese
families. The majority of these disease-associated mutations
are single-allele truncations of ADAR1, and the dominant
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phenotype seems to be due to haploinsufficiency for ADAR1.
In addition, targeted Adar1–deletion in neural crest cells is
accompanied by upregulation of type 1 IFN-regulated genes.
Again, this phenotype seems to be mediated by Mda5/Mavs
activation [72]. All these observations point to a role in
avoiding dsRNA sensing during embryo development.

The relevance of the z-DNA-binding domain of ADAR1
p150 in the dysregulation of ISG has been recently highlighted
byanalysis of dsRNA-binding impaired natural variants of this
domain (Pro193Ala andAsn173Ser) in the few cases of diseases
linked to the loss of an allele of ADAR1 p150 but not ADAR1
p110 [74]. In these cases, the presence of a single allele
with natural variants impairing the function allowed research-
ers to understand that the z-DNA-binding domain contributes
to dsRNA binding. z-DNA is a left-handed dsDNA occurring
when polymerase or helicases underwind DNA, and the for-
mation of a complex between the z-DNA-binding domain
with double-stranded nucleic acids is most rapid with DNA/
RNA hybrid duplexes (reviewed in [75]). The z-DNA-binding
domain is not necessary for editing [76]. It has been suggested
that z-DNA in a specific repetitive sequence would allow
anchoring of ADAR1 to dsRNA, causing rapid editing
after transcription, and a mutation in the z-DNA-binding
domain decreases dsRNA binding [58]. ADAR1 binds to
specific sequences through its z-DNA-binding domain in
Alu elements, thereby decreasing Alu retrotransposition
(reviewed in [75]). The human genome harbours active Alu
retrotransposons, mostly within the AluY family, which need
to interact with a protein called SRP9/14 for retrotransposition
[77], and the binding of ADAR1 prevents this interaction.
Retrotransposition has been linked to the occurrence of
chromotripsis, a phenomenon characterized by multiple foca-
lized double-stranded DNA breaks resulting in complex
genomic rearrangements, by the analysis of a familial germline
chromotripsis [78]. Although chromotripsis has been observed
in some mesothelioma cases [79,80], it is not yet known
whether retrotransposition is involved.

Although the phenotype of Adar1-deficient mice can
also be due to editing-independent functions, the role of the
catalytic function of Adar1 in the phenotype ofAdar1-deficient
mice has been confirmed in studies using mice with an editing
knock-in mutation (E861A), which results in disruption of the
catalytic activity [59]. Interestingly, compared with full disrup-
tion of the gene, knock-in mutation mice are fully viable when
crossed with Ifih−/− mice, which is consistent with editing
activity-independent effects of Adar1. This has been recently
confirmed by the observation of downregulation of 40S riboso-
mal protein RPS3a1 accompanied by upregulation of its
pseudogene RPS3a3, thereby affecting ribosomal subunit
assembly, in Adar1-deficient mice lacking exons 2–13;
Mavs−/− but not in editing deficient E861A; Ifih−/− mice [61].

While most investigations draw attention to the role
of ADAR1 in preventing the activation of type 1 IFN, the
observation of abnormal kidney development in Adar1−/−;
Mavs−/− but not in Adar1 p150−/−; Mavs−/− indicates a
specific role for Adar1 p110 in renal development [60]. This
is important in the context of mesothelioma because, in the
experimental animal model of mice exposed to asbestos, we
observed reactivation of developmental organ signalling
pathways including the kidneys [4].

Interestingly, in the Adar1-deficient models described
above, even in the absence of Mda5 there is a mild, non-
pathogenic induction of few ISGs by a currently unknown
mechanism [60,81]. In addition, some deregulated gene
expressions related to the control of cell fate specification
during development are also independent of dsRNA sensing
by Mda5 [60]. Therefore, nuclear RNA editing of genes
expressed during embryo development or genes reactivated
in cancer has consequences for both innate immunity and
specific innate immunity-independent signalling.

The reason why it is important to maintain the homeo-
stasis in dsRNA sensing is that dsRNA activates the
IFN-inducible dsRNA-dependent Ser/Threo protein kinase
(PKR) (figure 3), thereby inducing its dimerization, auto-
phosphorylation and the phosphorylation of eIF2α. This has
as a consequence induction of autophagy and the inhibition
of translation [82,83]. In the absence of ADAR1, cellular
dsRNA formed by unedited inverted-Alu repeats was
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proposed to activate PKR [84]. Breakdown of the nuclear
membrane during mitosis and consequent exposure to an
excess of nuclear inverted-Alu repeats were also proposed
to activate PKR [85]. Additional endogenous ligands include
dsRNA from sense–antisense RNA produced by bidirectional
transcription in the mitochondria [86], and any damage to the
mitochondrial membrane might result in leakage of dsRNA
to the cytosol. However, mitochondrial RNA represents less
than 15% of dsRNA in HeLa cells [86].

It is important to note that cancer cells express a basal level
of PKRmaking them predisposed to trigger inhibition of trans-
lation and downstream events. The destabilizing of dsRNA
structures by ADAR activity suppresses dsRNA-activated
signalling to avoid growth arrest due to the activity of the
other genes and is therefore considered to act as a negative
feedback loop [60,84]. dsRNA also increases the activation of
IFN-inducible oligoadenylate synthetases (OAS), which pro-
duce 20,50-oligoadenylate activating RNAse L to degrade
rRNA, tRNA and Y-RNA. However, this is observed in some
cancer cells only after the addition of type 1 IFN [87].

In the context of mesothelioma, it is important to note that
ADAR1 is a target of the type 1 IFN pathway acting as a
negative feedback regulator to avoid autoimmunity, an
effect which has recently been linked to asbestos amphiboles
(reviewed in [88]).

Until now, ADAR1 loss of function in cancer cells has
been observed and explored in the context of immunotherapy.
Adar1 loss of function has been found as a top candidate
to boost immunotherapy in a screen of melanoma cells
implanted in mice treated with anti-PD1 [89,90]. Some cancers
have spontaneous production of type 1 IFN leading to ISG
signature; however, the signal activating the type of IFN
response may depend on aberrant DNA species detected
by a stimulator of IFN genes (STING) [65]. These cancer
cells are sensitive to ADAR1 depletion, and this effect
is rescued by depleting PKR [65,91] or overexpressing
ADAR1-p150, but not ADAR1-p110. Importantly, total (or
in some cases partial) rescue has been observed by over-
expression of catalytically inactive E912A ADAR1 p150 [92].
Therefore, in embryogenesis, ADAR1 is essential to avoid
signalling downstream of dsRNA, but in cancer cells the
primary aim is to avoid growth arrest, and ISG expression
seems to be a ‘side effect’which, nevertheless, can be exploited
for immunotherapy [65,90].

More recently, another regulatory role of ADAR1 in the
nucleus has been revealed [93]. ADAR1 forms a complex
with the Drosha cofactor DGCR8 and competes with its
binding to Drosha. The exact role of the ADAR1/DGCR8
complex remains unclear, but it has been suggested that
it contributes to the global dysregulation of pri-miRNA
processing by Drosha. Monomeric ADARs also complex with
Dicer to increase the rate of pre-miRNA cleavage and facilitate
miRNA loading onto the RNA-induced silencing complex
(RISC) independently of their editing function. Adar1 knock-
out embryos show a global reduction of mature miRNA
abundance and gene silencing, suggesting that the role of
ADARs in promoting pre-miRNA processing may dominate
[94]. ADAR1 is frequently reduced in metastatic melanoma,
which results in dysregulation of more than 100 miRNAs
[93]. It is also worth noting that downstream of the activation
of YAP,which, as previouslymentioned, is frequently activated
in mesothelioma (also reviewed in [95]), a decrease in the
activity of Drosha has been observed [96]. Therefore, RNA
editing and YAP/TAZ activation may converge on profound
modification of mature miRNA.
4. ADAR2 and its role in genomic stability
ADAR2 is essential for the specific editing of the glutamate
receptor 2 subunit, resulting in a change from a genomically
encoded glutamine to arginine, thereby varying the per-
meability of the pore [97]. Adar2 deficiency results in early
lethality due to seizures, and this can be rescued by a point
mutation in Gria2 (Gria R/R mice).

ADAR2 is expressed in most mammalian tissue with
brain and lung expressing the highest levels [98]. The crossing
of Adar2−/−; Gria2 R/R mice with Adar1 Δ7–9; Mavs−/− mice
showed decreased survival and increased activation of type
1 IFN signalling, indicating a previously unexpected,
although small, compensatory contribution of Adar2 in the
phenotype of Adar1 Δ7–9; Mavs−/− [61].

ADAR2 undergoes alternative RNA splicing to yield iso-
forms that differ in their editing efficiency. Alternative splicing
of rat andmouseAdar2pre-mRNAgenerates twosplice variants
that differ by a 10-amino acid splice cassette in their deaminase
domains [99]. The human ADAR2 undergoes alternative spli-
cing of the same exon. Alternative splicing in this region of the
human transcript inserts a 40-amino acid Alu-J cassette also in
the deaminase domain, thereby reducing its catalytic activity
by a factor of two [100–102]. In addition, editing of rat Adar2
pre-mRNA regulates its alternative splicing with the generation
of 47 nt insert that leads to decreased activity [99].

The physiological significance of alternative splicing of
the ADAR2 transcript is not yet known, besides resulting in
differential activity. Therefore, it is difficult to interpret the
observation that Adar2 expression is increased in developing
mesothelioma in asbestos exposed mice and that high
ADAR2 expression is associated with worst overall survival
in mesothelioma patients [4] until additional functional
studies are carried out.

In the context of cancer, where DNA damage repair may
be not fully functional, it is worth mentioning that full-length
ADAR2 can edit hybrid DNA/RNA duplexes [103]. This
activity may have implications for the generation of
mutations where DNA/RNA hybrids occur, for example, in
R-loops [104].
5. Mesothelioma-relevant editing targets
In cancer, both the editing of RNA coding sequences and the
destabilizing of dsRNA structures seem important. In most of
the cases, it is the increased editing that favours cancer,
but there are also examples of decreased editing (figure 4). Edit-
ing of AZIN1, which encodes an antizyme inhibitor, generates
an amino acid change (Ser367Gly) creating an isoform with
increased affinity to antizyme, promoting cell proliferation
by reducing antizyme-mediateddegradationof ornithinedecar-
boxylase and cyclin D1, and has been associated with
hepatocellular carcinoma progression [105]. AZIN1 editing is
also observed inmesothelioma, where it can be used as readout
ofRNAediting activity [4]. Relevant forMPM,where a subset of
patients show Hedgehog signalling activation (reviewed in
[106]), editing of mRNA encoding for glioma-associated onco-
gene 1 (GLI-1) results in increased Gli-1 protein stability and
maintains tumour initiating cells in leukaemia [107].
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In some cases, decreased editing favours some cancers.
Editing of insulin-like growth factor-binding protein 7
(IGFBP7), a secreted protein associated with apoptosis and
senescence [108], in oesophageal cancer cells, results in an
amino acid change protecting the protein from proteolysis
[109]. Editing of GABA receptor alpha3 (Gabra3) in breast
cancer cells changes an amino acid, thereby reducing its
surface expression and decreasing cell migration and invasion,
and is accompanied by decreased AKT activation [110].
Importantly, in the context of mesothelioma, Gabra3 is part of
the genes upregulated in total lung tissue after mice exposure
to asbestos [111]. Therefore, some editing triggered by asbestos
exposure might represent a cell defence reaction against trans-
formation. Finally, ADAR2 editing of pre-miR-221 and 222
results in decreased levels of mature miR-221 and 222 and
decreased growth in glioblastoma cells [112]. Importantly in
the context of mesothelioma, decreased levels of miR-221
and miR-222 have been documented in mesothelioma [113]
and miR-221 high expression is associated with better overall
survival in mesothelioma patients [114].

Most editing sites occur in non-coding regions including
non-coding regions of transcribed genes. In the context of
MPM, which is treated in first-line therapy with cisplatin
and antifolates, editing of the 30-UTR may protect dihydro-
folate reductase (DHFR) mRNA from mir-25-3p- and
miR-125-3p-induced degradation, leading to resistance to
antifolates such as methotrexate and pemetrexed, as it has
been recently observed in breast cancer cells [115]. Reduced
cell migration has been observed in lung cancer cell lines
due to the inhibition of ADAR-mediated RNA editing, and
the destabilization of focal adhesion kinase (FAK) mRNA
was identified as responsible of this phenotype [116]. This
might be important in the context of mesothelioma
because NF2 alterations, which are frequent in mesothelioma
(reviewed in [2]), result in the activation of FAK and
mesothelioma cells are sensitive to FAK inhibitors [117–120].

Adenosine-to-inosine conversion can change the
sequence of the mature miRNA (including the critical seed
sequence) to block target recognition and also change base
pairing and hence can reduce the dsRNA structure to
interfere with pri-miRNA processing. For example, editing
of hairpin structures in pri-miRNA reduces the production
of mature miRNA due to the impairment of their processing
by Drosha [5,121]. RNA editing of pri-miR-142 by ADAR1
and ADAR2 inhibits its processing by Drosha and also
facilitates pri-miR-142 degradation [122].

Although the minimal dsRNA length functioning as the
substrate for ADAR has been estimated to be 20–22 bp, the
longer the dsRNA is, the more editing sites it will acquire
[123]. In addition, dsRNA must be at least 30 bp long to
elicit an immune response [124]. But, beside ADAR and
dsRNA sensors like MDA5, PKR and OAS, there is a plethora
of dsRNA-binding proteins (dsRBPs) [125]. Therefore, it is
necessary to keep in mind that during its lifetime, a given
dsRNA may interact with multiple dsRBPs. The latter are
not sequence-specific; therefore, editing is in competition
with other dsRBP-induced events (figure 5) [126,127]. In
some cases, such as in cells stressed by UV irradiation,
ADAR1 p110 is relocalized to the cytosol, where it competes
with dsRNA-binding protein Staufen1 to decrease mRNA
decay of several genes, including ATM and RAD51, which
are crucial in the DNA damage response [128].

Another example concerns Murine Double Minute 2
(MDM2), an oncogene overexpressed in some mesothelioma
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tumours, which has been investigated as a therapeutic target
in mesothelioma with wild-type p53 [129–131]. MDM2
30-UTR is edited in all TCGA mesothelioma samples
according to the TCEA. ADAR1-dependent editing of MDM2
30-UTR facilitates nuclear retention of MDM2 mRNA by com-
peting with Staufen1 [132]. The resulting altered translation
efficiency likely explains the moderated correlation observed
between gene and protein expression in mesothelioma
tumours [133].

It has been recently shown that endogenous Alu–Alu
inverted repeats (figure 5) deriving from the 30-untranslated
region (UTR) of mRNA trigger inflammation inAdar1-deficient
state or constitutively active Mda5 [134]. This observation indi-
cates that mere baseline transcription of repetitive elements is
able to trigger type 1 IFN response in the absence of efficient
RNA editing. Therefore, one could ask whether specific
dsRNAs are expressed during embryo development or
in cancer.

Intriguingly, a recent study has shown intrinsic, IFN-inde-
pendent ISG expression in stem cells, and the expressed ISG
genes, like members of IFITM family, act on early steps of
viral life cycle, while no gene with well-known antiprolifera-
tive activity was detected [135]. The molecular origin of the
stem-cell-specific and IFN-independent expression of ISG
remains elusive beside altered promoter methylation [135].
In this context, it is worth noting that the expression of
human ERV HERVK has been observed in embryonic stem
cells downstream of OCT4 and SOX2 activity, and is facili-
tated by demethylating agents, which also increase IFITM1
expression [136]. This observation is especially important
because of the current use of viral mimicry in the context of
several clinical trials where effects of immune checkpoint
inhibitor are tested in combination with demethylating
agents, which increase the expression of ERV sequences
[137,138]. Interestingly, upon demethylation, dsRNA are
also sensed by Toll-receptor-like 3, in addition to previously
mentioned dsRNA sensors [137].

From these observations, the question arises whether the
activation of type 1 IFN in mesothelioma is due to the reacti-
vation of embryonically active elements, which are able to
form dsRNA and which have been silenced.

Within embryonically active elements, which are often
hypomethylated (and thereby de-repressed) in cancer, there
are ERV sequences, and a recent analysis of TCGA data has
revealed upregulation of ERV sequences in several cancer
types [139]. DNA methylation at CpG constitutes together
with histone methylation the major mechanism of transcrip-
tional control of ERVs (reviewed by Friedli & Trono [140]).

In mammals, CpG methylation is initiated by the de novo
methyltransferases including DNMT3a, 3b and is perpetuated
across mitosis by the maintenance of DNA methyltransferase
DNMT1. DNA demethylation occurs passively during DNA
replication [141] or actively via demethylation by ten-eleven
translocations (TETs) enzymes, which catalyse the oxidation
of 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcyto-
sine and 5-carboxylcytosine [142]. In an experimental model of
mesothelioma development after rats exposure to asbestos, a
significantly decreased expression of DNMT3a and 3b has
been observed accompanied by increased levels of 5-hydroxy-
methylcytosine [143], indicating that epigenetic events are
possible causes of activation of RNA editing downstream of
activation of type 1 IFN.
6. Summary and open questions
In summary, ADAR-dependent RNA editing and ADAR
expression, via their involvement in regulating type 1
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IFN signalling, represent potential biomarkers and targets
for mesothelioma immunotherapy for the treatment of
mesothelioma, as has been shown for other cancers.

In addition, by their participation to RNA processing
either through editing or by competing with other
dsRNA-binding proteins, ADARs are involved in what
has been called the 11th hallmark of cancer [144,145].
Although two studies have shown either the existence of
ADAR editing in mesothelioma development [4] or growth
suppression by silencing ADAR2 in one mesothelioma cell
line [53], most functional studies remain to be performed
on this cancer type.
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