
materials

Article

Magneto-Optical Characterization of Trions in Symmetric
InP-Based Quantum Dots for Quantum
Communication Applications
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Abstract: Magneto-optical parameters of trions in novel large and symmetric InP-based quantum
dots, uncommon for molecular beam epitaxy-grown nanostructures, with emission in the third
telecom window, are measured in Voigt and Faraday configurations of an external magnetic field. The
diamagnetic coefficients are found to be in the range of 1.5–4 µeV/T2, and 8–15 µeV/T2, respectively
out-of-plane and in-plane of the dots. The determined values of diamagnetic shifts are related to the
anisotropy of dot sizes. Trion g-factors are measured to be relatively small, in the range of 0.3–0.7
and 0.5–1.3, in both configurations, respectively. Analysis of single carrier g-factors, based on the
formalism of spin-correlated orbital currents, leads to similar values for hole and electron of ~0.25 for
Voigt and ge ≈ −5; gh ≈ +6 for Faraday configuration of the magnetic field. Values of g-factors close
to zero measured in Voigt configuration make the investigated dots promising for electrical tuning of
the g-factor sign, required for schemes of single spin control in qubit applications.

Keywords: quantum dots; magneto-optics; telecom wavelengths; trions; InP-based nanostructures

1. Introduction

Self-assembled semiconductor quantum dots (QDs) constitute very interesting ob-
jects of study, both from the point of view of fundamental physics and various practical
applications [1,2]. Three-dimensional confining potential, resulting in discrete atom-like
levels, predestines them to be a perfect active material in lasers, with some device operation
parameters exceeding their quantum well counterparts and combined with a broad range
of emission wavelengths [3,4]. Moreover, the strong confinement of carriers makes them
an almost ideal realisation of a two-level system, suitable as a foundation for single-photon
emitters and other non-classical light sources, also in the spectral region compatible with
optical fibre networks [5,6]. On the other hand, due to long spin coherence time [7–9] and
possibilities of fast optical operations, QDs offer a promising playground for spintronic
applications, where individual spins of electrons and holes confined in the dots are used
instead of charges to store and manipulate information [10,11].

The application of QDs in spintronics requires detailed knowledge on carrier g-factors,
determining the susceptibility of the spin to a magnetic field and spin–spin interactions.
Various g-factor regimes are practically relevant for large absolute values the energy of
confined states is strongly affected by external magnetic fields, leading to considerable
separation between states with opposing spins [11]; on the other hand, in the case of
g-factor values close to zero, their sign can be changed by, e.g., electric fields [12–15],
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which can be used for full Bloch sphere control of the spin qubit [16]. The value of the
g-factor is strongly material-dependent already in bulk semiconductors [17], leading to
large deviations from the value for free electrons of ge ≈ +2. It is further modified by
the additional confinement of carriers in nanostructures, which is particularly strong for
QDs. Thus, the values of g-factors for a given QD system depend on the details of size,
strain and material composition and their distribution within individual dots, as has been
recently shown in the picture of spin-correlated orbital currents [18], which results i.a. in
the anisotropy of g-factors, e.g., different values of g-factors in the directions perpendicular
and parallel to the growth direction [19,20]. It also makes it difficult to predict their values
for new nanostructures, requiring experimental verification.

In order to measure g-factors, a pump–probe Faraday rotation experiment can be
employed, where the g-factor value is determined from the Larmor frequency of the
spin precession around an external magnetic field. However, this technique has so far
been successfully applied only for QD ensembles, giving values averaged over the entire
population of dots [21–23]. Addressing individual QD properties requires the application
of microphotoluminescence spectroscopy (µPL), where g-factors are extracted from the
values of Zeeman splitting. As is the case of all the investigations related to QDs, the bulk
of work has been devoted to the In(Ga)As/GaAs material system [12,14,15,21,24–30], with
only a very limited number of articles pertaining to InAs dots grown on InP substrates.
The latter concern InAsP QDs embedded in an InP nanowire [31] or QDs emitting in the
telecom spectral range. In this group, magnetic parameters have been investigated only for
the dots which differ from the ones studied here either in the applied growth technique
(metal-organic vapour phase epitaxy [19,32]), or for the dots grown by molecular beam
epitaxy (MBE), in the composition of barriers (InAlGaAs vs pure InP in our case) [20].
Moreover, the MBE-grown dots have been measured only with the pump–probe technique,
which has not resolved the properties of a single emitter.

In this paper, we investigate magneto-optic properties of a novel generation of InP-
based QDs, with emission at ~1.55 µm, in the centre of the third telecom window. The
use of ripening technique during MBE growth of our sample led to nucleation of large
and symmetric nanostructures whereas employing InP barriers resulted in considerable
intermixing and thus significant phosphorus content in the dots. Such a material system
can be used for optically driven spintronics, compatible with telecom infrastructure, but
their application potential in this regard has not yet been investigated. In order to fill this
gap, we performed the experiments in both Voigt and Faraday configurations, to determine
in-plane and out-of-plane characteristics. We focus our studies on charged excitons (trions),
because they may be unambiguously identified by magneto-optical spectroscopy and
can be used to extract separately electron and hole g-factors in a Voigt configuration.
Moreover, they emit light more efficiently than neutral excitons and their emission is
always circularly polarised, which facilitates the potential optical manipulation of spin
states between different dots. Besides g-factors, we also determine diamagnetic coefficients
and relate them to the spatial extents of wave functions, which depend on the structural
characteristics of the investigated dots.

2. Materials and Methods
2.1. Sample Growth

QD nanostructures were grown using a Veeco Gen II solid source MBE system on
a (100) oriented Fe-doped (n-type) InP substrate, using two-valve solid-source cracker
cells for sources of arsenic and phosphorus [33]. QDs were formed by deposition of two
monolayers of InAs on InP at a growth temperature of 490 ◦C. The QDs growth was
combined with the ripening process [34,35], which resulted in large and high symmetry
QDs, with low surface density ranging from 5 × 108 cm−2 to ~2 × 109 cm−2 [35]. In order to
facilitate single dot spectroscopy, non-deterministic cylindrical mesas were patterned on the
sample surface by means of e-beam lithography and wet chemical etching, where diameters
of 1000 nm were chosen for experiments. From preliminary cross-sectional transmission
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electron microscopy (TEM) scans on the similar buried QDs and atomic force microscopy
images made on an analogical sample with surface dots [36], the dots can be assumed
to be lens-shaped, with estimated diameters of 55 ± 15 nm and heights up to 15 nm.
Material composition of the QDs is also evaluated from still limited TEM measurements,
which show considerable incorporation of phosphorus in dots. For increased extraction
efficiency of photons, the QD layer was grown on 25-period InP/InAlGaAs distributed
Bragg reflector (DBR), with a refractive index contrast of 0.35. The reflectivity of the DBR
reaches around 99% at the telecom C-band [36]. A scheme of the sample layer structure is
shown in Figure 1.
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Figure 1. Schematic of the investigated sample structure: InP substrate and buffer layer, a 25-pair
distributed Bragg reflector (DBR), and 246 nm thick InP layer below and above nominally two
monolayers of InAs forming the self-assembled quantum dots (QDs).

2.2. Experimental Setup

For spectroscopy measurements the sample was mounted inside the bore of Micro-
stat MO2 from Oxford Instruments, a micro-cryostat with a superconducting magnet
providing magnetic field up to 5.0 T, in both Voigt and Faraday configurations. Voigt
configuration was achieved with the use of an additional mirror inside the bore of the
magnet. For all the measurements, the sample was kept at the temperature of 6.0 K. For the
microphotoluminescence experiment there was used a continuous-wave semiconductor
laser with the emission line at 660 nm, providing non-resonant excitation. Emission from
QDs was collected with a microscope objective with NA = 0.4 and 20 mm working distance
(20× Mitutoyo Plan Apo NIR Infinity Corrected Objective, Kawasaki, Japan) and dispersed
by a 1 m focal length spectrometer (HORIBA, Kyoto, Japan, FHR 1000) equipped with an
InGaAs linear array detector (HORIBA, Kyoto, Japan, Symphony II) cooled with liquid
nitrogen. This setup provided the spectral resolution of ~20 µeV and spatial resolution of
~1 µm. For the linear polarization-resolved measurements, a rotatable half-wave plate and
a polarizer were placed in front of the monochromator.

2.3. Nomenclature

The terminology concerning g-factors of quasi-particles in semiconductor nanostruc-
tures is not uniform in many publications, which can make them unclear. To make it easier
for readers, a brief description of the terms used in the results section is provided here. The
g-factors determined for the experiments will be identified by subscripts and superscripts,
gl

k, with k = e, h or T standing for electron, hole or trion; and l = F or V, standing for Faraday
configuration (magnetic field along the growth direction z) or Voigt configuration (magnetic
field perpendicular to the growth direction). The sign will be provided where possible,
or
∣∣∣gl

k

∣∣∣ notation will be used when only its absolute value can be established. The trion
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g-factor gl
T is defined as the algebraic sum of hole and electron g-factors constituting it [37],

since it is determined by analysing the evolution in an external magnetic field of energy
of optical transitions between an initial trion state, whose influence on the magnetic field
depends only on the unpaired carrier g-factor, and a final state being a dot occupied with a
carrier left from the pair, of the opposite sign (Figure 2b). The values of g-factors for both
types of single carriers will be defined by the Zeeman splittings, ∆EZeeman =

∣∣∣gl
k

∣∣∣µBBl ,

where µB = 57.9 µeVT−1 is Bohr magneton. Such a definition does not actually agree with a
“classical” relation for the Zeeman splitting of holes ∆EZeeman = 2Jh

∣∣∣gl
h

∣∣∣µBBl [37], where Jh

is the hole spin, since it assumes the hole spin Jh of 1
2 , however, it simplifies and is typically

used for the description in the case of QDs, where hole states are composed of heavy-, light-
and spin–orbit states with different spins.

3. Results
3.1. Trion Identification

For a typical MBE-grown InAs/InP QD system, the degree of anisotropy of dot shape
translates into a value of a fine structure splitting (FSS) between two bright states of an
exciton in the ground state on the order of at least tens of µeV, which can be clearly observed
experimentally. Moreover, since the polarization of emission from the two exciton states is
linear and almost orthogonal to each other (as is also in the case of a biexciton), a map of lin-
ear polarisation resolved µPL may be used as a tool for distinguishing between charged and
neutral excitonic complexes, since in the case of a trion, the ground state is degenerate re-
gardless of symmetry, and emissions from both spin configurations are circularly polarised
in an ideal case. However, the high symmetry of the QDs investigated here should result
in a low value of FSS [36,38], making this method of identification unreliable due to the
limited spectral resolution of the experimental setup. Figure 2a displays linear polarization-
resolved PL spectra obtained on one of the mesas, exhibiting four intensive and spectrally
resolved emission lines (labelled T1–T4) that we chose for being representative of typical
behaviour. The results of all the experiments will be illustrated by the examples measured
on the same mesa. No energy dependence on the polarization of the emission can be seen
for any line in the chosen mesa, as expected for trions or low FSS excitons. However, there
can be observed considerable values of the degree of linear polarization, in the range of
15–30%, seen in Figure 2a as a change in the PL intensity with the polarization angle. This
can be explained by the influence of the valence–band mixing [39], but a detailed analysis
of the degree of polarization of the emission is beyond the scope of this work. Since these
measurements cannot reveal the origin of emission, other means must be employed. The
analysis of the excitation power dependence on the PL intensity, which serves as a standard
preliminary scheme of identification of excitonic complexes (results not shown here) yields
slightly superlinear dependence, pointing at the direction of trions rather than neutral
excitons. However, it is not sufficient to unequivocally distinguish neutral complexes from
trions in highly symmetric QDs.

In order to identify the observed excitonic lines, measurements in an external magnetic
field in Voigt configuration may be performed. The pattern of energy splitting and polar-
ization of split lines in this case considerably differs between charged and neutral excitons.
For trions, the emission line splits into an energy quadruplet, which is a consequence of
Zeeman splitting of both the initial and final states into doublets, as is shown in the scheme
in Figure 2b. All four lines have equal intensity due to the field-induced state mixing. All
the transitions are also linearly polarized, with two pairs (“inner” and “outer”) having
orthogonal planes of polarization [12,40]. For neutral excitonic complexes, independently
from a value of their fine structure splitting, the evolution of energetic structure with
in-plane magnetic field is qualitatively different. The dark and bright states of the exciton
are always separated by the electron-hole exchange energy [29]. Moreover, the polarization
of emission for neutral complexes in high magnetic fields should be circular [29].
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Figure 2. (a) Linear polarization-dependent photoluminescence (PL) spectra in zero magnetic field. (b) Energy level diagram
of negative trion states in Voigt configuration. All four optical transitions are allowed, and polarization selection rules are
indicated. The evolution of energy vs magnetic field for two groups of transitions with orthogonal linear polarizations (V1
and V2—“outer”; H1 and H2—“inner”) due to Zeeman splittings of initial (trion) and final (dot with single charge) states.

An exemplary PL map measured in a magnetic field of 5.0 T in Voigt configuration,
plotted as a function of emission energy and an angle of polarization, is shown in Figure 3a.
The lines of interest are separated into triplets composed of two outer lines polarized
orthogonally to the internal line. Slight variation from 90◦ phase difference may be a result
of divergence between the strain distribution and the magnetic field induced in-plane
anisotropy [39]. In order to make the analysis clearer, Figure 3b shows the PL spectra
for two orthogonal polarizations. As can be seen, the intensity of the internal line is
approximately twice larger than the intensities of each of the outer ones, indicating that it is
actually composed of two lines that cannot be resolved in the experiment. This conclusion
is also supported by the 30% increase in the broadening of the inner line with a magnetic
field. Altogether, the obtained results agree with theoretical predictions for the evolution
of trion emission, including the observation that the energies of the quadruplet converge
for the magnetic field approaching zero (Figure 4). Therefore, it can be concluded that
the observed emission indeed originates from trions. The sign of the trion cannot be
determined by the optical investigations presented here since for both types of charged
exciton complexes the theoretically predicted optical response is qualitatively the same,
however, n doping of the sample suggests negatively charged complexes.
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Figure 4. Voigt configuration PL spectra. (a) PL spectra for magnetic fields from 0 to 4 T with 0.5 T step, and from 4 to 5 T 
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Figure 4. Voigt configuration PL spectra. (a) PL spectra for magnetic fields from 0 to 4 T with 0.5 T
step, and from 4 to 5 T with 0.1 T step (b) Energy of optical transitions versus magnetic field, after
subtraction of the diamagnetic shift (open black triangles). Black lines are fits to Zeeman energy.
Inset shows as measured energy of optical transitions versus magnetic field, without subtraction of
diamagnetic shift (blue line).

3.2. Voigt Configuration

With a practical tool for trion recognition, it was then possible to identify and analyse
15 emission lines related to charged excitons, measured on five different mesas. The same
four lines, well spectrally isolated and gathered in one spectral window, were chosen to
exemplify the results. Figure 4a presents the evolution of the spectra with a magnetic field
applied in-plane of the sample, varied in the range from 0.0 T to 5.0 T. Small variations in
the relative intensities of emission are attributed to small differences of setup alignment
required at each field, indicating that each of the lines originates from a different dot. Since
the energy separation between each line of the triplet is larger than the observed linewidths
only for the fields above 4.0 T, spectra taken at a range from 4.0 to 5.0 T are shown with a
finer step of 0.1 T. Energy dependence of the trion emission on the magnetic field in good
approximation follows the relations [40]:

ET, H(B) = ET(0)± 0.5
(

gV
e + gV

h

)
µBB + γV

T B2, ET, V(B) = ET(0)± 0.5
(

gV
e − gV

h

)
µBB + γV

T B2 (1)

where: ET, H(B)(ET, V(B)) are the energies of horizontally-H (vertically-V) polarized emis-
sion lines, ET(0) is the trion emission energy without a magnetic field, γV

T is the diamag-
netic coefficient and µB stands for Bohr magneton. The second term of Equation (1) is the
Zeeman term and describes the spin induced splitting of the trion states. For a detailed
analysis and extraction of magneto-optical parameters of investigated QDs the measured
PL spectra were fitted with Gaussian functions (due to the influence of spectral diffusion
on the spectral lineshape) and obtained energies of the split lines (for the line above 0.822
eV) were plotted as an inset in Figure 4b. In the next step, the magnetic field evolution
of the emission energy of the middle line was fitted with a quadratic dependence, corre-
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sponding to the diamagnetic shift, leading to the extraction of a diamagnetic coefficient
γ, according to Equation (1), with the value of γV

T = 2.0 µeV
T2 in the presented case. Then,

the diamagnetic shift was subtracted from the magnetic field dependence, with the results
given in Figure 4b. A linear dependence on the magnetic field for the two outer lines,
corresponding to the Zeeman splitting, can be clearly seen. A fitting procedure using the
second term of Equation (1) leads to the extraction of the absolute value of the g-factor
of the trion

∣∣gV
T
∣∣ = 0.74, taken as an average of g-factors for the two branches of 0.72 and

0.76, since an experiment in the Voigt configuration does not allow sign determination.
This value corresponds to the sum of g-factors for a hole and an electron

∣∣gV
T
∣∣=∣∣gV

e + gV
h

∣∣.
The accuracy of g-factor estimation is on the level of 0.14, basing on the resolution of the
setup and fitting uncertainty. On the other hand, since the difference in energy between
two internal lines of the quadruplet is below the spectral resolution of the setup, it can be
only concluded that the values of gV

e and gV
h are very similar, with the difference between

them lower than 0.14. Combining both items of information, it can be established that the
values of

∣∣gV
e
∣∣ and

∣∣gV
h

∣∣ for the investigated dot are very small and equal approximately to
half of the trion g-factor (~0.37). All the other trion lines were analysed in the same way
and showed consistent behaviour.

3.3. Faraday Configuration

The anisotropy between in-plane and out-of-plane dot structural characteristics (size,
shape and composition) should result in differences in values of magneto-optical parame-
ters deduced for orthogonal directions of the applied magnetic field [18–20]. In order to
obtain such parameters in the growth direction, an experiment in the Faraday configuration
was conducted. In this case, the magnetic field removes the degeneracy of all Kramer’s
doublets for trion states [41], resulting in two emission lines separated by the Zeeman
splitting and evolving according to the diamagnetic shift:

ET(B) = ET(0)± 0.5
∣∣∣gF

T

∣∣∣µBB + γF
T B2 (2)

where ET(0) is the trion emission energy without a magnetic field, γF
T is the diamagnetic

coefficient and µB stands for Bohr magneton. In the Faraday configuration, the splitting
of trion lines depends on the absolute value of the sum of electron and hole g-factors for
both types of trions (positive and negative)

∣∣gF
T
∣∣ = ∣∣gF

e ∓ gF
h

∣∣, so the values of g-factors
for isolated carriers cannot be determined. Figure 5a presents spectra obtained for the
exemplary mesa, with increasing magnetic field up to 5.0 T. Diamagnetic shift and splitting
into Zeeman doublet are clearly identifiable for all the analysed lines. Analysis conducted
to extract the values of diamagnetic shifts and g-factors was performed in a similar fashion
as for the Voigt configuration. In the first step, all the transitions were fitted with Gaussian-
shaped lines and the obtained transition energies are shown in the inset of Figure 5b.
Then, the average energy of split lines at any given field was calculated and the resulting
curve fitted with a quadratic function to extract the diamagnetic coefficient. For the line
above 0.822 eV, chosen to exemplify the data analysis, the procedure allowed determining
the value of γF

T = 9.1 µeV
T2 . Finally, the obtained diamagnetic shift was subtracted from

the transition energy field dependence and the resulting Zeeman split doublet is clearly
seen in Figure 5b. The linear fit leads to the absolute values of trion g-factors in Faraday
configuration for the exemplary line of

∣∣gF
T
∣∣= 0.63 .
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Figure 5. Faraday configuration PL spectra. (a) PL spectra for magnetic fields from 0 to 5 T. (b) Energy
of optical transitions versus magnetic field, after subtraction of the diamagnetic shift (open black
squares). Black lines are fits to Zeeman energy. Inset shows as measured energy of optical transitions
versus magnetic field, without subtraction of diamagnetic shift (blue line).

3.4. Summary of Magneto-Optical Parameters

Figure 6 and Table 1 show the summary of diamagnetic coefficients γF,V
T and trion

g-factors
∣∣∣gF,V

T

∣∣∣ values determined for all the identified trions, for the magnetic field
perpendicular and parallel to the growth direction, as a function of trion transition energies.
The diamagnetic coefficients are found to be in the range of γV

T = 1.5–4 µeV
T2 , centred

around 2–3 µeV
T2 , and γF

T = 8–15 µeV
T2 , centred around 9–11 µeV

T2 , respectively in Voigt and
Faraday configurations. A weak dependence on transition energy can be seen, where
higher transition energy is attributed to a lower value of the diamagnetic coefficient.
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Since a lower diamagnetic coefficient translates into the decreased spatial extent of the
excitonic complex wave function [42] and thus QD size, and higher transition energy also
corresponds to smaller dot sizes, such dependence can be expected. Further discussion will
be presented in Section 4.1. In the case of g-factors for both configurations there is no clear
dependence, the spread of sizes, compositions and shapes of individual dots outweighs any
systematic relation to transition energies in the relatively narrow range of emission energies
available. The determined trion g-factors are found to be in the range of

∣∣gV
T
∣∣= 0.3–0.7 and∣∣gF

T
∣∣= 0.5–1.3, respectively in Voigt and Faraday configurations. Detailed analysis and

interpretation will be given in Section 4.2.
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Table 1. Summary of experimentally determined trion parameters.

Field Configuration Diamagnetic Coefficient, µeV
T2 Absolute Value of g-Factor

Voigt 1.5–4 0.3–0.7
Faraday 8–15 0.5–1.3

4. Discussion
4.1. Spatial Extents of Wave Functions

Generally, the diamagnetic shift of an exciton in a semiconductor structure is de-
termined by the spatial extension of its wave function, however, this relationship is not
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straightforward. Nash et al. show that in the case of a quantum well, a diamagnetic coeffi-
cient γ is a measure of the in-plane electron-hole separation ρ2

e−h and can be expressed as:

γ =
e2ρ2

e−h
8µ

, (3)

where µ is the reduced mass of an exciton [43]. In order to include the influence of additional
lateral confinement, Walck and Reinecke employed a generalized gauge transformation
which led to expressing the diamagnetic coefficient in two terms related to the size of
an exciton—involving confinement and the Coulomb interaction [44]. In the case of
QDs with cylindrical symmetry for two extreme instances (either no confinement or no
Coulomb interaction), the diamagnetic coefficient is again expressed by Equation (3),
however the interpretation of the wave function-related term changes. In the case when
Coulomb interaction is omitted, which is an equivalent of a QD in a strong confinement
regime, the diamagnetic coefficient reflects only the confinement of an electron and a hole
and thus strongly relates to the geometry of a dot and its material composition. There
is yet no detailed theory on the relation of the diamagnetic shift to the wave function
for charged excitons. However, there are publications showing that in quite a broad
range of dot parameters the diamagnetic coefficients for trions and excitons in the same
dot are practically identical [45]. Theoretical calculations indicate that discrepancies can
appear if single-particle wave functions of carriers constituting an excitonic complex have
considerably different spatial extents [46]. It can happen, e.g., for very small dots, where
electron wave function leaks to the barrier and wetting layer [47]. However, even then the
diamagnetic coefficient for a trion is smaller than that for an exciton by only 30% [46].

The dots investigated here are considerably large, therefore the measured coefficients
of trions should, in good approximation, reflect these of neutral excitons. Their optical
characteristics indicate that although the ladder of confined states is rather dense, they are
still close to the strong confinement regime. Therefore, we transform Equation (3) so that it
can be used to estimate extents of wave functions in both directions:

ρ2 =
8µγ

e2 (4)

The exciton reduced effective mass µ is taken to be 0.039 by using linear interpolation
of electron and heavy hole masses in bulk InAs and InP [48]. The calculated values of

√
ρ2

can be understood as standard deviations of the squared modulus of a wave function. For
Gaussian-like wave functions, which are a good approximation of typical carrier wave
functions in QDs, the value of 3

√
ρ2 should reflect the total extent of a wave function

and be related to the size of confining potential and thus dot shape, size and composition.
Although the dot does not have cylindrical symmetry in the direction perpendicular to
the growth direction, Equation (4) can give some approximation of confinement size
also in this case. The application of the abovementioned procedure to the diamagnetic
coefficients listed in Section 3.4 gives 5–8 nm in the growth directions and 12–13 nm in-
plane of the dot, with a slight increase with decreasing transmission energy (larger dots), as
expected. Although there may be some hole mass anisotropy, the considerable difference
between the determined sizes is imposed mostly by the QD geometry, confirming the
crucial role of confinement. There may be defined an effective size of the dot, understood
as a volume (an ellipsoid) that can be occupied freely by carrier wave functions. For the
lens-shaped dots, its dimensions should be around 2/3 of the maximal dimensions, i.e.,
10 nm high, with 36 nm in-plane. As can be seen the ratio of height to width determined
from diamagnetic coefficient anisotropy does not reflect the geometrical ratio. It may be
explained by one of the two factors—the actual confinement affecting carriers is modified
due to the inhomogeneous material composition (migrating phosphorus distribution and
indium segregation), which can affect strain and thus piezoelectric field or the dot is large
enough in-plane that the exciton reaches its “natural” size, i.e., comparable to the size of
exciton in bulk material.
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Considering experimental values of diamagnetic coefficients for other QD systems
emitting at 1.55 µm, the values obtained for InAs/InGaAlAs quantum dashes, i.e., highly
elongated dots with much lower heights (150 nm × 20 nm, 3.5 nm high), are very similar
γV

T = 4 µeV
T2 , and γF

T = 10–15 µeV
T2 [49] whereas the values for more symmetric metal-oxide

vapour phase epitaxy-grown InAs/InP dots with a smaller diameter and even lower heights
(34 nm diameter, 2 nm high) gave smaller values of γV

T = 2 µeV
T2 [18], and γF

T = 7–10 µeV
T2 [32]

in agreement with the difference in the overall geometry of these groups of nanostructures.

4.2. Analysis of g-Factors

A considerable scattering of the determined trion g-factors, especially in the case of
the Faraday configuration, is typical for QD studies. It can be attributed to the sensitivity
of hole g-factors to the shape, composition and strain in the individual QD via its strong
effect on mixing of the typically predominating heavy hole state with other valence band
states, mostly light hole ones [50,51].

In order to analyse the results quantitatively, a model developed by van Bree et al.
will be used [52]. The magnetic moment of a given carrier has contributions from its
spin and orbital degrees of freedom. In the case of carriers confined in semiconductor
nanostructures, due to the presence of spin–orbit interaction and coupling between bands,
the electron g-factor value may be dominated by the spin-correlated orbital moment µORB.
For QDs with cylindrical symmetry, the following relation can be derived for a value of the
electron g-factor: ∣∣∣∣∣gF,V

e

∣∣∣∣∣= 2 + 2
µV,F

ORB
µB

. (5)

Since the orbital moments are generated through orbital currents flowing in the plane
perpendicular to the field direction, they are related to the dot geometry in such a way that
µF

ORB is proportional to the square of the dot radius and µV
ORB to the product of the radius

and height, thus the ratio of µF
ORB

µV
ORB

is equal to the dot aspect ratio.

In the case of the investigated structures, it was found that the absolute values of
electron and hole g-factors in Voigt configuration cannot be distinguished experimentally
(the inner lines cannot be spectrally resolved) and they are equal to ~0.25. Such proximity
to zero facilitates electrical tuning of g-factor signs, which is favourable for some applica-
tions. For further analysis, it will be assumed that this number is positive. Based on the
determined value of

∣∣gV
e
∣∣ and Equation (5), it is now possible to calculate µV

ORB = −0.875
and, taking into account the aspect ratio of investigated dots of around 4, µF

ORB = −3.5.
The electron g-factor in-plane of the dot calculated from Equation (5) for such a value of
the orbital moment is equal to gF

e = −5. In order to relate this number to the experimen-
tally determined value of the trion g-factor gF

T knowledge on the hole g-factor is required.
Numerical calculations shown in Reference [42] for the strained InAs/InP dot of 15 nm
diameter (smaller than the dots investigated here) and 15 nm height give the value of
gF

h = +6, which combines with gF
e = −5 for a trion g-factor of 1, in excellent agreement with

the value determined experimentally. Although the dot calculated in Ref [42] has a smaller
diameter and the tendency shown there indicates that for the larger dot the hole g-factor
could be larger, its increase is limited by the influences of the second-order hole g-factor
and heavy-light hole mixing, which both decrease the total hole g-factor. In conclusion, the
measured values of g-factors seem to be reasonable and relate well to the dots’ geometry.

5. Summary

Important and so far lacking fundamental magnetic-field-related parameters of trions
in novel large and symmetric InAs/InP QDs grown by MBE, with emission in the third
telecom window, are determined in Voigt and Faraday configurations of the external
magnetic field. The strong dependence of magnetic properties on the details of size, strain
and material composition and their distribution within individual dots makes it difficult to
predict their values for the new nanostructures. The relatively large size of investigated
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nanostructures is interesting in view of the confinement regime and potential discussion
on the limits of the strong confinement approximation. The obtained parameter values
may be used as input data to model the excitonic properties of the investigated system
and to experimentally verify theoretical predictions. They also determine the application
potential of investigated QDs in spintronics and some quantum communication solutions,
providing information on carriers’ susceptibility to the external magnetic field and spin–
spin interactions. The diamagnetic coefficients were found to be about 2–3 µeV

T2 and 9–11 µeV
T2

in Voigt and Faraday configurations respectively, slightly increasing with the dot sizes
(evidenced by the decreasing emission energy). It is consistent with the interpretation
of diamagnetic coefficients as related to the spatial extents of wave functions of emitting
excitonic complexes. The determined values of diamagnetic shifts were attributed to
the dot geometry in-plane and out-of-plane. The trion g-factors were measured to be
relatively small, in the range of

∣∣gV
T
∣∣= 0.3–0.7 and

∣∣gF
T
∣∣= 0.5–1.3, respectively in Voigt and

Faraday configurations. Analysis of single carrier g-factors, based on the formalism of
spin-correlated orbital currents, has led to the values of gF

e ≈ −5; gF
h ≈ +6 for Faraday

and
∣∣gV

e
∣∣≈∣∣gV

h

∣∣ ≈ 0.25 for Voigt configuration of the magnetic field. Results obtained in
the Faraday configuration are significantly higher than previously reported experimental
values but are consistent with theoretical predictions for large QDs. Values of g-factors close
to zero measured in Voigt configuration make the investigated dots promising for electrical
tuning of the g-factor sign, required for schemes of single spin control in qubit applications.
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