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Abstract: The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery
of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-
activated transcription factor necessary for the launch of transcriptional responses important in
health and disease. In past decades, evidence has accumulated that AhR is associated with the
cellular response to oxidative stress, and this property of AhR must be taken into account during
investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is
susceptible to metabolic activation by enzymes encoded by the genes that are under the control of
AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-
stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also
show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being
increasingly studied as a target for a new class of therapeutic compounds and as an explanation for
the pathogenesis of some disorders.

Keywords: reactive oxygen species; oxidative stress; antioxidant; aryl hydrocarbon receptor; AhR;
nuclear factor-erythroid 2-related factor 2; Nrf2

1. Introduction

In live cells, reactive oxygen species are continuously generated, for example, by
xanthine oxidase to degrade purine nucleotides, by nitric oxide synthase to form nitric oxide,
and by other biochemical reactions as a byproduct of the oxidative energy metabolism for
the formation of adenosine triphosphate from glucose in mitochondria [1–4].

Under normal physiological conditions, small amounts of oxygen are constantly
converted into superoxide anions, hydrogen peroxide, and hydroxyl radicals. The biological
activity of reactive oxygen species at a physiological concentration plays an important role
in cell homeostasis and in a wide range of cellular parameters (proliferation, differentiation,
cell cycle, and apoptosis) [5–8].

In the cell, reactive oxygen species arise under the influence of such exogenous pro-
oxidant factors as environmental pollutants, ionizing and ultraviolet radiation, xenobiotics,
air pollutants, and heavy metals [9,10].

The main endogenous sites of production of cellular redox-reactive compounds in-
clude complexes I and III of the mitochondrial electron transport chain, endoplasmic
reticulum, peroxisomes, and such enzymes as membrane-bound nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase (NOX) isoforms 1–5 (NOX1–NOX5), complexes
of dual oxidases 1 and 2, xanthine oxidase, polyamine and amine oxidases, enzymes
catabolizing lipids, and cytochrome P450 family 1 (CYP1A) [11–16].

The high reactivity of oxygen and its active species necessitates a multi-level antioxi-
dant defense system that blocks the formation of highly active free radicals [10].

Free radicals are usually eliminated by the body’s natural antioxidant system. Re-
dox homeostasis in normal cells is maintained by a nonenzymatic system consisting of
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carotenoids, flavonoids, glutathione, anserine, carnosine, homocarnosine, melatonin, thiore-
doxin, and vitamins C and E, as well as a network of antioxidant enzymes such as super-
oxide dismutases, catalases, peroxiredoxins, glutathione peroxidase (GPX), glutaredoxins,
and paraoxonases [17,18]. In redox homeostasis, a certain role is played by the enzymes of
phase II xenobiotic biotransformation, e.g., NADPH:quinone oxidoreductase 1 (NQO1),
glutathione-S-transferase (GST) P1, GSTA1/2, UDP glucuronosyltransferase (UGT) 1A6,
GPX4, and heme oxygenase 1 [19].

An imbalance between the formation of oxidative free radicals and the antioxidant
defense capacity of the body’s cells is defined as oxidative stress. An important function
in the regulation of oxidative stress is performed by the AhR signaling pathway via pro-
oxidant and antioxidant mechanisms.

2. AhR Expression, Functions, and Signaling
2.1. AhR Structure

The aryl hydrocarbon receptor (AhR), its partner protein aryl hydrocarbon receptor
nuclear translocator (ARNT), and AhR repressor protein (AhRR) are members of a family of
structurally related transcription factors (basic helix–loop–helix (bHLH) motif-containing
Per–ARNT–Sim (PAS), whose members carry out critical functions in the gene expression
networks that underlie many physiological and developmental processes, especially those
participating in responses to signals from the environment [20,21].

Structurally, human AhR has a sequence of 848 amino acid residues and includes
3 functional domains: from the amino (N-) to carboxy (C-)terminus, these are bHLH, PAS
A, PAS B, and transcription activation domains (TADs) whose activity is mediated by
coactivators called CBP/p300 and RIP140 [21,22].

The amino acid sequence of the bHLH and PAS domains is evolutionarily highly
conserved. The bHLH domain can be divided into an HLH domain and a basic domain and
is involved in AhR binding to DNA and in protein dimerization [23,24]. The PAS region
participates in ligand binding and is thought to be the site of protein–protein interactions
during dimer formation; PAS B partially overlaps with the heat shock protein 90 (HSP90)-
binding site [21,25]. The transcription activation domain serves as a mediator of the
transcriptional activation of downstream genes [26].

The AhRR protein is structurally similar to AhR in the bHLH region, and this property
allows AhRR to heterodimerize with ARNT and to bind to a xenobiotic-responsive element
(XRE) [27]. The repression domain of AhRR contains three sumoylation sites, all of which
must be sumoylated for complete repression of AhR target genes [24,28]. Structure of AhR
is shown in Figure 1.
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Figure 1. Structure of aryl hydrocarbon receptor (AhR). The basic helix–loop–helix (bHLH) motif,
common among various transcription factors, is located at the N terminus of the AhR protein and is
involved in DNA binding and protein–protein interactions. Per–ARNT–Sim (PAS) domains (PAS-A
and PAS-B) participate in binding to ligands and to HSP90 proteins and in dimerization with partner
proteins. The transactivation domain (TAD) is located at the C terminus of the AhR protein.

2.2. Main Functions of AhR

AhR is a unique and versatile biological sensor of planar chemical compounds of
endogenous and exogenous origin [29,30] and is the only member of the PAS family that
binds naturally occurring xenobiotics [31]. By functioning as a transcription factor, AhR
takes part in many physiological and pathological processes in cells and tissues.
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Traditionally, AhR has been known as a mediator of xenobiotic metabolism ever
since AhR was reported to bind to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). AhR over-
activates the transcription of target genes, resulting in a release of many toxic compounds;
for example, AhR is an activator of TCDD as a carcinogen [32,33]. For many years, AhR
has been a research subject of toxicologists owing to its involvement in the metabolism of
environmental pollutants and food contaminants such as polycyclic aromatic hydrocarbons,
polychlorinated biphenyls, and dioxins [33,34].

Later, numerous studies have shown that AhR is activated by many natural and
synthetic ligands, which may or may not be planar molecules of the polycyclic aromatic
hydrocarbon type [35,36]. In this context, AhR acts as a sensor that connects the external
environment and internal environment. AhR participates in processes of development, im-
mune defense, and homeostasis, including cell differentiation and physiological processes
in stem cells. In these cases, its ligands are various endogenous compounds.

In particular, the endogenous stimulation of AhR determines its main function (in
mammals), which is related to the normal development of an organism and its home-
ostasis under the conditions of chemically diverse and dynamic internal and external
environments [37–41].

AhR exerts this action by regulating fundamental metabolic processes that modulate
cell proliferation, cell cycle, cell differentiation and phenotype formation, and cell adhesion
and migration [40,42–46].

The involvement of the AhR in cell cycle regulation confirms its important role in
the modulation of cellular homeostasis [33,47,48]. One hypothesis postulates that the
endogenous stimulation of AhR triggers the recognition of cellular stress, thereby altering
gene expression and causing cell cycle arrest [42,49,50].

In several human cell lines, it has been demonstrated that excessive AhR activation
results in cell cycle arrest in the G1 phase; this event makes it impossible for the cell to enter
the S phase; this blockade is partly due to a direct interaction of AhR with hypophosphory-
lated retinoblastoma protein (pRb) [51–54].

The overstimulation of receptor AhR by anthropogenic pollutants leads to a substantial
dysregulation of AhR activity and of its downstream cascades [55–57]. Apparently, this
phenomenon wreaks havoc on the fine regulation of cellular metabolic processes, e.g., owing
to the disruption of mitochondrial structure/function and proliferative activity [58,59].

2.3. AhR Ligands and Target Genes

AhR is activated by a wide range of ligands (Table 1), which can be categorized into
endogenous ligands and exogenous ones [60–62].

Among the exogenous AhR ligands, halogenated aromatic hydrocarbons are typical,
including dioxins (such as TCDD) [63], polychlorinated biphenyls, and polycyclic aromatic
hydrocarbons such as benzo[a]pyrene (BaP) and 3-methylcholanthrene [33,34]. AhR also
binds to a number of drugs such as omeprazole [64] and to compounds present in foods,
such as plant polyphenols and flavonoids (e.g., quercetin) [65,66].

Aside from environmental compounds, many small-molecule compounds have been
identified that bind to AhR and modulate its activity [33,67].

Growing interest in the physiological functions of AhR has led to the identification
of many endogenous ligands of AhR [68]. These include heme metabolites bilirubin and
biliverdin [69], tetrapyrroles [70], arachidonic acid metabolites [70–72], tryptophan metabo-
lites such as kynurenic acid [73] and kynurenine [68], 6-formylindolo[3,2-b]carbazole (FICZ)
(which is a photoproduct of the ultraviolet irradiation of L-tryptophan [74]), indolo[3,2-
b]carbazole [68], and estrogen equilenin [72]. Compounds secreted by bacteria can also be
AhR ligands [60,75,76].

AhR target genes code for phase I enzymes that metabolize xenobiotics (e.g., CYP1A1,
CYP1A2, and CYP1B1) and phase II enzymes including NQO1, GSTA2, aldehyde dehydro-
genase 3A1, UGT1A1, and UGT1A6 [21,67,77–80].
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Table 1. The list of AhR ligands.

Exogenous Compounds Endogenous Compounds

Synthetic compounds Natural Compounds Indigoids
Polycyclic aromatic

hydrocarbons Polyphenols Eicosanoids

Polychlorinated biphenyls Diosmin Tryptophan metabolites:
Halogeneted Dioxins and

Related Compounds Resveratrol L-Kynurenine,

Other synthetic AhR Ligands: Curcumin Kynurenic acid,
Benzimidazole Berberin

Pesticides Alcaloids

ITE—(2-(1′H-indole-3′-
carbonyl)-thiazole-4-

carboxylic acid methyl
ester,

Primaquine (Tetrandrine, Indoxyl-3-sulfate,
Kinase inhibitor Sinomenine Norisoboldin) Indirubin,

Synthetic flavonoid
Dietary compounds
(Indole-3-carbinol

Indole-3-acetonitrile,
Tryptamine,

New synthetic ligands 3,3′-Diindolylmethane
Indolo(3,4)bicarbazole) 3-Methylindole

(CH223191, VAF347, 4OHT, Ultraviolet photoproducts of
tryptophan:

6-MCDF) FICZ—6-Formyl indolo (3,2-b)
carbazole

Heme metabolites
Bilirubin
Biliverdin

Arachidonic acid metabolites:
12(R)-hydroxy-5(Z),8(Z),10(E)

14(Z)-eicosatetraenoic acid

AhR ligands can serve as either agonists or antagonists of the transcription of AhR-
controlled genes, depending on various conditions in the cell. In different cell types, there
are diverse scenarios of gene activation in response to AhR stimulation. Different AhR
ligands can induce dissimilar transcriptome profiles within the same cell type, and the same
AhR ligand can give rise to different transcriptome profiles in different cell types [81–83].

2.4. Pathways of Transcription Regulation by AhR and Crosstalk with Other Signal
Transduction Pathways

The AhR signaling pathway involves both classic (canonical) and non-classic (non-
canonical) signal transduction mechanisms (Figure 2) [31,84].

The classic (canonical) pathway of xenobiotic metabolism was the first-studied molec-
ular mechanism of AhR action, and adherence to this paradigm has greatly delayed the
understanding of the global biological significance of AhR.

Under physiological conditions, AhR is localized to the cytosol and forms a complex
with specific chaperone proteins, such as hepatitis B virus X-associated protein 2 (XAP2,
also known as AIP or ARA9), p23, and c-Src [24,84–86]. Ligand binding results in a
conformational change that causes AhR to disassociate from the above complex, and then
the ligand–AhR complex is translocated from the cytosol to the nucleus [87,88].

In the classic mechanism of transcriptional regulation, the complex of AhR with
its ligand heterodimerizes with ARNT and binds to xenobiotic-responsive elements in
DNA upstream of AhR’s inducible target genes. The AhR–ARNT complex initiates the
transcription of several genes, including cytochrome P450 family 1 subfamily A member 1
(CYP1A1) and subfamily B member 1 (CYP1B1), and this action has a wide range of
physiological and toxic effects [24,70,89–91].
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conformation and relocates to the nucleus, where it dimerizes with AhR nuclear transporter (ARNT) 
or other partners such as transcription factor Krüppel-like factor 6 (KLF6) or transcription factors of 
the nuclear factor kappa B (NF-κB) family (e.g., RelB). Dissociated c-Src interacts with epidermal 
growth factor receptor (EGFR). AhR signaling is connected with the activity and function of estro-
gen receptor and E2 promoter-binding factor 1 (E2F1), which is capable of binding to pRB. The AhR–
ARNT complex binds to a xenobiotic-responsive element (XRE) and induces the transcription of 
AhR-controlled genes. Proteins AhR and KLF6 form a heterodimer that recognizes a novel non-
consensus XRE (NC-XRE) and initiates the transcription of genes involved in cell cycle regulation. 
Proteins AhR and RelB (an NF-κB subunit) combine into a heterodimer that recognizes a RelB–XRE 
complex and induces the transcription of some chemokine genes. AhR and NF-κB form a heterodi-
mer that lead to the inducing of the expression of cytokines and chemokines B-cell-activating factor 
of the tumor necrosis factor family (BAFF), B-lymphocyte chemoattractant (BLC), CC-chemokine 
ligand 1 (CCL1), and interferon-responsive factor (IFR3). The AhR/ARNT/NF-κB interaction de-
creases the expression of CYP1A1. AhR and pRb form a heterodimer that lead to a blocked cell cycle 
progression by suppressing the expression of S-phase genes. AhR activity is controlled by negative 
feedback loops, including the metabolism of ligands, the disruption of the AhR/ARNT complex by 
AhR repressor (AhRR), and proteosomal degradation by the ubiquitin ligase complex. AhR in com-
plex with ER promotes the proteolysis of ER by ubiquitin ligase complex. 
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Figure 2. An outline of canonical and non-canonical AhR signaling pathways. Under physiological
conditions, AhR is localized to the cytosol and forms a complex with specific proteins, such as
hepatitis B virus X-associated protein 2 (XAP-2), heat shock protein 90 (HSP90), cytosolic endoplasmic-
reticulum proteins, and protein tyrosine kinase c-Src. After binding to a ligand, AhR changes its
conformation and relocates to the nucleus, where it dimerizes with AhR nuclear transporter (ARNT)
or other partners such as transcription factor Krüppel-like factor 6 (KLF6) or transcription factors
of the nuclear factor kappa B (NF-κB) family (e.g., RelB). Dissociated c-Src interacts with epidermal
growth factor receptor (EGFR). AhR signaling is connected with the activity and function of estrogen
receptor and E2 promoter-binding factor 1 (E2F1), which is capable of binding to pRB. The AhR–
ARNT complex binds to a xenobiotic-responsive element (XRE) and induces the transcription of
AhR-controlled genes. Proteins AhR and KLF6 form a heterodimer that recognizes a novel non-
consensus XRE (NC-XRE) and initiates the transcription of genes involved in cell cycle regulation.
Proteins AhR and RelB (an NF-κB subunit) combine into a heterodimer that recognizes a RelB–XRE
complex and induces the transcription of some chemokine genes. AhR and NF-κB form a heterodimer
that lead to the inducing of the expression of cytokines and chemokines B-cell-activating factor of the
tumor necrosis factor family (BAFF), B-lymphocyte chemoattractant (BLC), CC-chemokine ligand 1
(CCL1), and interferon-responsive factor (IFR3). The AhR/ARNT/NF-κB interaction decreases the
expression of CYP1A1. AhR and pRb form a heterodimer that lead to a blocked cell cycle progression
by suppressing the expression of S-phase genes. AhR activity is controlled by negative feedback
loops, including the metabolism of ligands, the disruption of the AhR/ARNT complex by AhR
repressor (AhRR), and proteosomal degradation by the ubiquitin ligase complex. AhR in complex
with ER promotes the proteolysis of ER by ubiquitin ligase complex.

In the non-canonical transcriptional regulatory pathway, the ligand–AhR complex
heterodimerizes with partner proteins other than ARNT, for example, Krüppel-like factor 6
(KLF6) and RelB [92,93].

AhR interacts with the signaling pathway of the nuclear factor kappa-light-chain
enhancer of activated B cells (NF-κB) [94–96]. Through interactions of AhR with RelA or
RelB, AhR signaling can promote the activation of NF-κB [97–99]. AhR and NF-κB form a
heterodimer that lead to the inducing of the expression of cytokines and chemokines B-cell-
activating factor of the tumor necrosis factor family (BAFF), B-lymphocyte chemoattractant
(BLC), CC-chemokine ligand 1 (CCL1), and interferon-responsive factor (IFR3) [100,101].

Additionally, AhR can interact with other signal transduction pathways. There seems
to be bidirectional crosstalk between AhR and nuclear factor erythroid 2-related factor 2
(Nrf2) [102,103]. The Nrf2 gene promoter contains at least one functional xenobiotic-
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responsive element [104], whereas the AhR gene promoter has several antioxidant response
elements (AREs) [103]. The crosstalk of the AhR and Nrf2 pathways is discussed in
detail below.

AhR signaling is linked with estrogen receptor activity and function [21,67], for which
a ligand–AhR complex can serve as a coactivator [92,105]. Additionally, a ligand–AhR
complex can function as a coactivator of E2 promoter-binding factor 1 (E2F1): a transcription
factor that is crucial for the cell cycle transition from the G1 phase to the S phase [92,106].
The binding of AhR to the hypophosphorylated “active” form of the retinoblastoma tumor
suppressor protein (pRb) leads to cell growth arrest in the G1/S phase of the cell cycle [107].
It is reported that two mechanisms contribute to this effect. In the first one, pRb acts as a
transcriptional coactivator of classic induction of CYP1A1 by dioxin-like ligands. In the
second mechanism, AhR is a component of a repressor complex along with pRb, E2F, and
partner protein E2F DP [89,108,109].

Aside from genomic signaling via target genes [33,67,84,110,111], AhR participates
in nongenomic signaling [46]. For example, upon the binding of a ligand to a cytosolic
complex of AhR with chaperones, kinase c-Src can be released, which relocates to the
plasma membrane, thereby activating EGF signaling [66,112].

It has been revealed that certain compounds can directly induce the expression of
AhR target gene CYP1A1, suggesting that AhR activation can occur in the absence of direct
ligand binding [113]. Indeed, nongenomic effects of AhR have been documented, especially
in the context of the induction of inflammatory processes. For instance, TCDD has been
reported to increase intracellular calcium concentration, thereby initiating a cascade of
reactions ultimately causing cyclooxygenase (COX) 2 activation and an accumulation of
inflammatory mediators such as prostaglandins [114,115]. Moreover, AhR is reported to
mediate the toxic cellular effects of TCDD through pro-oxidant mechanisms [34].

3. AhR Regulates Enzyme Systems Generating Reactive Oxygen Species

AhR is reported to be responsible for the toxic cellular effects of TCDD via pro-oxidant
mechanisms [34,116]. There is convincing evidence that the activation of AhR-dependent
detoxification of such environmental stressors as TCDD, polycyclic aromatic hydrocarbons,
polychlorinated biphenyls, and effects of ultraviolet radiation gives rise to oxidative stress
and to the production of reactive oxygen species, thus inducing oxidative damage to DNA,
lipids, and other cellular macromolecules [117–120]. Several enzyme systems, including
CYP1A, NOX, COX, and possibly aldo–keto reductase (AKR) 1, are regulated through
the AhR signaling pathway in terms of their ability to generate reactive oxygen species in
various cell types and tissues [121–124].

3.1. CYP1A

The production of reactive oxygen species by cytochromes P450 is associated with a
catalytic circle of enzymes, to be precise, with a phenomenon called “uncoupling” [125–127].
In the presence of NADPH, CYP monooxygenases reduce molecular oxygen, where one
oxygen atom is attached to the substrate, and the second one is reduced to form a water
molecule. Stoichiometric analysis of this reaction shows that most CYP enzymes consume
more oxygen than necessary to mono-oxygenize their substrate, and hydrogen peroxide
can be a byproduct of this reaction [128,129].

When compounds with a stable structure induce the formation of a complex of CYP
with oxygen, the absence of an electron acceptor can cause auto-oxidation of CYP and
a subsequent release of a superoxide anion radical which dismutates, thereby yielding
hydrogen peroxide too. As a result of Fe2+-catalyzed Haber–Weiss and Fenton reactions,
both superoxide anions and hydrogen peroxide can be converted into highly reactive
hydroxyl radicals [125].

The interaction of TCDD with AhR enhances the expression of such cytochrome P450
family members as CYP1A1, CYP1A2, and CYP1B1. Due to the stable structure of TCDD,
these enzymes are unable to metabolize it efficiently. In addition, the formation of reactive
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oxygen species is caused by excessive CYP1A1 activity resulting from the binding of TCDD
to AhR [21,130]. For instance, the AhR-dependent induction of CYP1A is the main source
of reactive oxygen species in hepatocytes incubated with TCDD [119]. Similarly, exposure
to polycyclic aromatic hydrocarbons such as BaP causes CYP1A1 the overexpression and
production of reactive oxygen species [131].

The overproduction of reactive oxygen species under the influence of CYP1A1 may in-
directly affect cell metabolism, owing to the direct activation of several signaling pathways.
Moreover, the interaction of reactive oxygen species with various biomolecules, such as
NF-κB or oncoprotein c-Jun or Rb, can affect the cell cycle [132,133].

3.2. NADPH Oxidases

The metabolic activation of polycyclic aromatic hydrocarbons involves NADPH oxi-
dase in addition to CYP1 isoforms [134]. There is evidence that polycyclic aromatic hydro-
carbons can stimulate the production of reactive oxygen species via NADPH oxidases, in
particular NOX2 and NOX4 [135–140].

These membrane-bound enzyme complexes are detectable in the plasma membrane
of various cell types, such as phagocytes and endothelial and epithelial cells [141]. In the
inactive state, NADPH oxidase subunits—three cytoplasmic (Rac1, p47phox, and p67phox)
and two intramembrane ones (p22phox and gp91phox)—are not assembled [141]. After
activation by cytokines, by opsonized bacteria, by bacterial lipopolysaccharides, or by
other stimuli, the complex assembles and the catalytic subunit, i.e., the heterodimeric
flavocytochrome composed of gp91phox and p22phox, and transfers one electron from
NADPH to molecular oxygen, thus yielding superoxide anions, which are next dismuted
into hydrogen peroxide [141–143].

Additional proteins, such as p40phox (one of NADPH oxidase subunits), play an im-
portant part in the regulation of NADPH oxidase activity and in the subsequent production
of reactive oxygen species [140,141].

According to the literature, there are several mechanisms of NADPH oxidase activa-
tion through the AhR signaling pathway. For example, the 0NOX2-mediated formation of
reactive oxygen species in epidermal keratinocytes under the action of a polycyclic aromatic
hydrocarbon is mediated in an AhR-dependent way by the stimulation of the phospho-
rylation of p47phox (neutrophil cytosolic factor 1), which is necessary for the assembly of
the NOX2 complex on the plasma membrane [137]. In a study on the liver of C57BL/6J
mice treated with 3-MX, induction of the NADPH oxidase subunit p40phox was observed,
which was not the case in the liver tissue of mice with a conditional AhR b knockout in the
liver [140]. In an analysis of Hepa1c1c7 cells, a functional xenobiotic-responsive element
was detected in the promoter of the murine p40phox gene [140].

Another mode of NADPH oxidase activation in human and rat macrophages involves
the increased transcription of p47phox because of the direct binding to XRE in the promoter
region of this gene after treatment with BaP. In addition, BaP promotes the translocation of
the p47phox protein to the macrophage plasma membrane and strengthens the production
of superoxide anion under the influence of phorbol myristate acetate [136].

Reactive oxygen species that are generated in epidermal keratinocytes during exposure
to a polycyclic aromatic hydrocarbon initiate mitogen-activated protein kinase (MAPK)
signaling, which drives the activation of transcription factors AP-1 and NF-κB and the
subsequent initiation of proinflammatory processes [137].

It has also been shown that AhR ligands, such as TCDD and dioxin-like planar
polychlorinated biphenyls, or endogenous substances (e.g., indoxyl sulfate or arachidonic
acid) activate NADPH oxidase and thus stimulate the production of reactive oxygen species,
thereby leading to damage to vascular endothelial cells [144,145]. During the incubation of
human umbilical vein endothelial cells with the endogenous AhR ligand indoxyl sulfate,
the production of reactive oxygen species increases through the overexpression of NOX4,
thus damaging these cells [146].
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NOX4 activation by thiol-reactive agents such as cadmium, arsenic, nickel, and mer-
cury interferes with AhR signaling [147]. For example, the treatment of human HaCaT
keratinocytes with arsenic results in NOX4-dependent oxidative stress. The subsequent
inhibition of the catalytic activity of CYP1A1 by reactive oxygen species induces an accu-
mulation of the endogenous AhR ligand 6-formylindolo[3,2-b]carbazole and to an AhR-
dependent increase in CYP1A1 transcription [130,147]. The same effect is observed in
arsenic-treated murine cells [148,149].

The influence of reactive oxygen species on the metabolic degradation of AhR ligands
may also explain the high transcriptional activity of AhR that is observed in glutathione-
depleted normal and malignant breast cells [150].

3.3. Cyclooxygenase

In the biosynthesis of prostaglandin E2, cyclooxygenase is a key rate-limiting enzyme
that catalyzes the conversion of arachidonic acid to prostaglandins [151,152]. Furthermore,
there is an alternative enzyme for chemical oxidation: prostaglandin endoperoxide synthase
2, also known as COX2. The latter is an example of an alternative enzyme for xenobiotic
metabolism in extrahepatic tissues [153,154].

The activation of AhR by TCDD has been found to induce the expression and activity
of COX2 [155,156]. Unlike COX1 expression, the expression of COX2 can be induced by
various stimuli, such as growth factors and cytokines [157]. The upregulation of COX2 has
been implicated in chronic inflammation and carcinogenesis [158–160].

COX2 converts arachidonic acid to prostaglandin (PG) G2, which undergoes peroxida-
tion to PGH2. In this two-step enzymatic process that generates reactive oxygen species, the
cyclooxygenase is the rate-limiting enzyme for the formation of prostaglandins [152,161].

Although TCDD and other AhR ligands drive CYP1A1 and CYP1A2 expression via
the canonical AhR–ARNT pathway, TCDD-induced expression of COX2 involves non-
canonical AhR signaling pathways such as c-Src activation and the subsequent binding of
CCAAT/enhancer-binding protein β [162] and MAPK signal transduction [137,163].

The overexpression of COX2 may enhance the production of reactive oxygen species.
Elevated levels of COX2 and reactive oxygen species can cause vasoconstriction and renal
endothelial dysfunction [164]. In another study, it was hypothesized that lipopolysac-
charide inhibits the endothelium-dependent vasodilatory response in middle cerebral
arteries of normotensive rats [165]. The effect of lipopolysaccharide in that work was
mediated by a release of the superoxide anion that was generated, at least in part, via
lipopolysaccharide-induced expression of COX2.

3.4. Aldo–Keto Reductases

The metabolic activation of polycyclic aromatic hydrocarbons involves aldo–keto
reductases in addition to CYP1 isoforms, and aldo–keto reductases participate in the
formation of reactive oxygen species. These enzymes are cytosolic NADPH-dependent
oxidoreductases that convert carbonyl groups to primary and secondary alcohols [166,167].

Aldo–keto reductases, in particular human AKR1A1 and AKR1C1–AKR1C4, can
oxidize trans-dihydrodiols (which are intermediates of CYP1-mediated oxidation of poly-
cyclic aromatic hydrocarbons) to the corresponding catechols [3,168]. For example, BaP
is oxidized by CYP1A1 to BaP-7,8-epoxide [169]. In a dihydroxylation reaction, microso-
mal epoxide hydrolase 1 transforms this epoxide into BaP-7,8-trans-dihydrodiol, which is
detoxified by phase II enzymes, re-oxidized by CYP1 isoforms, or converted by aldo–keto
reductases into BaP-7,8-catechol [166,169]. In the presence of oxygen, BaP-7,8-catechin
undergoes one-electron oxidation, giving rise to the o-semiquinone anion radical and
resulting in a release of hydrogen peroxide [170]. If the o-semiquinone anion radical is
not detoxified by catechol-O-methyltransferases or phase II conjugating enzymes, another
one-electron oxidation gives BaP-7,8-dione (o-quinone) and superoxide anion radicals [170].
BaP-7,8-dione is highly reactive, and either forms DNA adducts [171] or undergoes a redox
cycle, i.e., is reduced back to BaP-7,8-catechin, in the presence of NADPH [172].
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Consequently, the aldo–keto reductase-mediated metabolism of polycyclic aromatic
hydrocarbons contributes to oxidative damage and their genotoxicity.

The role of AhR in the regulation of AKR1 gene expression is not yet clear. High expres-
sion of AKR1C enzymes is observed in BaP-exposed cell lines, including human hepatoma,
colon carcinoma, and breast cancer cells [122–124]. Moreover, an AhR knockdown in breast
cancer MDA-MB-231 cells drastically lowers both basal and 3-methylcholanthrene-induced
AKR1C3 expression [124]. On the other hand, the AhR ligand prototype TCDD is known to
be ineffective in terms of AKR1C induction, and promoter sequences of the gene encoding
human AKR1C do not contain sensitive xenobiotic-responsive elements [122–124]. sug-
gesting that the regulation of these enzymes is not mediated by the canonical AhR–ARNT
signaling pathway.

4. Participation of AhR in Antioxidant Defense

Aside from the AhR-dependent production of intracellular reactive oxygen species,
the AhR signaling pathway modulates the expression of genes of the antioxidant system
and thereby regulates cell functions that ensure protection from oxidative stress. Numer-
ous studies indicate that the protective action of antioxidants against oxidative stress is
mediated by AhR through a response to such AhR ligands as flavonoids, phytochemicals,
and azoles [173–180].

When this type of ligand binds to AhR, the production of reactive oxygen species
does not occur because of the induction of the nuclear translocation of AhR; instead, Nrf2
is activated. Nrf2 is a key biomolecule that provides cell protection against the oxidative
damage caused by reactive oxygen species: Nrf2 is a transcription factor that regulates the
genes encoding enzymes of the antioxidant system [102,181].

4.1. Nrf2 Expression, Functions and Signaling

In a normal physiological state, Nrf2 is located in the cytoplasm and binds to Kelch-
like ECH-associated protein 1 (Keap1) [182,183]. In response to stress signals, Keap1 is
inactivated, resulting in Nrf2 stabilization. Nrf2 is translocated to the nucleus where it binds
to members of the Maf protein family (e.g., MafK, MafF, and MafG). In a sequence-specific
manner, the Nrf2–sMaf complex binds to an ARE, 5′-TGACXXXGC-3′, in a promoter region
and activates the transcription of target genes of Nrf2 [19,181,184–186].

Nrf2 regulates the transcription of genes encoding components of the antioxidant
systems based on glutathione and thioredoxin as well as genes coding for enzymes involved
in the phase II detoxification of exogenous and endogenous compounds or in NADPH
regeneration and heme metabolism (heme oxygenase 1): GPX4, superoxide dismutase,
sulfiredoxin, paraoxonases, NQO1, GSTP1, GSTA1/2, UGT1A6, and various other enzymes
that remain to be identified [187–192].

In addition to ensuring redox homeostasis, Nrf2 functions encompass multiple cellular
processes, including the regulation of cell survival, metabolic and protein homeostasis,
inflammation, and cell proliferation and differentiation [193–197].

Nrf2 is at the center of a complicated regulatory network. Its activity is modulated
at several levels, including transcriptional regulation (by NF-κB, AhR, ATF4, and other
transcription factors and cofactors), post-transcriptional regulation (by microRNA, RBPs, or
alternative splicing), post-translational regulation (by ERK, JNK, PKC, CK2, PERK, GSK3,
or p38), and the regulation of Nrf2 protein stability (by KEAP1, βTrCP, HRD1, WDR23, or
CRIF1) [181,198].

4.2. Participation of AhR in Mechanisms of Nrf2 Activation

At present, there is some understanding of the mechanisms underlying Nrf2 activation
by AhR. (Figure 3) One of them is the transcriptional activation of Nrf 2 as a target gene of
AhR, and the other is the indirect activation of Nrf2 via CYP1A1-generated reactive oxygen
species [199].
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Figure 3. The scheme of putative connections between gene batteries of AhR and Nrf2. (1) Nrf2 is
a target gene of AhR; (2) indirect activation of Nrf2 by CYP1A1-generated reactive oxygen species
(ROS); and (3) direct interaction of complexes AhR–XRE and Nrf2–ARE in a regulatory region of the
NQO1 gene.

4.2.1. Nrf2 as a Target Gene of AhR

AhR is one of the transcription factors regulating Nrf2 [199,200]. Research on the Nrf2
promoter indicates that Nrf2 is a target gene of AhR. That Nrf2 gene transcription is directly
modulated by AhR activation has been demonstrated by DNA sequence analyses of the
mouse Nrf2 promoter; this work revealed one xenobiotic-responsive element-like element
(XREL1) located at position –712 and two additional xenobiotic-responsive element-like
elements located at positions +755 (XREL2) and +850 (XREL3). In those studies, functional
analysis by a luciferase assay revealed that XREL1, XREL2, and XREL3 are all inducible by
TCDD treatment, with XREL2 being the most potent [104,200].

There is also confirmation of the functionality of these xenobiotic-responsive element-
like elements, and a direct binding of AhR to the Nrf2 promoter has been proven [200].
It has been reported that Nrf2 expression is at least partly regulated by AhR inducers
through the activation of multiple xenobiotic-responsive elements in the Nrf2 promoter.
This molecular event represents a direct connection between AhR and Nrf2 and places the
Nrf2–ARE pathway downstream of AhR–XRE activation in certain scenarios [104].

There is fine-tuned crosstalk between AhR and Nrf2, which mutually enhance or
weaken their activation states. The antioxidant response resulting from AhR activation and
mediated by Nrf2 depends on the type of AhR ligand. Such AhR ligands as dioxins, BaP,
and other polycyclic aromatic hydrocarbons bind to AhR with high affinity and induce
extremely high CYP1A1 expression along with reactive oxygen species production [131,201].
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Although Nrf2 is also activated in this case [102], the oxidative stress suppresses antioxidant
defense [131,177].

Other AhR ligands, such as phytochemicals and flavonoids, bind to AhR less
strongly [202–204], and among antioxidant phytochemicals, there are those that activate the
AhR signaling pathway without the production of reactive oxygen species. These include
ketoconazole and cynaropicrin [173,174].

Antioxidant phytochemicals capable of modulating Nrf2, AhR, and CYP1A1 have
been described. By means of epidermal keratinocytes, as an example, it has been revealed
that phytochemicals exerting their antioxidant actions through AhR and Nrf2 signaling
can be categorized into three groups depending on their ability to increase and decrease
AhR and CYP1A1 activities [10]. Group 1 contains Nrf2 agonists with AhR-agonistic
activity. This group includes soybean tar, Opuntia Ficus-Indica extract, Houttuynia cordata
extract, Bidens pilosa extract, and cynaropicrin. Group 2 contains Nrf2 agonists with AhR-
antagonistic activity. This group includes cinnamaldehyde and epigallocatechin gallate.
Group 3 contains Nrf2 agonists with CYP1A1-inhibitory activity. This group includes
Z-ligustilide, quercetin, kaempferol, pterostilbene, and resveratrol.

Nonetheless, the ability of phytochemicals to regulate Nrf2, AhR, and CYP1A1 func-
tions may depend on the cell type. The exact mechanisms by which these compounds
influence the AhR and Nrf2 pathways differently remain unknown [10,100,199,205].

4.2.2. Indirect Activation of Nrf2 via CYP1A1-Generated Reactive Oxygen Species

Another mechanism of Nrf2 activation by AhR is the indirect activation of Nrf2 via
CYP1A1-generated reactive oxygen species. The upregulation of intracellular reactive
oxygen species can lead to the oxidation of Keap1 and a release of Nrf2 from its com-
plex [199,206].

4.2.3. Direct Crosstalk between AhR–XRE and Nrf2–ARE Signaling Pathways

AhR and Nrf2 signaling pathways coordinate the expression regulation of genes of
phase II xenobiotic metabolism, e.g., GSTA2, UGT1A6, and NQO1 [191,199,200,207–209].
The mechanism of direct crosstalk between the AhR–XRE and Nrf2–ARE signaling cascades
has been described for the NQO1 enzyme and involves the close proximity of a xenobiotic-
responsive element and ARE in the regulatory region of the NQO1 gene [199,210].

5. AhR in the Pathogenesis of Diseases Related to Oxidative Stress

Although initial studies on AhR were focused on its function as a signaling molecule of
a chemical sensor responsive to environmental pollutants, lately, the range of subject areas
has widened significantly. Our understanding has expanded regarding the role of the AhR
signaling pathway in the regulation of a variety of physiological and pathological phenom-
ena. AhR’s functions cover many cellular processes, including the regulation of cell survival,
metabolic and protein homeostasis, inflammation, cell proliferation and differentiation,
apoptosis, and cellular adhesion and migration. Reactive oxygen species-induced activation
of transcription factors and proinflammatory genes increases inflammation. Accordingly,
research on various diseases in which AhR induces an oxidative stress response—by switch-
ing on inflammation and antioxidant, prooxidant, and cytochrome P450 enzymes—is now
within the scope of the interest of investigators.

It is known that oxidative stress causes inflammation and toxicity, and these problems
can lead to such pathologies as cardiovascular, liver, kidney, lung, brain, eye, skin, and
joint diseases, as well as aging and cancer [7,211–215]. In recent decades, AhR has been
increasingly recognized as an important modulator of disease because of AhR’s role in the
regulation of the redox system and of immune and inflammatory responses [120,216].

Below are examples of AhR involvement in the pathogenesis of many human diseases
associated with oxidative stress.



Int. J. Mol. Sci. 2022, 23, 6719 12 of 36

5.1. Neurological Diseases

Oxidative stress has been studied in neurological diseases, including Alzheimer’s
disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis, and in
some psychiatric disorders such as depression [213,215,217–220]. It is now proven that
AhR is involved in the initiation of oxidative stress in the brain because AhR activation
by some ligands shifts the cellular redox balance toward oxidative stress [120,221,222]. In
most areas of the brain and in the pituitary gland, AhR activation induces CYP1A1 and
CYP1B1 expression [223]. This event can result in the mitochondrial production of reactive
oxygen species [124,224] and in the higher production of reactive oxygen species through
the activation of the arachidonic acid pathway by CYP enzymes and other intracellular
signaling processes [70,225].

AhR plays an important part in the initiation of benign and malignant brain tu-
mors [226,227]. In glioblastoma cells, neuroactive hormone dopamine has been identified
as an inducer of enzymes CYP1A1, CYP1B1, and UGT1A1 [228].

It has been proven that AhR signaling pathways (especially after activation by such
endogenous AhR ligands as tryptophan metabolites) are implicated in neurodegenera-
tive diseases, in particular in well-known age-related brain diseases (Parkinson’s disease,
Alzheimer’s disease, multiple sclerosis, and amyotrophic lateral sclerosis) and other dis-
eases of the central nervous system [229–233]. The hypothesis that AhR is involved in the
neurodegenerative processes in Parkinson’s disease and Alzheimer’s disease derives from
both human and in vitro studies. An important question addressed in these studies is the
contribution of environmental factors to the risk of neurodegenerative diseases [67,233,234].

Parkinson’s disease is an extrapyramidal disorder characterized by decreased motor
function due to the loss of dopaminergic neurons. Toxic exogenous ligands such as TCDD
enhance the degeneration of dopaminergic neurons in the midbrain owing to enhanced
oxidative stress, thereby inducing experimental Parkinson’s disease; in contrast, several
phytochemicals such as a flavonoid called tangeretin as well as natural compounds from
the plant Withaferin sominifera act via AhR to protect against Parkinson’s symptoms in
several models of this disease [235,236]. An experimental murine model of Parkinson’s
disease has revealed that AhR activation by BaP may have a protective effect against this
pathology [237]. It should be noted that AhR is activated by carbidopa, which is used to
treat Parkinson’s disease [238].

AhR is associated with Alzheimer’s disease too, which is a neurodegenerative illness
featuring aggregation of β-amyloid plaques, which cause neuroinflammation and promote
neuronal loss [239]. In a mouse model of Alzheimer’s disease, AhR activation alleviates
cognitive deficits through the upregulation of neprilysin: the main endogenous enzyme
of β-amyloid catabolism [239]. Those authors showed that neprilysin expression and
enzymatic activity are higher when AhR is activated by endogenous ligands L-kynurenine
or 6-formylindolo[3,2-b]carbazole or by exogenous ligands diosmin or indole-3-carbinol;
they also found that AhR is a direct transcription factor of the neprilysin gene [239].
Substantial amounts of AhR and indolamine-2,3-dioxygenase 1 (IDO1) are detectable in
glial cells in postmortem brain samples from Alzheimer’s patients and in postmortem
hippocampus and serum samples from such patients; these amounts are elevated as
compared with young people and elderly patients without dementia [230].

It has been established that β-amyloid neurotoxicity depends on AhR activation
through the IDO1–kynurenine–AhR cascade, where—via the increased activity of IDO1 (an
enzyme responsible for tryptophan degradation)—the production of tryptophan metabo-
lites is accelerated, which can act as AhR ligands and may be neurotoxic [240]. On the
contrary, inhibitors of IDO1 attenuate the neurotoxic activity of AhR. Because of the ev-
idence of the neuroprotective effects of AhR against neurodegenerative diseases of the
brain, research on non-toxic AhR agonists will be necessary and may help to alleviate the
symptoms as a new therapeutic strategy against these diseases.

In multiple sclerosis and amyotrophic lateral sclerosis, the enhancement of inflamma-
tory and neurodegenerative processes in the central nervous system is caused by environ-
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mental factors, among other reasons. In particular, the risk of multiple sclerosis correlates
with smoking, which drives AhR gene demethylation and inhibits AhR signaling pathways,
followed by the enhancement of inflammatory processes in the central nervous system in
multiple sclerosis [241–243]. Patients with multiple sclerosis have lower levels of circulating
AhR than healthy controls do, suggesting that AhR is involved in the pathogenesis of this
disorder [244]. AhR may limit the central nervous system-inflammation characteristic of
multiple sclerosis by suppressing astrocyte activation [245,246]. In multiple sclerosis, the
gut microbiome is altered, which represents an interesting opportunity for investigating
the role of the kynurenine–AhR pathway in this pathology [247]. In an animal model
of multiple sclerosis (autoimmune encephalomyelitis), it has been shown that AhR may
be a therapeutic target in multiple sclerosis too: a knockdown of AhR worsens disease
signs, whereas AhR activation by such AhR agonists as TCDD, indole-3-carbinol, or di-
indolylmethane slows the progression of experimental allergic encephalomyelitis, owing
to the overexpression of Forkhead Box P3, greater numbers of anti-inflammatory regu-
latory T cells, and the attenuation of proinflammatory expansion of T helper 17 (Th17)
cells [246,248,249].

6-Formylindolo[3,2-b]carbazole, another AhR agonist, also alleviates disease progres-
sion when systemically administered in mouse models [250]. On the other hand, topi-
cal administration of 6-formylindolo[3,2-b]carbazole promotes Th17 cell expansion, thus
worsening disease signs [249]. Furthermore, in an animal model of multiple sclerosis (au-
toimmune encephalomyelitis), treatment with laquinimod, which crosses the blood–brain
barrier, reduces astrogliosis and prevents the production of downstream proinflammatory
cytokines in an AhR-dependent manner [251]. These results suggest that laquinimod is
a first-in-class drug that targets AhR for the treatment of multiple sclerosis and other
neurodegenerative diseases.

In amyotrophic lateral sclerosis, TDP-43 has been identified as the major patholog-
ical protein [252]. Drugs targeting this protein have become a therapeutic approach to
this disease. One work on a cell line (induced pluripotent stem cells differentiated into
motor neurons) on a mouse brain and on human neuronal cell lines (BE-M17 cells) has
revealed that AhR activation by an exogenous ligand (TCDD) or an endogenous ligand
(6-formylindolo[3,2-b]carbazole) raises the TDP-43 protein level in human neuronal cell
lines and motor neurons [243]. The observed effects were abrogated by AhR antagonists,
implying that exposure to the environmental toxic substances that activate AhR may be a
risk factor for the onset or progression of amyotrophic lateral sclerosis [243].

Available data suggest that AhR activation may have a bidirectional effect on diseases
of the brain. At the same time, only the IDO1-kynurenine-AhR cascade has been clearly
shown to be involved in the development of Alzheimer’s disease. AhR function may
depend on additional stress events, or cell types. Effects on the AhR signaling pathway
may depend on interaction with various coactivators or ligand-selective binding of the
AhR complex to nontraditional sequences of XRE [226,253]. Apparently, in different cases,
AhR antagonists or agonists can promote or hinder the development of neurodegenerative
disorders, as well as exert either pro- or antitumor influence.

5.2. Ocular Diseases

Oxidative stress participates in age-related macular degeneration and cataracts by
altering various types of eye cells photochemically or nonphotochemically [254]. Under the
action of free radicals, crystalline proteins in the lens can become crosslinked and aggregate,
causing the formation of cataracts [255]. In the retina, prolonged exposure to radiation can
inhibit mitosis in the retinal pigment epithelium and choroid, may damage outer segments
of photoreceptors, and can be implicated in lipid peroxidation [256].

Because environmental factors and metabolites have been shown to affect the central
nervous system, researchers have demonstrated a role of AhR in some diseases of the
central nervous system and a functional contribution of AhR to the regulation of the
behavior of astrocytes, other microglial cells, and neurons; given that the retina is an
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extension of the brain, a growing area of research deals with the involvement of AhR in
ocular diseases [233].

The importance of AhR and AhR signaling in eye development, toxicology, and
diseases is currently being uncovered. AhR is expressed in many ocular tissues, including
the retina, choroid, cornea, and orbit. A considerable role of AhR in age-related macular
degeneration, glaucoma, and other eye diseases has been identified [257].

Glaucoma is caused by an increase in intraocular pressure, which damages the optic
nerve and induces vision loss and blindness. CYP1B1, an AhR-inducible gene, is associated
with various types of glaucoma, including two main ones: primary open-angle glaucoma
and primary congenital glaucoma [258,259]. Mutations correlating with various types of
glaucoma have been identified in CYP1B1 and cause a low CYP1B1 enzymatic activity or
its absence [258,260].

Additionally, TCDD can induce CYP1B1 expression in non-pigmented human ciliary
epithelial cells that constitute the ciliary body, whose main function is the production of
aqueous humor in the eye [261]. CYP1B1 takes part in the metabolism of steroids, retinol,
retinal, arachidonate, and melatonin. Consequently, CYP1B1 expression, which is elevated
during AhR activation, alters the biosynthesis of critical metabolites as well as metabolic
pathways that may lead to the initiation and/or progression of glaucoma [258].

Age-related macular degeneration is a complex multifactorial disease of the elderly
and has unclear pathogenesis. In age-related macular degeneration, one of the destructive
processes is oxidative stress, which gives an imbalance among the processes responsible
for the production and detoxification of reactive oxygen species. In the dry type of age-
related macular degeneration, there is a thinning and degradation of choroid capillaries,
expanding atrophy of the outer retinal part, and irreversible damage to photoreceptors. In wet
age-related macular degeneration, the presence of proinflammatory cytokines, in particular
vascular endothelial growth factor (VEGF), promotes angiogenesis and vascular permeability.

During an investigation into the AhR function in retinal homeostasis, a loss of AhR
signaling was found to increase retinal susceptibility to environmental stressors such as
intense light [262]. In the retina of Ahr−/− mice, there is a subretinal microglia accumu-
lation concurrent with changes in autofluorescence, degeneration of the retinal pigment
epithelium, and immune activation [262]. That study implies that AhR plays a protective
part in the retina as a sensor of environmental stress, whereas altered AhR function may
contribute to the progression of age-related macular degeneration in humans.

The effects of AhR have been analyzed in retinal pigment epithelial and choroid cell
lines using AhR small interfering RNA [263]. That paper indicates that the expression of the
VEGFA gene and of a proinflammatory chemokine (CC motif ligand 2; CCL2) goes up after
AhR depletion in a human retinal pigment epithelial cell line, ARPE-19 [263]. Additionally,
in that study, AhR depletion increased collagen IV synthesis and secretion in ARPE-19 cells
and choroidal RF/6A cells. The depletion of AhR in RF/6A cells also raised the expression
of the macrophage chemotactic factor gene, of secreted phosphoprotein 1 (SPP1), and of
transforming growth factor (TGF)-β, while reducing the expression of antiangiogenic factor
SERPINF1 [263].

Mice treated with TCDD show elevated VEGFA levels and choroidal vascularization:
a hallmark of age-related macular degeneration [264]. These findings suggest that either a
loss of AhR expression or AhR activation by TCDD (and/or by other toxic substances in
cigarette smoke) promotes angiogenesis, inflammation, and alterations in the extracellular
matrix, all of which are seen in the wet type of age-related macular degeneration.

In an experimental model of age-related macular degeneration (OXYS rats with signs
of age-related macular-degeneration-like retinopathy of varying severity), it has been found
that an imbalance between the prooxidant (AhR-dependent) system and antioxidant (Nrf2-
dependent) system may be key to the pathogenesis of age-related macular degeneration and
its initiation and/or progression [265]. Moreover, mitochondria-targeted antioxidant SkQ1
has been shown to ameliorate clinical signs of retinopathy in OXYS rats (manifesting signs
of age-related macular-degeneration-like retinopathy) by influencing the transcriptional
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activity of AhR and Nrf2 and mRNA expression levels of CYP1A2 and CYP1B1 in the retina
of OXYS and Wistar rats. These data are evidence that the enzymes CYP1A2 and CYP1B1
are implicated in the pathogenesis of age-related macular-degeneration-like retinopathy in
OXYS rats and are possible therapeutic targets of SkQ1 [266].

Investigation into the impact of melatonin on mRNA expression of genes of AhR
and Nrf2 signaling pathways in OXYS rats has shown that melatonin reduces the mRNA
level of AhR-dependent genes of cytochromes CYP1A2 and CYP1B1 in the retina but does
not affect mRNA expression of Nrf2-dependent genes in OXYS rats. This means that in
age-related macular degeneration, the efficacy of melatonin is attributable to its ability to
modulate the expression of AhR signaling pathway genes [267].

The discovery of a new synthetic AhR ligand (2,2′-aminophenylindole) should also be
mentioned regarding the development of therapeutic strategies promoting cell homeostasis
during the degeneration of the retinal pigment epithelium layer [268]. This compound
protects retinal pigment epithelium cells from lipid peroxidation cytotoxicity in vitro and
the retina from light-induced damage in vivo. In addition, metabolic characterization
of this agent by liquid chromatography coupled with mass spectrometry suggests that
2,2′-aminophenylindole alters lipid metabolism in retinal pigment epithelium cells, thereby
increasing the intracellular concentration of palmitoleic acid. The latter, as a downstream
effector of 2,2′-aminophenylindole-mediated activation of AhR, has also been reported
to protect cells of the retinal pigment epithelium from 4HNE-mediated stress and light-
induced retinal degeneration in mice [268].

The synthetic AhR agonist 2,2′-aminophenylindole also regulates microglial home-
ostasis, thus making AhR a potential target for immunomodulatory and antioxidant thera-
pies. This notion has been illustrated in a study on the anti-inflammatory and antioxidant
effects of 2,2′-aminophenylindole on microglial reactivity; the results showed that 2,2′-
aminophenylindole strongly represses the expression of proinflammatory genes and induces
antioxidant genes in activated human and murine microglial cells, in lipopolysaccharide-
stimulated explants of the retina, and in stressed human ARPE-19 cells [269].

5.3. Pulmonary Diseases

There is now firm proof that inflammatory lung disorders such as asthma and chronic
obstructive pulmonary disease are characterized by systemic and localized chronic in-
flammation and oxidative stress [270–273]. Oxidants may contribute to inflammation by
activating various kinases and redox transcription factors such as NF-κB and AP-1 [272,273].

The production of an inflammatory mediator called bronchial mucin-containing mucus
is usually mediated by a release of cytokines or lipid mediators or by an increase in
reactive oxygen species levels [274–277]. AhR is expressed in many lung cells, including
macrophages, club cells, type II alveolar cells, and endothelial cells, and plays an important
part in lung function modulation [278]. AhR serves as a regulator of mucosal-barrier
function and may influence an immune response in the lungs through changes in gene
expression, in intercellular adhesion, in mucin production, and in cytokine expression.
AhR is expressed in cells of innate immune responses and in cells crucial for adaptive
immunity [278].

By means of gene-deficient mice and the administration of AhR agonists and antago-
nists, numerous researchers have demonstrated that AhR modulates an immune response
in various respiratory diseases and that lungs are sensitive to AhR ligands [279–281].
Allergic and inflammatory diseases such as bronchitis, asthma, and chronic obstructive
pulmonary disease were recently linked with exposure to environmental toxic compounds.
AhR mediates the effects of these substances through the arachidonic acid pathway, cell
differentiation, intercellular adhesion interactions, cytokine expression, and mucin produc-
tion. Human bronchial epithelial cells are reported to express AhR, and AhR activation
induces mucin production via reactive oxygen species [277,279,282–284].

Chronic obstructive pulmonary disease develops as a result of exposure to risk factors
that cause oxidative stress, inflammation, and the aberrant proliferation, death, and aging
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of lung cells, with the consequent destruction of parenchymal tissue [285,286]. AhR has
a ligand-specific impact on the lungs and can either aggravate or ameliorate chronic
obstructive pulmonary disease. For example, the toxic effects of dioxins and polycyclic
aromatic hydrocarbons from tobacco smoke and from particulate matter on the lungs are
mediated by AhR signal transduction. These ligands induce inflammation, increase the
expression of mucin 5AC and matrix metalloproteinases (MMPs), and damage ciliated cells,
club cells, and alveolar macrophages, thereby contributing to the pathogenesis of chronic
obstructive pulmonary disease [287–289].

The exact molecular mechanisms behind the pathogenetic effects of endogenous AhR
are unclear, but research indicates that the RelB protein (encoded by a target gene of NF-κB)
may be partially responsible: AhR is known to interact with RelB and to modulate its
expression [290]. Moreover, AhR regulates oxidative stress. When exposed to cigarette
smoke, AhR-deficient lung cells show a higher production of reactive oxygen species and a
lower expression of antioxidant enzymes (NQO1 and sulfiredoxin) than do lung cells with
normal AhR levels, suggesting that cigarette smoke-induced oxidative stress is enhanced
in AhR-deficient lungs [291].

AhR activation can influence the inflammatory phase in both asthma and chronic ob-
structive pulmonary disease through inflammatory and resident cells in the lungs [282,284].
The relation between AhR function and airway inflammation in the initial phase is im-
portant not only in chronic obstructive pulmonary disease but also in asthma. Airway
Clara cells are sensitive to AhR activation by the ligand TCDD, and these cells are capable
of secreting a wide range of glycoproteins such as mucins and SP-D [274,292]. TCDD
upregulates inflammatory cytokines, COX2, MUC5AC, and MMPs via AhR signaling in
a Clara cell-derived cell line. Research articles about AhR agonists and inhibitors have
shown that AhR activation induces the production of such cytokines as TGF-α and tu-
mor necrosis factor and of MMPs through receptors in human hematocytes and epithelial
cells [282,292–294]. Thus, typical AhR xenobiotic ligands such as TCDD and BaP may
contribute to the development of lung diseases.

Nevertheless, there are observations strongly indicating that AhR signaling can be ben-
eficial in lung diseases mediated by inflammation and oxidative damage [295]. A deficiency
of AhR signaling affects immune and nonimmune cells such as neutrophils, macrophages,
and fibroblasts in the lungs, thereby resulting in greater pulmonary inflammation after
exposure to tobacco smoke, lipopolysaccharide, and hyperoxia [296,297]. Conversely, AhR
activation is known to reduce airway inflammation in rodent models of asthma by modu-
lating the production and secretion of Th2 cytokines such as interleukin (IL) 4, IL-5, and
IL-15 [298,299]. The activation of AhR by omeprazole alleviates lung inflammation in a
model of acute hyperoxic lung injury based on adult mice, while neutrophil infiltration and
MCP-1 expression are weaker as compared to vehicle-treated animals [300].

Because AhR takes part in the initiation of the aforementioned lung diseases, the devel-
opment of biologics and small-molecule compounds that target the AhR signaling pathway
is a possible approach to the prevention and treatment of these pathologies. For instance,
AhR antagonist resveratrol has been shown to diminish mucin production [279]. AhR an-
tagonist CH223191 attenuates BaP-induced allergic lung inflammation via AhR [301]. This
AhR antagonist has also been reported to reverse experimental pulmonary hypertension
induced by Sugen 5146 in rats [302].

5.4. Rheumatoid Arthritis

This is an autoimmune disease characterized by the chronic inflammation of the joints
and the tissues around the joints along with infiltration by macrophages and activated T
cells [126,303]. The pathogenesis of this disease is due to the formation of reactive oxygen
and nitrogen species at the site of inflammation. The oxidative damage and inflamma-
tion have been confirmed in various rheumatic diseases by means of elevated levels of
isoprostane and prostaglandins in serum and synovial fluid as compared with a control
group [304]. Environmental factors, especially polycyclic aromatic hydrocarbons, are impli-
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cated in the pathogenesis of rheumatoid arthritis; hence, the role of AhR in this pathogenesis
is of interest. Many papers indicate that polycyclic aromatic hydrocarbons play a critical
part in the development of rheumatoid arthritis in various ways [305–307], primarily by
influencing changes in the diversity of immune cells and the related downstream cytokines,
and the main route of these effects goes through the AhR signaling pathway.

AhR, a major immunomodulator, is expressed in various cells (T and B cells, natu-
ral killers, macrophages, and dendritic cells) involved in rheumatoid arthritis [308]. Of
note, in different cells implicated in rheumatoid arthritis, the effects of AhR activation
are opposite. For instance, in Th1 and Th17 cells, B cells, dendritic cells, M1 monocytes,
natural killers, and osteoclasts, AhR activation has an exacerbating impact on rheuma-
toid arthritis [309–314]; however, in Th2 cells, regulatory T cells, regulatory dendritic
cells, M2 monocytes, and osteoblasts, AhR activation protects against rheumatoid arthri-
tis [311,314–316].

AhR ligands such as 6-formylindolo[3,2-b]carbazole, TCDD and BaP relieve exper-
imental arthritis; nonetheless, the long-term administration of these compounds has se-
rious adverse effects such as high embryonic mortality, hepatotoxicity, and carcinogenic-
ity [317–319], which limit the use of these compounds as therapeutic agents in animals
or humans. AhR agonists with fewer adverse effects may be candidate therapeutics for
rheumatoid arthritis [308]. Although much basic research has been conducted on the role
of polycyclic aromatic hydrocarbon-activated AhR in rheumatoid arthritis, clinical studies
on its effects on the mechanism of AhR signaling in rheumatoid arthritis are still lacking,
and further research is needed.

5.5. Skin Diseases

These diseases may also be linked with environmental pollutants having high affinity
for AhR [84,320]. Low doses of these compounds cause skin irritation or worsen symptoms
of diseases [321]. Exposure to high doses of air pollutants leads to such skin pathologies
as chloracne and hyperpigmentation [322–325]. AhR participates in many pathological
processes in the skin through alterations in the signaling pathways controlled by AhR.

Early studies pointed to a partial role of AhR in the pathogenesis of various skin
diseases, including inflammatory diseases, skin pigmentation disorders, and skin can-
cer [131,179,326], as well as a dependence of the outcome of AhR activation on the cell type
and ligand [130,327]. Several papers offer evidence of AhR’s involvement in the pathogen-
esis of chloracne, hyperpigmentation, and vitiligo, as well as inflammatory diseases such
as psoriasis and atopic dermatitis [116,328–331]. Additionally, many different biological
responses to AhR stimulation or inhibition are observed in the skin [177].

On the one hand, the activation of AhR by ligands can induce the overexpression
of proinflammatory cytokines and the production of reactive oxygen species, yielding an
inflammatory disease or carcinogenesis [173]. On the other hand, AhR activity can influence
the differentiation of regulatory T cells, thereby promoting immune tolerance [332]. A large
class of tryptophan derivatives that are AhR ligands may play a part in the pathogenesis
or treatment of many skin diseases [73,333]. Tryptophan derivatives are generated by
enzymatic reactions or by exposure to ultraviolet light in various skin cells, and some of
these compounds are present in herbs and plant extracts commonly used for skin care and
therapies. Their biological activities require further research [100,334].

5.6. Nephropathies

Oxidative stress participates in various renal pathologies such as glomerulonephritis,
tubulointerstitial nephritis, proteinuria, uremia, diabetic nephropathy, and chronic renal
failure [335]. In chronic kidney disease, especially with uremia, oxidative stress can be
explained by high pro-oxidant activity driving the overproduction of reactive oxygen
species. The reasons for this phenomenon are complicated and multifactorial, and are
mostly linked with elevated NOX activity, markedly upregulated xanthine oxidase, and
concomitant mitochondrial dysfunction [336].
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The roles of oxidative stress and inflammation in kidney failure lie in their influence on
the most common disorders accompanying chronic kidney disease, which progress further
via a positive-feedback mechanism, promoting an additional enhancement of oxidative
stress and the progression of chronic kidney disease with a full range of complications [336].
Many authors have reported that AhR is associated with chronic kidney disease and its
complications. A review of current knowledge on the participation of AhR in chronic kidney
disease [337] shows that AhR mediates chronic kidney disease complications, including
cardiovascular disorders, anemia, bone disorders, cognitive dysfunction, and malnutrition,
and that AhR affects drug metabolism in patients with chronic kidney disease [337].

AhR also helps to reduce the harmful effects of uremic toxins by strengthening
intestinal-barrier function [337,338]. In patients with chronic kidney disease, the key
AhR ligands are the uremic toxins that arise during the metabolism of tryptophan, which
is a precursor of a large number of microbial and host metabolites [338]. Derivatives of
kynurenine, of serotonin, and of indole are (by-)products of the three main tryptophan
metabolic pathways, which are directly or indirectly modulated by the gut microbiota [338].
The tryptophan metabolites indoxyl sulfate, indole-3-acetic acid, and kynurenine are not
only important uremic toxins but are also potent AhR ligands [339–341]. Activated AhR
is proven to exacerbate kidney damage [342–344]. An increase in AhR activity—in the
periglomerular region and in proximal and distal renal tubules—under the action of ade-
nine and indoxyl sulfate leads to renal fibrosis [345]. Indoxyl sulfate-activated AhR causes
podocyte injury, progressive glomerular damage, and a proinflammatory phenotype [346].
Chronic kidney disease may be aggravated by indoxyl sulfate via the OAT3–AhR–STAT3
cascade in proximal tubular cells owing to the downregulation of a receptor called MAS,
the subsequent inhibition of the renin–angiotensin system, and TGF-β activation [347].
Renal fibrosis may be mediated by AhR signaling [338,348].

AhR activity in patients with diabetes mellitus positively correlates with the pro-
gression of diabetic nephropathy and kidney failure severity [349]. A paper about the
function of AhR in the pathophysiological processes of diabetic nephropathy (on the basis
of an AhR knockout mouse model and a pharmacological inhibitor, α-naphthoflavone)
has revealed that AhR mediates renal oxidative stress in a diabetic mouse model, thereby
inducing infiltration by macrophages, extracellular matrix accumulation, and mesangial
cell activation [350].

5.7. Cardiovascular Diseases

These diseases have a multifactorial etiology related to various risk factors, including
but not limited to hypercholesterolemia, hypertension, tobacco smoking, diabetes mellitus,
poor diet, stress, and lack of physical activity. Evidence has been published supporting the
participation of oxidative stress in a number of cardiovascular disorders such as atheroscle-
rosis, ischemia, hypertension, cardiomyopathy, cardiac hypertrophy, and congestive heart
failure [351–354].

AhR is closely connected with cardiovascular diseases in terms of cardiac function,
vascular development, and blood pressure regulation. In some diseases associated with
atherosclerosis, AhR can serve as a transmitter of an oxidative stress signal [62,355,356].

There is a strong association between the accumulation of uremic toxic compounds
and cardiovascular complications of chronic kidney disease [357]. AhR activation directly
correlates with cardiovascular risk, even in the absence of uremia [358,359]. People exposed
to AhR agonists are at an increased cardiovascular risk. To give an example, people who
were exposed to TCDD as part of Agent Orange during the Vietnam War were more likely
to experience relevant cardiovascular complications such as coronary heart disease and
stroke [360].

Environmental pollutants that are AhR ligands promote the onset and progression
of atherosclerosis, indicating that AhR may partake in the regulation of atherosclero-
sis [361–363]. Inflammatory responses contribute to AhR-regulated atherosclerosis. There
are three hypotheses based on the AhR signaling pathways that mediate inflammation and
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promote atherosclerosis. The first hypothesis involves downstream inflammatory signaling
factors such as VCAM-1 acting through the AhR–NF-κB signaling pathway, resulting in
monocyte chemotaxis. Macrophages and monocytes are targets of polycyclic aromatic
hydrocarbons, which are implicated in the physiological and pathological processes of
atherosclerosis [364,365]. The second hypothesis postulates that AhR promotes absorp-
tion of oxidized low-density lipoprotein by macrophages giving rise to foam cells with
the help of endogenous and exogenous ligands such as oxidized low-density lipoprotein,
lipopolysaccharides, and TCDD. In vitro experiments have revealed that cholesterol ac-
cumulation in foam cells under the influence of particulate matter-induced inflammation
is an early sign of cardiovascular diseases. Nonetheless, the suppressive action of AhR
inhibitors on foam cells and on inflammation has not been investigated. It is believed
that these mechanisms will be clarified by extensive studies on AhR [366,367]. The third
hypothesis is the accelerated proliferation of vascular smooth muscle cells, which is key to
the initiation of vascular complications according to the finding that indoxyl sulfate induces
the proliferation of vascular smooth muscle cells through AhR activation, NF-κB signal
transduction, and the production of reactive oxygen species [368]. It should be said that
the division of the pathological involvement of AhR in the development of atherosclerosis
into three hypotheses is largely arbitrary. These processes are related, and this division can
only reflect the structuring and emphasis in future studies that should clarify the activity of
this complex molecular network.

The regulation of AhR at the AhR transcription level in humans has not been eluci-
dated yet. AhR is connected with other signaling pathways, including Wnt and E2 cascades,
and further research is needed to clarify the function of AhR and identify new endogenous
ligands in order to elucidate the role, regulation, and possible usefulness of AhR in the
treatment of atherosclerosis. AhR is reported to be a major participant in the pathogenesis
of such cardiovascular pathologies as myocarditis, hypertension, coronary heart disease,
and pulmonary arterial hypertension [62]. The pathogenesis driven by AhR varies among
cardiovascular diseases, but includes inflammatory responses, immune responses, oxida-
tive stress, and endothelial dysfunction. The molecular mechanisms behind AhR signaling
and behind the crosstalk between AhR signaling and other signal transduction cascades
still require further investigation [62].

6. Conclusions

Major breakthroughs were recently made in the biology of redox modulation by AhR.
Despite all the gained knowledge, the remaining intriguing questions concern the mecha-
nism underlying the cell- and tissue-specific effects of AhR ligands and the dependence of
responses on the type of ligands. The function of AhR is complicated because the outcome
of its activation depends on a wide range of endogenous and exogenous ligands (which are
characterized by different affinity values and diverse combinatorial effects) and on different
AhR functions in many physiological and pathological processes in cells and tissues. The
molecular mechanisms of AhR signaling and of the crosstalk between AhR signaling and
other signal transduction cascades require further research. It is mostly the inconsistency
of scientific findings that makes it difficult to determine the signaling pathways through
which AhR can exert its beneficial or detrimental actions. There is growing evidence that
AhR activation can have multidirectional effects on many aspects of human physiology and
pathology, and that these may depend on cell and tissue types, or on the interaction of the
AhR complex with non-traditional XRE sequences, or interaction with various coactivators
and corepressors. Depending on many factors, the action of AhR agonists or antagonists
can cause positive or negative effects on human health (Figure 4).
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The recognition that AhR is implicated in the pathogenesis of many human diseases
has arisen in conjunction with numerous examples of diseases in which AhR modulates
disease activity through interaction with environmental factors. The pathogenesis driven
by AhR often includes oxidative stress and immune and inflammatory responses. The
weight of evidence indicates that, in diseases of various organs and tissues, AhR activation
can be beneficial or detrimental. The ultimate effect depends both on the context of the
disease and on the nature of AhR ligands. In this context, AhR activation aggravates the
symptoms of some diseases, but alleviates the symptoms of other diseases.

Currently, in the literature, there are few examples of disorders where the molecular
mechanisms of AhR’s involvement in the pathogenesis are clear. More numerous are
findings about various biological responses to the stimulation or inhibition of AhR in
various diseases. At the current stage of our insight into AhR’s biology and its role in the
pathogenesis of diverse diseases, the utility of AhR as a therapeutic target has already been
established, and a foundation has been laid for the selection and design of effective AhR
ligands as new treatments of various diseases. Although much basic research has been
conducted on the functions of AhR in pathological processes, clinical studies about the
effects on the mechanism of the AhR signaling pathway in different pathologies are still
scarce, and further investigation is necessary.
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AhR aryl hydrocarbon receptor
AhRR aryl hydrocarbon receptor repressor
AKR aldo–keto reductase
ARE antioxidant response element
ARNT aryl hydrocarbon receptor nuclear translocator
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BAFF B-cell-activating factor of the tumor necrosis factor family
BaP benzo[a]pyrene
bHLH basic helix–loop–helix
BLC B-lymphocyte chemoattractant
CCL1 CC-chemokine ligand 1
COX cyclooxygenase
CYP cytochrome P450
E2F1 E2 promoter binding factor 1
EGF epidermal growth factor
GPx glutathione peroxidase
GST glutathione S-transferase
HSP90 heat shock protein 90
IDO1 indolamine-2,3-dioxygenase 1
IFR3 interferon responsive factor
IL interleukin
Keap1 Kelch-like ECH-associated protein 1
KLF6 Kruppel-like Factor 6
MAPK mitogen-activated protein kinase
MMP matrix metalloproteinase
NADPH nicotinamide adenine dinucleotide phosphate
NF-κB nuclear factor κB
NOX NADPH oxidase
NQO1 NADPH:quinone oxidoreductase-1
Nrf2 nuclear factor erythroid 2-related factor 2
PAS Per–ARNT–Sim
pRB retinoblastoma protein
TAD transactivation domain
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
TDP-43 TAR DNA-binding protein 43 kDa
TGF transforming growth factor
UGT UDP glucuronosyltransferase
VEGF vascular endothelial growth factor
XRE xenobiotic-responsive element
XREL1 XRE-like element
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