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Abstract: We report the time course of neutralizing antibody (NtAb) response, as measured by
authentic virus neutralization, in healthcare workers (HCWs) with a mild or asymptomatic SARS-
CoV-2 (severe acute respiratory syndrome coronavirus 2) infection diagnosed at the onset of the
pandemic, with no reinfection throughout and after a three-dose schedule of the BNT162b2 mRNA
vaccine with an overall follow-up of almost two years since infection. Forty-eight HCWs (median age
47 years, all immunocompetent) were evaluated: 29 (60.4%) were asymptomatic. NtAb serum was
titrated at eight subsequent time points: T1 and T2 were after natural infection, T3 on the day of the
first vaccine dose, T4 on the day of the second dose, T5, T6, and T7 were between the second and third
dose, and T8 followed the third dose by a median of 34 days. NtAb titers at all postvaccination time
points (T4 to T8) were significantly higher than all those at prevaccination time points (T1 to T3). The
highest NtAb increase was following the first vaccine dose while subsequent doses did not further
boost NtAb titers. However, the third vaccine dose appeared to revive waning immunity. NtAb levels
were positively correlated at most time points suggesting an important role for immunogenetics.

Keywords: COVID-19; long-term follow-up; third vaccine dose; BNT162b2 mRNA vaccine; authentic
virus neutralization; healthcare workers; mild or asymptomatic SARS-CoV-2 infection; no reinfection

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic persists and 2022 is the third
year with the disease as a worldwide major public health problem. Numerous genetically
distinct lineages have evolved since the emergence of the original Wuhan Hu-1 strain of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Among these, the Alpha
(B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529) variants were responsible for new waves
of infection [1–4] due to increased transmissibility.

First approved in December 2020 [5], COVID-19 vaccines remain the cornerstone of
prevention and protection against infection and severe disease. While the initial one- or
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two-dose schedule, depending on the vaccine, has played a key role in the mitigation of
COVID-19 morbidity and mortality, the emergence of viral variants with varying degrees of
immune escape led most countries to deploy a third dose or even a fourth dose of vaccine
boosters [6–9]. Overall, the interplay between natural infection and vaccination, as well
as the role of different vaccine schedules and methods used to quantify the neutralizing
antibody (NtAb) response [10–14], have made it difficult to depict the key features and
dynamics of immunization to SARS-CoV-2 in a real-life setting.

Here, we report the time course of NtAb response, as measured by authentic virus
neutralization, in healthcare workers (HCWs) with a mild or asymptomatic SARS-CoV-2
infection diagnosed at the onset of pandemic and no reinfection throughout and after a
three-dose schedule of BNT162b2 mRNA vaccine with an overall follow-up of almost two
years since infection.

2. Materials and Methods
2.1. Study Design

Forty-eight HCWs living in Northern Italy were included in the study. All of them had
a laboratory diagnosis of SARS-CoV-2 infection in the Veneto region in March–April 2020
and were tested because of clinical suspicion or in the context of the hospital surveillance
program. Symptomatic HCWs were evaluated by an infectious disease specialist and
diagnosed with mild disease [15], as defined by the symptoms reported in Figure S1. Based
on a hospital nasopharyngeal swab screening surveillance program performed at different
intervals (ranging from four to seven days, according to the epidemiological context), no
reinfection was detected during the whole study period. After a median interval of 297 days
from the diagnosis of their SARS-CoV-2 infection, the HCWs received the first dose of the
BNT162b2 vaccine, followed by the second dose after three weeks, and then by the third
dose 9–12 months later. Written informed consent was obtained from all the HCWs willing
to participate in a prospective study of the virus’ NtAb response, which was approved
by the Comitato per la Sperimentazione Clinica di Treviso e Belluno (prot 812/2020) and
performed in accordance with the ethical standards as laid down in the Declaration of
Helsinki. NtAb serum was titrated at eight subsequent time points (T1 to T8) (Figure 1).

2.2. Titration of Virus Neutralizing Antibodies

NtAbs to the live B.1 lineage virus (GISAID accession number EPI_ISL_2472896) were
titrated in duplicate by testing two-fold serial dilutions of sera, starting at 1/10, with
100 TCID50 of the virus in VERO E6 cells in a 96-well plate. Virus-induced cell death was
calculated by automated measurement of cell viability by the Cell-titer Glo 2.0 system in
a GloMax Discover luciferase plate reader (Promega, Madison, WI, USA) [16]. The NtAb
titer (ID50) was defined as the reciprocal value of the sample dilution that showed 50%
protection from the virus-induced cytopathic effect. Each run included an uninfected cell
control, an infected cell control, and the virus back titration to confirm the virus inoculum.

2.3. Statistical Analysis

Antibody levels at the eight time points were reported as median, 25th, and 75th
percentiles, minima (the lowest value detected), and maxima (the highest value detected).
Sera with ID50 < 10 were defined as negative and scored as 5 for statistical analysis. Since
the NtAb value distribution was strongly right-skewed at all time points, the symmetry
of the distribution was ameliorated by log10-transformation. Clinical symptoms were
categorized as absent or mild. The data structure was explored by calculating the pairwise
correlation structure of the following variables: T1 to T8, age (expressed as years absolute
value), gender (male or female), and symptomatic infection. The Spearman and Wilcoxon
test (null hypothesis is equal medians) rank methods were used, as appropriate.
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Figure 1. Sampling timeline following the diagnosis of SARS-CoV-2 infection. The gray bars corre-
spond to study points in not yet vaccinated healthcare workers, the yellow bar to the study point after
the first vaccine dose, the light blue bars to three different study points after the second vaccine dose,
and the green bar to the study point after the third dose. Data for the columns of the histogram are
expressed as the median value of days from diagnosis to NtAb testing at each study point: intervals
from infection (grey) or vaccinations (yellow, blue, and green) are indicated on the top. Days after the
vaccine dose are expressed as the median and interquartile range (IQR). T1, after natural infection.
T2: after natural infection. T3: after natural infection, day of the first vaccine dose. T4: 21 days after the
first vaccine dose, (median [IQR 20–21]), day of the second vaccine dose. T5: 21 days after the second
vaccine dose (median [IQR 20–23]). T6: 89 days after the second vaccine dose (median [IQR 86–98]).
T7: 203 days after the second vaccine dose (median [IQR 183–220]). T8: 34 days after the third vaccine
dose (median [IQR 30–44]) administered 285 days after the second (median [IQR 273–302]).

The effects of the sequential series of time points, age, gender, and symptomatic infec-
tion on the antibody levels were assessed by performing a mixed-model linear regression,
where the dependent variable was log10-transformed antibody titer, and the predictors were
time points, gender = female, symptomatic infection, and age. All predictors, except age,
were categorical. The variable “time points” comprised eight levels. The original antibody
titers had a right-skewed distribution at each time point. For this reason, a logarithmic
transformation was performed; the ensuing distribution was symmetric and Gaussian
(normal) with reasonable approximation. This permitted the use of the mixed-model lin-
ear regression approach. Notably, the logarithmic transformation of antibody titers is a
common practice [17].

The use of the mixed-model linear regression where time, the main predictor, was a
multinomial categorical variable (time points), instead of a continuous variable, was chosen
because we felt that the linear model was too rigid in order to explain the multiphasic
evolution of the antibody titer. The mixed-model linear regression is preferable when there
are repeated measures in the same subjects. This model is fit to correctly interpret the role
of different subjects, obtaining the best available evaluation of the mean titer, and the best
confidence intervals, at each time point.

3. Results

Forty-eight HCWs (31 females and 17 males) were evaluated: the median age was 47
(IQR 40–53) years and 29 (60.4%) were asymptomatic. All HCWs were immunocompetent
and comorbidity was present in six of them (four presented with uncomplicated arterial
hypertension and two with dyslipidemia).

NtAbs were undetectable in two out of 39 HCWs (5.1%) at T1, six out of 38 (15.8%)
at T2, and three out of 31 (9.7%) at T3 but in none of the subjects following vaccination.
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Figure 2 shows the log10-transformed antibody levels at the eight time points. One patient
(female, 57 years, mild disease) had a left outlier NtAb titer at T4 (1.0 log) and a right outlier
at T5 (4.18 log), and two patients (female, 33 years, asymptomatic and female, 64 years,
asymptomatic) had left outliers at T6 (1.8 and 1.9 log, respectively).
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Figure 2. Log10-transformed antibody levels (T1–T8) at the eight time points considered. Medians
with the interquartile interval and range, along with some outliers, are shown in the figure. Post-
vaccine study points are denoted by the red font color. The table under the figure shows absolute
values. NtAb titers were expressed as ID50 (reciprocal value of the sample dilution that showed 50%
protection of virus cytopathic effect). HCWs: healthcare workers. IQR: interquartile range.

NtAb titers from all postvaccination time points (T4 to T8) were significantly higher
than those from all prevaccination time points (T1 to T3) (p < 0.0001). The highest increase
with respect to the previous time point was detected at T4, i.e., three weeks following the
first vaccine dose. None of the subsequent vaccine doses triggered NtAb titers significantly
higher than T4, however, the third vaccine dose significantly revived waning NtAb titers
(p < 0.0001 for comparison between T8 and T7).

Pairwise correlations between log10-transformed NtAb titers measured at different
time points are shown in Figure S2. NtAb levels were positively correlated at most time
points and symptomatic infection was positively correlated to antibody levels at several
time points as well. The coefficients of the mixed-model linear regression are reported in
Table 1. Age predicted lower NtAb levels, whereas symptomatic infection predicted higher
NtAb levels significantly.

Neutralizing antibody titers in asymptomatic and symptomatic HCWs as predictive
margins after mixed-model linear regression are depicted in Figure 3.
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Table 1. Mixed-model linear regression, as mixed-effects ML regression. NtAb levels at T1 were the
comparator levels. NtAb titer was expressed as ID50: the reciprocal value of the sample dilution that
showed 50% protection of virus cytopathic effect.

log10 Antibody Level

At Time point Coefficient Std. Err. z p 95% Conf. Interval

T2 −0.1728 0.0929 −1.86 0.063 −0.3549 0.0093

T3 0.0632 0.0935 0.68 0.499 −0.1202 0.2465

T4 1.5908 0.0798 19.94 0.000 1.4345 1.7471

T5 1.7150 0.0843 20.34 0.000 1.5497 1.8802

T6 1.3259 0.0780 17.00 0.000 1.1730 1.4788

T7 1.1215 0.0756 14.84 0.000 0.9733 1.2696

T8 1.4534 0.0963 15.09 0.000 1.2647 1.6421

other variables

female −0.0388 0.0698 −0.56 0.579 −0.1756 0.0981

age −0.0076 0.0036 −2.14 0.033 −0.0146 −0.0006

Symptomatic infection 0.1672 0.0679 2.46 0.014 0.0342 0.3002

intercept 1.8340 0.1739 10.54 0.000 1.4931 2.1749

Number of observations = 308, number of groups = 48, log likelihood = -78.54, Wald chi2(10) = 1655.99,
p = 0.0000, coefficient = additive contribution of each explanatory variable to the value of the dependent variable,
Std Err = standard error, z = the ratio between the regression coefficient of each explanatory variable and the
related standard error. The symptoms of the infection were described by the binary variable “symptoms” as
absent (0) or mild (1).
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4. Discussion

Most studies assessing the efficacy of the third vaccine dose have included patients
with no previous COVID-19 infection or with unknown SARS-CoV-2 infection status or
have focused on patients with immunosuppression [18]. Our real-life analysis aimed to
describe the long-term dynamics of NtAb titers in a cohort of HCWs with asymptomatic or
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mild wild-type SARS-CoV-2 infection followed by a three-dose vaccine schedule and no
reinfection up to more than 600 days.

The NtAb titer after a median of 34 days from the third vaccine dose was significantly
higher with respect to the preceding time point available (7 months after the second dose
and approximately three months before the third dose), implying that a third antigenic
stimulation can raise a waning NtAb response in subjects undergoing a complete vaccina-
tion cycle following natural infection. However, NtAb levels measured around 3–4 weeks
following the first, second, and third vaccine doses did not differ significantly from one
another. This suggests that, in subjects previously experiencing mild or asymptomatic
infection, subsequent vaccine shots do not boost humoral immunity to higher-than-ever
levels but rather refresh the waning immune system to comparable levels. However, in
another HCW cohort with a median age of 41 years, Romero-Ibarguengoitia et al. [19]
reported a significant increase in IgG titers detected 21–28 days after the third dose with
respect to the IgG value at 21–28 days after the second dose. Potentially relevant differences
with respect to our study include the use of a commercial anti-spike IgG assay instead of
authentic neutralization, the inclusion of a proportion of subjects infected twice, the shorter
interval (6 months versus more than nine months) between second and third vaccine
dose and possibly disease severity (not reported). Omicron spreading caused the ongoing
wave of the COVID-19 epidemic: this variant is characterized by more than 30 amino acid
substitutions in the S protein and these changes cover almost all of the key mutations of
Alpha, Beta, Gamma, and Delta VOC [20]. Since November 2021, when it was identified,
Omicron continuously evolved: BA.2.12.1, BA.4, BA.5, BA.2.9.1, BA.2.13, and BA.2.11 are
the Omicron lineages first detected from December 2021 to March 2022 included in the
World Health Organization (WHO) variants of concern lineages under monitoring as of the
beginning of June 2022 [21]. This rapidly evolving scenario had a strong impact on public
health: the Omicron variants of SARS-CoV-2 have greater transmissibility than the previ-
ously identified variants [22,23]. It is important to note that a third dose of vaccine has been
shown to partially restore the neutralization activity against the highly divergent Omicron
variant in subjects not previously infected by SARS-CoV-2 [24] and in those with a previous
infection [25,26]. In addition, a positive impact on antibody response was demonstrated
for high preinfection antibody titers [27]. Nevertheless, recent data showed that omicron
variants can evade the humoral immune response following the booster dose with the
BNT162b2 vaccine (with a reduction in neutralizing antibody titers ranging from a factor
of 6.4 for BA.1 to a factor of 21.0 for BA.4 or BA.5. with respect to reference WA1/2020
isolate) and subvariants BA.2.12.1, BA.4, and BA.5 escape neutralizing responses against
a previous BA.1 or BA.2 infection [28]. Further, Omicron may evolve mutations to evade
the humoral immunity elicited by a BA.1 infection, suggesting that BA.1-derived vaccine
boosters may not achieve broad-spectrum protection against new Omicron variants [29].

Goldblatt et al. [30] estimated a protective threshold in vaccine recipients correspond-
ing to 154 binding antibody units /mL to the original viral strain by using a population-
based model. Again, the titration method used was an anti-spike IgG binding assay and it
can be difficult to correlate these data with live virus NtAb titers. In our dataset, the lowest
median postvaccination NtAb titer was 421 ID50 at 9–10 months before the administration
of the third dose (T7) and this titer likely continued to decrease to a minimum just before
this third dose recall. However, no reinfection was demonstrated despite the very high
transmissibility of the Delta [31] and Omicron variants [32] which were prevalent in the
last seven and two months of observation, respectively.

The availability of multiple time points data for each HCW allowed us to describe
the dynamics of the NtAb response from immunity to natural infection across multiple
vaccine stimulations. Overall, NtAb titers were correlated at the different time points,
confirming the result published by Mantus et al. [33], who observed a positive correlation
between antireceptor binding domain (RBD) antibodies, anti-spike IgG, NtAb titers, and
RBD+ memory B cells prior to and after vaccination in subjects recovering from infection.
The correlation between natural and artificial active immunity suggests an important
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role for immunogenetics, possibly involving differences in the individual B cell receptor
repertoire [34] and HLA haplotype [35].

The strengths of the study include the prospective design encompassing almost two
years with a study population regularly monitored to rule out breakthrough infections
and the use of an authentic live virus neutralization assay; the main limitations are the
low sample size, the incomplete availability of samples at intermediate time points, and
no evaluation of the cross-protection against the emerging variants. However, the kinetics
of the response to the ancestral virus provides useful information on the durability of the
immunological memory and on the ability to respond to further stimuli.

5. Conclusions

We will continue to study the NtAb response over time after the third dose and
immediately before and after the fourth dose that is now recommended in Italy for people
over sixty and may be recommended for HCW too. This will be continued with the aim
to evaluate over time the changes in titer against the ancestral virus, describe titer against
Omicron subvariants and, at the same time, monitor the occurrence of COVID-19 reinfection
in this high-risk cohort in order to describe the characteristic of humoral response after
three or four vaccine stimulations and one or two natural infections.

In addition to being able to pursue new variants and perhaps responses to new vaccine
antigens, we have, however, so far been able to study the net kinetics of response to repeated
antigenic stimuli that were temporally and quantitatively well documented against the
new coronavirus.

We have thus documented the effects of up to four stimuli (natural infection and
vaccine boosters) over time, demonstrating similar and non-decreasing titers. This is
relevant in terms of public health. We encourage scientists to design studies allowing
prolonged regular follow-up of specific categories to define how infection and vaccination
determine the durability of protective immunity in the context of the ongoing epidemic.
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