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Abstract
As the recent COVID-19 pandemic has shown us, there is a critical need to develop new approaches to monitoring the
outbreak and spread of infectious disease. Improvements in monitoring will enable a timely implementation of control
measures, including vaccine and quarantine, to stem the spread of disease. One such approach involves the use of early
warning signals to detect when critical transitions are about to occur. Although the early detection of a stochastic transition
is difficult to predict using the generic indicators of early warning signals theory, the changes detected by the indicators do
tell us that some type of transition is taking place. This observation will serve as the foundation of the method described
in the article. We consider a susceptible–infectious–susceptible epidemic model with reproduction number R0 > 1 so that
the deterministic endemic equilibrium is stable. Stochastically, realizations will fluctuate around this equilibrium for a very
long time until, as a rare event, the noise will induce a transition from the endemic state to the extinct state. In this article,
we describe how metric-based indicators from early warning signals theory can be used to monitor the state of the system.
By measuring the autocorrelation, return rate, skewness, and variance of the time series, it is possible to determine when the
system is in a weakened state. By applying a control that emulates vaccine/quarantine when the system is in this weakened
state, we can cause the disease to go extinct earlier than it otherwise would without control. We also demonstrate that applying
a control at the wrong time (when the system is in a non-weakened, highly resilient state) can lead to a longer extinction time
than if no control had been applied. This feature underlines the importance of determining the system’s state of resilience
before attempting to affect its behavior through control measures.

Keywords Epidemic extinction · Early warning signals · Stochastic epidemic model · Control

1 Introduction

Recent events concerning the outbreak of infectious diseases
such as Ebola virus disease [1–3], Zika virus [4–6], a par-
ticularly deadly strain of Influenza [7,8], and COVID-19 [9]
have brought to light the need to develop effective and inte-
grated measures to both monitor and control the spread of
epidemics. Only through such an integrated approach will
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one be able to prevent a regional outbreak from becoming
a global pandemic and to mitigate the damage done to the
affected areas.

One such approach involves the use of early warn-
ing signals (EWS) [10] to detect if a critical transition
is approaching. These critical transitions can be found in
ecosystems [10], financial systems [11], and the Earth’s cli-
mate system [12], and may be caused by the system crossing
a bifurcation or through stochastic-induced switching [13].
In particular, for problems of disease emergence and ecolog-
ical tipping points, it has been suggested that a noise-induced
switch from the endemic state/carrying capacity to the extinct
state can be anticipated if data is collected with sufficient fre-
quency [14,15].

However, this has proven difficult in practice since, for
instance, disease emergence is characterized by low preva-
lence and is often complicated by amplification of transients
and oscillatory dynamics [15]. Also, it is widely held that
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noise-induced transitions cannot be detected since there is no
change in the shape of the potential function, and no change
in the eigenvalue of the mean field model [14,16]. Further-
more, insights from large deviation theory [17,18] cast doubt
on the effectiveness, accuracy, and feasibility of anticipating
stochastic transitions using EWS [19–21].

Nevertheless, extensive research shows that generic early
warning signals exist in a wide variety of systems, and can
in fact be the harbingers of critical transitions [10,22]. For
instance, the presence of leading indicators such as auto-
correlation and variance has been found to increase prior to
climatic transitions as well as before regime changes in lake
food webs [16,23–25]. And although, as previously stated,
the early detection of a stochastic transition is difficult to pre-
dict by the sole reliance on the generic indicators developed
in the theory of EWS, the changes detected by EWS indica-
tors do tell us that some type of transition is taking place, be
it critical or otherwise [26]. This observation will serve as
the foundation of this article, as we seek to test and develop
methods that introduce control measures at critical stages in
the dynamics of the epidemic model we consider.

We consider a susceptible–infectious–susceptible (SI S)
epidemic model and employ the metric-based indicators
developed in the theory of EWS to monitor the state of the
system. By doing this, we are able to ascertain the system’s
overall resilience to control measures at different points in
time. We seek to drive the infectious disease to extinction
in an amount of time that is shorter than the noise-induced
extinction that would occur in the absence of control. This
will be accomplished by perturbing the system at specific
points corresponding to states of low resilience, i.e., a weak-
ened system state.

In short, whereas previous attempts focused on the predic-
tion of critical transitions in stochastic systems, we attempt
to induce them. We hypothesize that perturbing the system
while in a weakened state will precipitate critical transitions,
while the same approach applied during periods of increased
resilience will be met with resistance, failing to yield simi-
lar results. Our hypothesis stems from results that show that
many stochastic systemsdo in fact behave like systemsunder-
going critical transition due to critical slowing down (CSD)
in the mean field model [14].

We test our hypothesis by simulating stochastic data
from the SI S epidemic model using a type of Monte Carlo
method [27]. This time series data is subjected to EWS anal-
ysis [23,24] using metric-based indicators, which quantify
changes in statistical properties of the time series. In particu-
lar, one can use the autocorrelation, return rate, skewness, and
variance to yield actionable information which is then used
to introduce quarantine/immunization measures to effect the
desired result [23].

Consistent with our proposition, we show that removing
a portion of the infected population in the SI S model at a

low resilience state through quarantine/vaccine is an effective
measure for inducing early extinction events in the epidemic.
Mean extinction times (MTE) are computed for the vari-
ous cases and demonstrate agreement with the hypothesis.
Results also warn against the indiscriminate application of
controls when the system is in a high resilience state.

2 Early warning signals theory

Early warning signals (EWS) can be thought of as the direct
product of the need to understand the phenomenon of crit-
ical transitions. In many instances, the critical transition
corresponds to a catastrophic bifurcation in which the qual-
itative behavior of the system changes abruptly in response
to changes in one or more external parameters. It commonly
arises in deterministic systems with alternative equilibrium
states (Fig. 1). However, as demonstrated in this article, the
transition can be noise-induced wherein stochasticity causes
a transition from a deterministically stable equilibrium to a
deterministically unstable equilibrium (e.g., a transition from
the endemic state to the extinct state found in epidemic mod-
els for a reproduction number, R0 > 1) [1,18,28,29].

In addition, critical transitions often exhibit “threshold
behavior,” which is accompanied by changes in the system
properties that becomemore extreme as it moves closer to the
tipping point. These changes include but are not limited to:
increasing autocorrelation, decreased return rate, increasing
variance, increasing skewness, and flickering [30]. The grad-
ual change in these collective properties is generally termed
critical slowing down (CSD). In essence, it is CSD that allows
earlywarning signals to detect critical transitions in progress.
Figure 1 illustrates the role ofCSDwith respect to the dynam-
ical landscape.

It is worth noting again that there are different types of
transitions, some catastrophic, some not, some showing CSD
and some not, and some induced by noise. Since we are con-
sidering stochastic data, it is important to realize that the
stochastic perturbationswill influence theEWSstatistics, and
it is precisely the careful monitoring of these metric-based
indicators that will serve as the basis for our analysis. In
addition, while CSD is typically associated with undesirable
outcomes, such as desertification [31], lake eutrophication
[32], and coral reef collapse [33], here we take advantage
of the resulting dynamical consequence of CSD to acceler-
ate critical transitions in systems where such outcomes are
desirable, such as the extermination of pest populations, and
the local extinction of epidemics.
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Fig. 1 A sample dynamical landscape for a system with alternative
equilibrium states in which the critical transition is brought about by
a deterministic bifurcation. Although the SI S epidemic model dis-
cussed in this article does not possess alternative equilibrium states,
we show that the EWSmetric indicators can still be used. (Top left) The
dynamical landscape far from the transition. A deep basin of attraction

makes the switch to the alternative state due to small perturbations dif-
ficult. (Top right) Far from the transition, the return rate is fast, and the
variance is relatively small. (Bottom left) Flattening of the dynamical
landscape due to critical slowing-down can cause even small perturba-
tions to induce a switch to an alternative state. (Bottom right) Close to
the transition, the return rate slows down, while the variance increases

Fig. 2 SI S compartmental diagram. Individuals are born susceptible
with rateμ, susceptible individuals become infectious with contact rate
β, infectious individuals recover and become re-susceptible with rate
γ , and both susceptible and infectious individuals die with rate μ

3 SIS epidemic model

The SI S epidemic model is constructed by dividing the pop-
ulation into two classes of individuals, namely susceptible
S and infectious I . Individuals are born into the susceptible
population with birth rate μ. A susceptible individual can
perish with death rate μ and can become infected with the
disease, with contact rate β. An infectious individual recov-
ers and becomes re-susceptible with rate γ , and can perish

with death rate μ. The units of all rates are per year. Figure 2
illustrates the SIS compartmental diagram, and the determin-
istic mean-field equations are given as

dS

dt
= −βSI

N
+ μ(N − S) + γ I , (1)

d I

dt
= βSI

N
− μI − γ I , (2)

where N is the constant population size.
Equations (1 and 2) have two steady states. The disease-

free or extinct state has no infectious individuals and is given
as

(S0, I0) = (N , 0). (3)

The infection is maintained at the endemic disease state,
which is given as

(Se, Ie) =
(

N

R0
, N

(
1 − 1

R0

))
, (4)
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Table 1 SI S Transitions and Rates

Event Transition S Rate I Rate

Birth S
μ−→ 2S μN

Infection 2S
β−→ S, I

β−→ 2I βSI/N βSI/N

Recovery S
γ−→ 2S, 2I

γ−→ I γ I γ I

Death S, I
μ−→ ∅ μS μI

where R0 = β
γ+μ

is the basic reproductive number [34]. The
stability of these two fixed points is determined by the value
of the reproductive number R0,which can be thought of as the
average number of new infectious individuals that one infec-
tious individual generates over the course of the infectious
period in an entirely susceptible population. For R0 > 1,
the extinct state is unstable while the endemic state is stable.
Note that since the model is deterministic, a population at the
attracting endemic state can never go extinct. However, the
inclusion of demographic stochasticity will induce a large
fluctuation that brings the population into the extinct state.

The corresponding stochastic population model is repre-
sented by the transition processes of birth, death, infection,
and recovery [18,35,36]. The associated rates are given in
Table 1.

4 Methods

In this section, we describe themethodology used to generate
the data as well as the statistical methods used to understand
the application of the control at different resiliencies. Specifi-
cally, Sect. 4.1 contains details about theMonteCarlomethod
that is used to generate 1000 stochastic realizations (time
series) of the SI S epidemic model, while Sect. 4.2 describes
the metric-based indicators that are used to capture changes
in the properties of the time series. Based on the result-
ing autocorrelation data for each time series, we determine
the low and high thresholds that correspond, respectively, to
regions of high and low resilience (Sect. 4.3). Lastly, Sect. 4.4
describes the control mechanism and the determination of
mean extinction times.

4.1 Simulation of the stochastic SISmodel

To generate a solution of this stochastic model, where the
demographic noise is internal to the system, we use the
Doob–Gillespie algorithm (also known as the Gillespie algo-
rithm or Gillespie’s stochastic simulation algorithm (SSA))
[27,37]. The algorithm is a type of Monte Carlo method that
was originally proposed byKendall [38] for simulating birth–
death processes and was popularized by Gillespie [27] as a
useful method for simulating chemical reactions based on

Table 2 Parameter values used in the time series simulations of the
SI S model

Parameter Name Type Value

μ Birth/death rate 0.02

β Contact rate 1000

γ Removal/recovery rate 99.98

R0 Basic reproductive number 10

N Initial population size 40

– No. of iterations 107

molecular collisions. The results of aGillespie simulation is a
stochastic trajectory that represents an exact sample from the
probability function that solves the master equation. There-
fore, themethod can be used to simulate population dynamics
where molecular collisions are replaced by individual events
and interactions including birth, death, and infection [18].

Let x = (x1, . . . , xn)T denote the state variables of a sys-
tem, where x j provides the number of individuals in state x j
at time t . Thefirst step of the algorithm is to initialize the num-
ber of individuals in the population compartments x0. For a
given state x of the system, one calculates the transition rates
(birth rate, death rate, contact rate, etc.) denoted as ai (x) for
i = 1 . . . l, where l is the number of transitions. Thus, the

sum of all transition rates is given by a0 =
l∑

i=1
ai (x).

Randomnumbers are generated to determine both the next
event to occur as well as the time at which the next event will
occur. One simulates the time τ until the next transition by
drawing from an exponential distribution with mean 1/a0.
This is equivalent to drawing a random number r1 uniformly
on (0, 1) and computing τ = (1/a0) ln (1/r1). During each
random time step, exactly one event occurs. The probability
of any particular event taking place is equal to its own transi-
tion rate divided by the sum of all transition rates ai (x)/a0.
A second random number r2 is drawn uniformly on (0, 1),
and it is used to determine the transition event that occurs.
If 0 < r2 < a1(x)/a0, then the first transition occurs; if
a1(x)/a0 < r2 < (a1(x) + a2(x))/a0, then the second tran-
sition occurs, and so on.

Lastly, both the time step and the number of individuals
in each compartment are updated, and the process is iterated
until the disease goes extinct or until the simulation time has
been exceeded [18]. A sample realization of the stochastic
SI S model using the transitions in Table 1 and the parameter
values shown in Table 2 is shown in the top panel of Fig. 3.
The Table 2 parameter values are used to generate all the sim-
ulated data used throughout this article, and the code used to
generate this realization as well as all the simulated data can
be found in the github repository https://github.com/Walter-
Ullon/Stochastic-SIS.
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Fig. 3 (Top) Stochastic time
series for the SI S model
generated using the Gillespie
algorithm as described in the
text. (Middle) Autocorrelation,
and (Bottom) return rate for the
stochastic time series shown in
the top panel computed using the
Early Warning Signals Toolbox
[39]. The green band indicates
the ideal time to apply the
control (low resilience), while
the red band indicates where the
control could lead to undesired
results (high resilience). These,
and other, statistical
metric-based indicators provide
an accurate picture of the state
of the SI S system

4.2 Statistical analysis: metric-based indicators

Statistical analysis of the simulated stochastic time series data
is performed using the Early Warning Signals Toolbox for R
[39]. As stated by its developers, the toolbox provides meth-
ods for estimating statistical changes in time series data that
can be used for identifying nearby critical transitions [23].

Metric-based indicators capture changes in the properties
of an observed time series of a systemandquantify changes in
the statistical properties of the time series without attempting
to fit the data with a specific model structure [23]. These
methods include a variety of statistical measures including
autocorrelation and spectral properties, variance, skewness
and kurtosis, detrended fluctuation analysis, and conditional
heteroskedasticity.

While the Early Warning Signals Toolbox also contains
robust model-based methods to analyze time series data, in
our work we seek to rely only on metric-based methods
as this provides us with more flexibility in the application
of the theory across various dynamical systems. From the
aforementioned indicators, autocorrelation and return rate
are the simplest methods to measure critical slowing down.
An increase in autocorrelation indicates that the state of the
system has become increasingly similar between consecutive
observations, while a decrease in the return-rate signals the
system’s inability to return to its previous state. Both mea-
sures provide evidence of critical slowing down [23].

The Early Warning Signals Toolbox measures lag-1 auto-
correlation in three separateways, namely the autocorrelation
function, an autoregressive model of order 1, and return rate

[23]. In this work, we have relied on autocorrelation found
using the autoregressive model using a rolling window of
25%of the time series based on the idea that indicators should
be estimated as data becomes available. The autocorrelation
found using the autocorrelation function is very similar for
the time series generated in this work.

Figure 3 shows two statistical indicators, autocorrelation
and return rate, for the associated stochastic SI S time series.
As we can observe in Fig. 3, it is possible for these indicators
to signal a critical transition in progress, while the time series
of SI S infectives still does not switch from the endemic state
to the alternative extinct state, i.e., a false positive. However,
by controlling the system (i.e., removing a portion of the
infected individuals) at the right time, one can precipitate the
transition and achieve an early extinction in which extinction
occurs earlier than it would have with no control. This loss of
resilience is a trademark of CSD. As we shall see, the results
obtained by relying on metric-based EWS analysis are both
encouraging and sobering.

4.3 Statistical analysis: resilience thresholds

Since our methods call for the introduction of control mea-
sures when the system is displaying threshold values in
autocorrelation (high/low), it is essential that we define
specifically what these thresholds are and the manner in
which they were obtained. We note that at this point, we
take autocorrelation as our leading metric-based indicator in
the analysis and simulations that follow.
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Table 3 Threshold values for autocorrelation for the SI S model

Threshold Type Threshold Value

Maximum 0.90713

Minimum 0.71253

Standard deviation 0.0335

High threshold 0.87366

Low threshold 0.74601

To ensure robust statistical estimates, one thousand
stochastic realizations of the SI S model were computed
using the Gillespie algorithm outlined in Sect. 4.1. The
autocorrelation data was computed for each of the thou-
sand realizations in the manner described in Sect. 4.2, and
the autocorrelation time series was averaged to obtain a
mean autocorrelation value specific to the time series being
considered. The end result of this process is one thousand
autocorrelationmeans, which were in turn averaged to obtain
a clearer idea of the distribution and location of the truemean
autocorrelation for the SI S model.

This process was carried out in the same manner for the
maximum and minimum autocorrelation values of each time
series, which yielded one thousandmaximum/minimum data
points, which were subsequently averaged. Ultimately, these
measures provided us with a statistical approximation for the
location of the high and low autocorrelation thresholds.

To account for the inherent variation present in these simu-
lations, we also obtained the mean standard deviation for the
model which was used to create “soft thresholds.” Thus, as
we will see in the next section, when the control was applied
at the high/low autocorrelation point, it was done only when
these values surpassed the maximum/minimum ∓ one stan-
dard deviation. The choice to employ the soft thresholds was
done in order to capture more time series that exhibit thresh-
old behavior, as some realizations never reach or surpass the
maximum/minimum thresholds.

The thresholding results are summarized in Table 3 and
Fig. 4. These threshold values provide a metric by which to
determine how far we are willing to let the system evolve
before the application of control measures. In short, we
introduce vaccination/quarantine measures in the SI Smodel
whenever the autocorrelation reaches or surpasses the afore-
mentioned threshold values for high/low thresholds.

In general, for a new epidemic outbreak, one does not
have vast troves of data available to determine the thresh-
olds. However, it is possible to calculate the threshold value
from the beginning of a single stochastic realization corre-
sponding to a specific disease outbreak. One could also find
the threshold values using data from previous or similar dis-
ease outbreaks.

4.4 Control mechanism: pulsing the population

From our previous discussion of EWS theory, we know that
the time series statistics when far from the transition are very
different from the statistics when close to the transition. This
is reflected by the rise in autocorrelation, variance, and skew-
ness, and inversely by a drop in the return rate. It is precisely
at this point where we introduce control measures such as
quarantine or vaccines in the SI S model.

The control can be thought of as either an indefinite quar-
antine or a mass vaccination event. One could also envision
a scenario in which quarantined individuals recover and are
given a vaccine after quarantine to prevent re-susceptibility.
Either way, the “removed” individuals do not interact with
the rest of the population (susceptibles or infectious) and
do not contribute to the SI dynamics. The control causes a
decrease in both the number of infectious individuals and the
total population N since S + I = N .

Figure 5 demonstrates the effect of control when it is
applied at the low and high resilience states. The top panel
plot shows the result of a typical run of the stochastic SI S
model unaffected by controls or outside measures. Even at
time t = 1200, the infected population is still fluctuating
around the endemic steady state.

Following with our analysis of the metric-based indica-
tors for critical transitions, for the middle plot we realize a
second run of the top plot using the same random seed and
parameters, where we monitor for high autocorrelation val-
ues corresponding to low resilience. Once this threshold is
reached (as per the values outlined in Fig. 4), we remove
a portion of the population, i.e., the control is applied. The
infected population struggles to return to the deterministi-
cally stable endemic state and eventually goes extinct. Thus,
applying the control at the low-resilience state corresponding
to high autocorrelation, variance, skewness, and decrease in
return rate suffices to induce a critical transition to the extinct
state.

For the bottom plot, we again recreate an exact re-
simulation of the stochastic SI S, but this timewemonitor the
metric indicators for signals corresponding to high resilience,
namely low autocorrelation values. Here, the infected pop-
ulation behavior is much different; it is able to sustain the
removal of individuals, effectively returning to fluctuate
about the endemic state as it did before the control measure.
Hence, consistent with our hypothesis, quarantining individ-
uals at the high-resilience state (low autocorrelation, high
return rate) fails to precipitate an early extinction event.

In addition to the individual realizations presented in
Fig. 5, we performed the same analysis for one thousand
realizations of the model utilizing the thresholds outlined in
Sect. 4.3. By comparing the mean time to extinction (MTE)
of the SI S realizations with and without control measures
as well as with a blind test where the control was applied
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Fig. 4 Autocorrelation analysis
for one thousand stochastic
realizations of the SI S model.
Note that the “high threshold”
value in the legend represents
the maximum autocorrelation
value minus one standard
deviation, while the “low
threshold” represents the
minimum autocorrelation value
plus one standard deviation

Fig. 5 Time series for the SI S model. (Top) an unperturbed realization
of the model. After 107 iterations, the epidemic continues to fluctuate
about the endemic state (red). (Middle) the control is applied at the
low-resilience state (29 of 46 infected individuals are removed), and

extinction follows shortly after. (Bottom) the control is applied at the
high-resilience state (29 of 45 infected individuals are removed); the
system is able to resist the control, recover, and continue to fluctuate
about the endemic state
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Fig. 6 Time series for the SI S model. (Top) An unperturbed realiza-
tion of the model where the disease undergoes extinction on its own.
(Middle) The control is applied at the low-resilience state (28 of 38
infected individuals are removed), and extinction follows shortly after.
(Bottom) The control is applied at the high-resilience state (28 of 37

infected individuals are removed). As in the previous case, the system
is able to resist the control and recover. However, it eventually goes
extinct at a much later time than if no control measure was applied (see
Top panel)

randomly, it is possible to compute a quantitative measure of
the effectiveness of the EWS analysis.

Because not all of the individual SI S realizations reached
extinction in the prescribed computational bounds (defined
by us to be 107 random time steps), we separately compare
“effective” versus “absolute”MTE.The effectiveMTE is cal-
culated by averaging the individual extinction times only for
the realizations that went extinct after the control was applied
and before the maximum number of time steps was reached,
whereas the absoluteMTE is calculated by incorporating into
the average those realizations that had not yet gone extinct
despite the application of control (using the maximum time
as an “extinction” time). These two types of MTEwere com-
puted for four possible scenarios: (i) no control is applied;
(ii) the control is applied at the high resilience point; (iii)
the control is applied at the low resilience point; and (iv) the
control is applied at random. The results are provided in the
following section (Sect. 5).

For the purpose of our simulation, we opted to vacci-
nate/quarantine 40% of the infected population once the
thresholds were met. While several removal factors were
implemented (30% up to 75%), we note that in our simu-
lations, 40% provided the best results, as a lower fraction

proves ineffective in driving the critical transition, while
higher percentages move the system so far away from the
endemic state that the system loses the capability to recover
and a very rapid extinction occurs—this scenario does lit-
tle to provide us with a clear understanding of the underlying
dynamics and resiliency of the system. In essence, if the con-
trol is too small the effect cannot contribute to the governing
dynamics in overriding the current state, while if the con-
trol is too large, the contribution overwhelms the governing
dynamics without yielding any useful information.

5 Results and discussion

As we have seen in Fig. 5, the results of our experiment are
encouraging sincewe have shown thatmonitoring the system
and attacking it with conventional control measures can lead
to a significant reduction in the active cycle of the epidemic.
Nevertheless, this approach needs to be employed with care.

For instance, the results presented in Fig. 6 paint a perplex-
ing picture. Consistent with the case examined previously,
the quarantining/immunizationof infected individuals during
weakened systemstates drives it to early extinction.However,
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Table 4 Effective mean
extinction times for 1,000
realizations (years)

Threshold type no. times threshold was met no. times extinction was reached MTE (effective)

low 770 134 1265.8

high 894 235 1228.6

blind n/a (random) 153 1237

no control n/a 1,000 1,819,997.8

application of the control at the high-resilience state exacer-
bates adverse conditions, ultimately causing an extension of
the life cycle of the epidemic. This is at the very least counter
intuitive, since reason dictates that when faced with the out-
break of some epidemic the best alternative is to act rather
than sit idly by. But as this result shows, doing the right thing
at the wrong time can lead to dire consequences.

SISmean extinction time

After applying the controls to the indicated fraction of the
population,we compared the results of applying the control at
the high threshold, applying the control at the low threshold,
and applying the control randomly (blind test) to the case of
no control. From one thousand realizations, we were able to
meet the high threshold 894 times, achieving early extinction
235 times, for an MTE of 1228.6 years.

On the other hand, the low threshold was met 770 times,
reaching extinction only 134 times for an MTE of 1265.8.
The results confirm our hypothesis, and show that apply-
ing the control at the high threshold is at least 8.9% more
effective than the low threshold, resulting in a difference of
approximately 37 years in terms of MTE.

As for the blind test, we applied the control at random.
This resulted in 153 extinctions for an effectiveMTE of 1237
years. As expected, the use of random control falls between
the results of applying the control at low and high threshold.
We expected to perform better than applying the control at
the low resilience point. In this case, the MTE is shorter by
approximately eight years. We also expected to do worse by
applying the control at the high resilience point. Applica-
tion of control at high resilience leads to a longer MTE by
approximately 28 years.

Note that regardless of the difference in MTE between
the different scenarios, more extinctions were ultimately
achieved by applying the control at the low resilience state
versus applying the control at either the high resilience state
or at random.

The numbers are far more dramatic when comparing the
results of the high threshold control versus no controls mea-
sures. To obtain the “no control” MTE, we computed the
simulations for 1011 time steps. The results are outlined in
Table 4.

Table 5 Absolute mean extinction times for 1,000 realizations (years)

Threshold type MTE (absolute)

low 1,576,282

high 1,392,587

blind 1,541,727

no control 1,819,997.8

Mean extinction time: effective versus absolute

Wenote that the values outlined inTable 4 represent the effec-
tiveMTE,whichwere obtained by aggregating and averaging
the final extinction times for only those trials that resulted
in extinction post-control. Because those simulations were
only computed for 107 time steps, some realizations were
still fluctuating around the endemic state at the time the sim-
ulation ended. Taking those into consideration and using the
“no control” figures as a guide, we can easily calculate the
absolute MTE. The results are outlined in Table 5, and are
consistent with our hypothesis and the theory of EWS.

The results for the SI S model show that it is in our best
interest to extract information from the system before we
attempt to introduce controls, as we could ultimately be
extending the same conditions that we are trying to elimi-
nate. Furthermore, extensive simulations show that there is an
advantage in introducing controls at the appropriate moment
when trying to induce early extinctions. Last, the difference
in MTE of the control versus no control cases show us that
EWS analysis can be an effective tool in the fight against
disease epidemics.

6 Conclusions and future work

Our results show that metric-based EWS analysis is able to
capture critical changes in the system state under different
conditions, calling to our attention the effectiveness of early
warning signals theory to monitor the resilience of dynamic
systems across a variety of scenarios.

In addition, the control methods explored, aided by the
theory, provide us with the ability to explore novel ways
to solve problems of great importance, where the focus is
to move away from the prediction of transitions toward the
control of outcomes. As we have seen, the results obtained
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can be of great value and hopefully they will serve as the
launching platform for further studies in this area.

In the future, we seek to extend our work to include the
study of additional dynamical models, thus gaining a deeper
understanding of the theory of early warning signals and its
applicability to real world problems. Also, further scaling
of the models presented here to include larger populations,
as well as large-scale automated testing would enhance the
robustness of the results achieved thus far. This is important
as unfortunately, the simulations are computationally expen-
sive and at the moment long runs with large populations are
prohibitive. These improvements would enable the applica-
tion of this work to novel epidemic outbreaks.
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